Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,387)

Search Parameters:
Keywords = beam patterns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1345 KB  
Article
Beam Tracking X-Ray Phase-Contrast Imaging Using a Conventional X-Ray Source
by Jiaqi Li, Jianheng Huang, Xin Liu, Yaohu Lei, Botao Mai and Chenggong Zhang
Sensors 2025, 25(19), 6089; https://doi.org/10.3390/s25196089 - 2 Oct 2025
Abstract
To address the issue of insufficient contrast in conventional X-ray absorption imaging for biological soft tissues and weakly absorbing materials, this paper proposes a beam tracking X-ray phase-contrast imaging system using a conventional X-ray source. A periodic pinhole array mask is placed between [...] Read more.
To address the issue of insufficient contrast in conventional X-ray absorption imaging for biological soft tissues and weakly absorbing materials, this paper proposes a beam tracking X-ray phase-contrast imaging system using a conventional X-ray source. A periodic pinhole array mask is placed between the X-ray source and the sample to spatially modulate the X-ray beam, dividing it into multiple independent sub-beams. Each sub-beam is deflected due to the modulation effect of the sample, resulting in slight positional shifts in the intensity patterns formed on the detector. The experiments employ an X-ray source with a 400 μm focal spot and use a two-dimensional step-scanning approach to acquire image sequences of various samples. The experimental results show that this method can extract the edge profile and structural changes in the samples to some extent, and it demonstrates good contrast and detail recovery under weak absorption conditions. These results suggest that this method has certain application potential in material inspection, non-destructive testing, and related fields. Full article
(This article belongs to the Special Issue Recent Innovations in X-Ray Sensing and Imaging)
21 pages, 4678 KB  
Article
Impact of Beacon Feedback on Stabilizing RL-Based Power Optimization in SLM-Controlled FSO Uplinks Under Turbulence
by Erfan Seifi and Peter LoPresti
Photonics 2025, 12(10), 979; https://doi.org/10.3390/photonics12100979 - 1 Oct 2025
Abstract
Atmospheric turbulence severely limits the stability and reliability of free-space optical (FSO) uplinks by inducing wavefront distortions and random intensity fluctuations. This study investigates the use of reinforcement learning (RL) with beacon-based feedback for adaptive beam shaping in a spatial light modulator (SLM)-controlled [...] Read more.
Atmospheric turbulence severely limits the stability and reliability of free-space optical (FSO) uplinks by inducing wavefront distortions and random intensity fluctuations. This study investigates the use of reinforcement learning (RL) with beacon-based feedback for adaptive beam shaping in a spatial light modulator (SLM)-controlled FSO link. The RL agent dynamically adjusts phase patterns to maximize received signal strength, while the beacon channel provides turbulence estimates that guide the optimization process. Experiments under low, moderate, and high turbulence levels demonstrate that incorporating beacon feedback can enhance link stability in severe conditions, reducing signal variability and suppressing extreme fluctuations. In low-turbulence scenarios, the performance is comparable to non-feedback operation, whereas under high turbulence, beacon-assisted control consistently achieves lower coefficients of variation and improved bit error rate (BER) performance. Under high turbulence replay experiments—where the best-performing RL-learned phase patterns are reapplied without learning—further show that configurations trained with feedback retain robustness, even without real-time turbulence measurements under high turbulence. These results highlight the potential of integrating contextual feedback with RL to achieve turbulence-resilient and stable optical uplinks in dynamic atmospheric environments. Full article
Show Figures

Graphical abstract

19 pages, 4711 KB  
Article
Study on the Fire Temperature Pattern of Tunnels with Beams Under the Longitudinal Smoke Exhaust Mode
by Shilin Feng, Liang Yi, Zhisheng Xu and Zihan Yu
Fire 2025, 8(10), 388; https://doi.org/10.3390/fire8100388 - 29 Sep 2025
Abstract
Previous studies on tunnel fires have primarily focused on tunnels with flat ceilings and lacked studies on tunnels with beams. The present study is predicated on a reduced-scale tunnel model with a beam structure. Through meticulous analysis of the effects of factors such [...] Read more.
Previous studies on tunnel fires have primarily focused on tunnels with flat ceilings and lacked studies on tunnels with beams. The present study is predicated on a reduced-scale tunnel model with a beam structure. Through meticulous analysis of the effects of factors such as longitudinal ventilation velocity and beam dimensions, the study unveils the distribution pattern of ceiling temperatures under the longitudinal smoke exhaust mode. The findings suggest that the presence of beams can induce turbulence in the longitudinal ventilation airflow. It has been demonstrated that the magnitude of this phenomenon is directly proportional to the spacing of the beams. This results in fluctuations in the ceiling temperature rise close to the combustion zone. The smoke storage capacity of the open cavities formed between adjacent beams is significantly affected by the beam height, thereby influencing the overall temperature rise beneath the ceiling. The greater the beam height, the higher the overall ceiling temperature rise near the combustion zone, but the lower the ceiling temperature rise downstream of the fire source. A prediction model for the longitudinal decay of ceiling temperature downstream of the fire source in tunnels with beams has been obtained. This model is related to the dimensionless beam dimension. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

17 pages, 674 KB  
Article
A CBCT Morphometric Study of Hyoid Bone According to Skeletal and Breathing Patterns Using Multi-Factor Robust ANOVA
by Busra Ozturk, Guldane Magat, Mucahid Yildirim and Alparslan Esen
Healthcare 2025, 13(19), 2423; https://doi.org/10.3390/healthcare13192423 - 24 Sep 2025
Viewed by 9
Abstract
Background/Objectives: The hyoid bone plays a central role in functions such as swallowing, speech, and airway maintenance, and its morphology may vary with anatomical and functional parameters. This study aimed to evaluate the influence of skeletal class, respiratory mode, age, and sex [...] Read more.
Background/Objectives: The hyoid bone plays a central role in functions such as swallowing, speech, and airway maintenance, and its morphology may vary with anatomical and functional parameters. This study aimed to evaluate the influence of skeletal class, respiratory mode, age, and sex on the morphometric features of the hyoid bone using cone-beam computed tomography (CBCT). Methods: A total of 560 CBCT scans (295 females, 265 males; aged 8–73 years) were retrospectively analyzed. Hyoid angle, horizontal length, and vertical height were measured using Dolphin 3D software. Participants were categorized by skeletal class (I, II, III), breathing pattern (nasal vs. oral), and age group. Data were analyzed using robust three-way ANOVA and Bonferroni post hoc tests. Results: In females, nasal breathers exhibited significantly larger hyoid angles and vertical heights than oral breathers (p < 0.001), independent of age and skeletal class. In males, both age and breathing mode significantly influenced hyoid angle and vertical length (p < 0.001). Vertical height was also significantly greater in skeletal Class I compared to Class III (p = 0.008). Notably, significant respiration–skeletal class interaction was found in females (p = 0.029) but not in males. Conclusions: Hyoid bone morphology is affected by age, breathing pattern, and skeletal class, with sex-specific differences. Nasal breathing and younger age were associated with more inferior and angularly favorable hyoid positions, which may have implications for airway stability and craniofacial development. Full article
Show Figures

Figure 1

14 pages, 2211 KB  
Communication
Large-Area Nanostructure Fabrication with a 75 nm Half-Pitch Using Deep-UV Flat-Top Laser Interference Lithography
by Kexin Jiang, Mingliang Xie, Zhe Tang, Xiren Zhang and Dongxu Yang
Sensors 2025, 25(18), 5906; https://doi.org/10.3390/s25185906 - 21 Sep 2025
Viewed by 296
Abstract
Micro- and nanopatterning is crucial for advanced photonic, electronic, and sensing devices. Yet achieving large-area periodic nanostructures with a 75 nm half-pitch on low-cost laboratory systems remains difficult, because conventional near-ultraviolet laser interference lithography (LIL) suffers from Gaussian-beam non-uniformity and a narrow exposure [...] Read more.
Micro- and nanopatterning is crucial for advanced photonic, electronic, and sensing devices. Yet achieving large-area periodic nanostructures with a 75 nm half-pitch on low-cost laboratory systems remains difficult, because conventional near-ultraviolet laser interference lithography (LIL) suffers from Gaussian-beam non-uniformity and a narrow exposure latitude. Here, we report a cost-effective deep-ultraviolet (DUV) dual-beam LIL system based on a 266 nm laser and diffractive flat-top beam shaping, enabling large-area patterning of periodical nanostructures. At this wavelength, a moderate half-angle can be chosen to preserve a large beam-overlap region while still delivering 150 nm period (75 nm half-pitch) structures. By independently tuning the incident angle and beam uniformity, we pattern one-dimensional (1D) gratings and two-dimensional (2D) arrays over a Ø 1.0 cm field with critical-dimension variation < 5 nm (1σ), smooth edges, and near-vertical sidewalls. As a proof of concept, we transfer a 2D pattern into Si to create non-metal-coated nanodot arrays that serve as surface-enhanced Raman spectroscopy (SERS) substrates. The arrays deliver an average enhancement factor of ~1.12 × 104 with 11% intensity relative standard deviation (RSD) over 65 sampling points, a performance near the upper limit of all-dielectric SERS substrates. The proposed method overcomes the uneven hotspot distribution and complex fabrication procedures in conventional SERS substrates, enabling reliable and large-area chemical sensing. Compared to electron-beam lithography, the flat-top DUV-LIL approach offers orders-of-magnitude higher throughput at a fraction of the cost, while its centimeter-scale uniformity can be scaled to full wafers with larger beam-shaping optics. These attributes position the method as a versatile and economical route to large-area photonic metasurfaces and sensing devices. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

8 pages, 3096 KB  
Communication
Infrared Optical Vortices Generation with Holographic Optical Elements Recorded in Bayfol HX200 Photopolymer
by Álvaro Paredes-Amorín, Julia Marín-Sáez, María-Victoria Collados and Jesús Atencia
Photonics 2025, 12(9), 940; https://doi.org/10.3390/photonics12090940 - 20 Sep 2025
Viewed by 238
Abstract
Infrared optical vortices are used in the field of optical communications at wavelengths around 1550 nm. A versatile method to generate them is with a Spatial Light Modulator (SLM); however, they are expensive devices and cannot be easily integrated into compact systems, as [...] Read more.
Infrared optical vortices are used in the field of optical communications at wavelengths around 1550 nm. A versatile method to generate them is with a Spatial Light Modulator (SLM); however, they are expensive devices and cannot be easily integrated into compact systems, as opposed to Holographic Optical Elements (HOEs), which are lightweight, smaller and thinner, and easier to align and combine with other optical systems. In this work, volume transmission HOEs have been recorded in a commercial photopolymer, Bayfol HX200, by exposing it to the interference pattern obtained with an optical vortex (obtained with an SLM) and a plane wave in the visible range. When illuminated with a plane wave at 1534 nm, the diffracted beam carried an optical vortex. An experimental efficiency of approximately 45% at that wavelength has been obtained, proving the viability of the method. Full article
(This article belongs to the Special Issue Advances in Holography and Its Applications)
Show Figures

Figure 1

14 pages, 3698 KB  
Article
Active Gaze Guidance and Pupil Dilation Effects Through Subject Engagement in Ophthalmic Imaging
by David Harings, Niklas Bauer, Damian Mendroch, Uwe Oberheide and Holger Lubatschowski
J. Eye Mov. Res. 2025, 18(5), 45; https://doi.org/10.3390/jemr18050045 - 19 Sep 2025
Viewed by 219
Abstract
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning [...] Read more.
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning by guiding the gaze along predefined patterns. An infrared fundus camera setup was used with nine healthy adults (aged 20–57) who completed tasks comparing passive viewing of moving patterns to actively tracing them by drawing using a touchpad interface. The active task involved participant-controlled target movement with real-time color feedback for accurate pattern tracing. Results showed that active tracing significantly increased pupil diameter by an average of 17.8% (range 8.9–43.6%; p < 0.001) and reduced blink frequency compared to passive viewing. More complex patterns led to greater pupil dilation, confirming the link between cognitive load and physiological response. These findings demonstrate that patient driven gaze guidance can stabilize gaze, reduce blinking, and naturally dilate the pupil. These conditions might enhance the quality of scannerless OCT or other imaging techniques benefiting from guided gaze and larger pupils. There could be benefits for children and people with compliance issues, although further research is needed to consider cognitive load. Full article
(This article belongs to the Special Issue Eye Tracking and Visualization)
Show Figures

Figure 1

16 pages, 8002 KB  
Article
A High-Gain Reconfigurable Beam-Switched Circular Array Antenna Based on Pentagonal Radiating Elements Fed by Mutual Coupling for Sub-6 GHz Wireless Application Systems
by Faouzi Rahmani, Moustapha El Bakkali, Aziz Dkiouak, Naima Amar Touhami, Abdelmounaim Belbachir Kchairi, Bousselham Samoudi and Laurent Canale
Electronics 2025, 14(18), 3701; https://doi.org/10.3390/electronics14183701 - 18 Sep 2025
Cited by 1 | Viewed by 253
Abstract
This paper presents the design and development of a reconfigurable circular array antenna capable of producing ten distinct radiation beams, intended for wireless systems in the sub-6 GHz frequency band. The antenna structure is based on four pentagon-shaped radiating elements arranged symmetrically around [...] Read more.
This paper presents the design and development of a reconfigurable circular array antenna capable of producing ten distinct radiation beams, intended for wireless systems in the sub-6 GHz frequency band. The antenna structure is based on four pentagon-shaped radiating elements arranged symmetrically around a central circular patch, which is excited through a coaxial feed. These radiating elements are linked by four circular segments, ensuring mutual coupling for effective operation. A systematic dimensional analysis has been conducted to optimize electromagnetic performance, resulting in a compact and efficient architecture. The beam reconfiguration is achieved through the control of four PIN diodes, which allow the main radiation beam to switch among ten different orientations in the azimuth plane. Specifically, the antenna supports eight directional states, oriented at 45° intervals, and two additional bidirectional states covering opposite directions. A prototype has been fabricated and experimentally validated, confirming the steering capability of ±40° in both the XZ and YZ planes. Performance evaluation shows a maximum gain of 9.29 dBi and efficiency levels ranging from 91% to 97%. Bandwidth varies across states, with 9.72% for S1–S7, 7.45% for S2–S8, and 4.61% for S9–S10. Overall, the proposed design demonstrates optimized bandwidth, gain, efficiency, and complete azimuthal coverage. Full article
Show Figures

Graphical abstract

19 pages, 10949 KB  
Article
Reasonable Width of Deteriorated Coal Pillars and Surrounding Rock Control for Roadways in Thick Coal Seams: A Case Study of Datong Coal Mine Area, China
by Junyu Jin, Yu Wang, Xufeng Jin and Fang Qiao
Appl. Sci. 2025, 15(18), 10110; https://doi.org/10.3390/app151810110 - 16 Sep 2025
Viewed by 252
Abstract
This work aimed to address the severe deformation and uncontrollable instability of surrounding rocks in gob-side roadways of ultra-thick coal seams under intense mining disturbances. Theoretical analysis, numerical simulation, and field practice were used to investigate the reasonable width of deteriorated coal pillars [...] Read more.
This work aimed to address the severe deformation and uncontrollable instability of surrounding rocks in gob-side roadways of ultra-thick coal seams under intense mining disturbances. Theoretical analysis, numerical simulation, and field practice were used to investigate the reasonable width of deteriorated coal pillars and surrounding rock control technology. The following items were clarified, including the structural characteristics of the overlying strata, the fracture location of main roof, and the stress, failure, and deformation patterns of surrounding rocks based on coal pillar width. In terms of the load-bearing characteristics of coal pillars, the reasonable width of deteriorated coal pillars in roadways was determined. According to the differential deformation characteristics of roadway roof and sides, an adaptive and targeted asymmetric control scheme was proposed for surrounding rocks. Key strata above the ultra-thick coal seam working face formed a structure of low-level cantilever beam and high-level articulated rock beam. The fracture position of the main roof cantilever beam was located 15.4 m from the coal wall of the goaf. When the pillar width reached 8 m during roadway excavation, the internal stress exceeded the original rock stress. The lateral deterioration range of the coal seam extended to 25 m from the coal wall after mining the upper working face. The protective coal pillars within the reasonable width range were all in a fully plastic failure state. The plastic-bearing zone within the deteriorated coal pillar occupied a high proportion when the coal pillar width ranged from 8 to 10 m, demonstrating convenient load-bearing capacity. Considering economic and safety factors, the reasonable width for deteriorated coal pillars was determined to be 8 m. The deformation of roof and side on the coal pillar side of the roadway was greater than that on the solid coal side, showing obvious asymmetric characteristics. A targeted asymmetric support scheme using truss anchor cables was proposed for surrounding rocks. This scheme formed an effective prestress field in the surrounding rocks, enabling enhanced control of severely deformed areas. Field practice has verified the rationality of the designed deteriorated coal pillar width and support system, ensuring safe production in the working face. This provides reference and inspiration for the reasonable width and surrounding rock control technology of deteriorated coal pillars under similar geological conditions. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

26 pages, 4121 KB  
Article
An Experimental Investigation of Twelve Concrete Beams Post-Tensioned with Unbonded Tendons Under Center-Point and Third-Point Loading
by Wojciech Politalski and Andrzej Seruga
Materials 2025, 18(18), 4333; https://doi.org/10.3390/ma18184333 - 16 Sep 2025
Viewed by 284
Abstract
The first concrete structures post-tensioned with unbonded tendons were constructed in the 1950s. Despite the popularity of such a type of construction solution, the theory describing the behavior of members with unbonded prestress remains relatively unknown. Different standards, provisions, and theories described by [...] Read more.
The first concrete structures post-tensioned with unbonded tendons were constructed in the 1950s. Despite the popularity of such a type of construction solution, the theory describing the behavior of members with unbonded prestress remains relatively unknown. Different standards, provisions, and theories described by scientists can be found in the literature. The main problem is related to determining the value of the prestressing force and its increments because it is dependent upon the member rather than the section due to a lack of bond between the concrete and the tendons. Both theoretical and experimental studies enable the definition of parameters that have an influence on stress increase. Three of the most important of these parameters were investigated in tests conducted by the authors. This paper presents the findings of an experimental study conducted on twelve simply supported RC beams that were prestressed with unbonded tendons. A total of twelve elements were grouped according to various criteria, including their span-to-depth ratio, prestressed reinforcement ratio, and type of loading. All beams had a low reinforcing bars index, which met the Eurocode 2 requirements. The aim of this research was to check if such a level of ordinary reinforcement ratio will enable the achievement of a satisfactory crack pattern and also a high stress increase in unbonded tendons. The members were tested to investigate their behavior and the stress increment in tendons in terms of their load-carrying capacity. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

28 pages, 6245 KB  
Article
Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects
by Nikolaos A. Chrysochoidis, Christoforos S. Rekatsinas and Dimitris A. Saravanos
J. Compos. Sci. 2025, 9(9), 500; https://doi.org/10.3390/jcs9090500 - 15 Sep 2025
Viewed by 252
Abstract
A layerwise laminate FE model capable of predicting the dynamic response of delaminated composite beams with piezoelectric actuators and sensors encompassing local non-linear contact and sliding at the delamination interfaces was formulated. The kinematic assumptions of the layerwise model enabled the representation of [...] Read more.
A layerwise laminate FE model capable of predicting the dynamic response of delaminated composite beams with piezoelectric actuators and sensors encompassing local non-linear contact and sliding at the delamination interfaces was formulated. The kinematic assumptions of the layerwise model enabled the representation of opening and sliding of delamination interfaces as generalized strains, thereby allowing the introduction of interfacial contact and sliding effects through constitutive relations at the interface. This realistic FE model, assisted by representative experiments, was used to study the time response of delaminated active sensory composite beams with predefined delamination extents. The time response was measured and simulated for narrowband actuation signals at two distinct frequency levels using a surface-bonded piezoceramic actuator, while signal acquisition was performed with a piezopolymer sensor. Four different composite specimens, each containing a different delamination size, were used for this study. Experimental results were directly compared with model predictions to evaluate the performance of the proposed analytical approach. Damage signatures were identified in both the signal amplitude and the time of flight, and the sensitivity to delamination size was examined. Finally, the distributions of axial and interlaminar stresses at various time snapshots of the transient analysis are presented, along with contour plots across the structure’s thickness, which illustrate the delamination location and wave propagation patterns. Full article
Show Figures

Figure 1

9 pages, 2299 KB  
Article
Neuromuscular and Performance Responses to Resisted Sprint Loads in Elite Female Sprinters
by Mieszko Bartosz-Jeffries, Irineu Loturco, Adam Zając, Adam Maszczyk, Tomás T. Freitas, Pedro E. Alcaraz, Lucas A. Pereira and Artur Gołaś
Sports 2025, 13(9), 327; https://doi.org/10.3390/sports13090327 - 15 Sep 2025
Viewed by 390
Abstract
This study examined the effects of motorized resisted sprint training (RST) on neuromuscular activation and sprint performance in elite female sprinters. Ten highly trained athletes (age: 23 ± 2.8 years; body mass: 58.3 ± 4.7 kg) performed two maximal 30 m unresisted sprints [...] Read more.
This study examined the effects of motorized resisted sprint training (RST) on neuromuscular activation and sprint performance in elite female sprinters. Ten highly trained athletes (age: 23 ± 2.8 years; body mass: 58.3 ± 4.7 kg) performed two maximal 30 m unresisted sprints and six resisted sprints under three different load conditions (i.e., 5%, 10%, and 15% of body mass [BM]), randomized in a counterbalanced design. Surface electromyography (EMG) of eight lower-limb muscles was recorded bilaterally using wearable EMG-integrated shorts. Sprint times were captured using dual-beam photocells, and motorized resistance was applied with the SPRINT 1080 device. Repeated-measures ANOVA revealed a significant load-dependent effect on sprint time (p < 0.001, η2 = 0.926), with performance decreasing as resistance increased. However, no significant changes were observed in most muscle groups across load conditions, except for a non-significant trend toward increased left gluteus maximus activity (p = 0.053, η2 = 0.136). Interestingly, greater inter-individual variability in both sprint performance and muscle activation was observed as external loads increased. These findings suggest that elite female sprinters maintain highly stable neuromuscular recruitment patterns, particularly in the quadriceps and hamstrings, when sprinting with external loads up to 15% BM, potentially reflecting a ceiling effect in their neuromuscular responsiveness. From a practical perspective, light-to-moderate RST may effectively stimulate posterior chain muscles without disrupting sprinting mechanics. Future longitudinal studies are warranted to explore the chronic adaptations to motorized RST and to determine whether the observed neuromuscular strategies are consistent across sexes. Full article
Show Figures

Figure 1

18 pages, 4659 KB  
Article
Performance Enhancement and Nano-Scale Interaction Mechanism of Asphalt Modified with Solid Waste-Derived Nano-Micro-Powders
by Xiaodong Jia, Yao Ge, Hongzhou Zhu and Kaifeng Zheng
Coatings 2025, 15(9), 1079; https://doi.org/10.3390/coatings15091079 - 15 Sep 2025
Viewed by 318
Abstract
To investigate the influence patterns and underlying mechanisms of solid waste-derived Nano-Micro-Powder (NMP) materials on asphalt performance, this study selected nano-sized silica fume (a typical industrial solid waste) along with conventionally used hydrated lime and cement powders as representative modifiers. Based on material [...] Read more.
To investigate the influence patterns and underlying mechanisms of solid waste-derived Nano-Micro-Powder (NMP) materials on asphalt performance, this study selected nano-sized silica fume (a typical industrial solid waste) along with conventionally used hydrated lime and cement powders as representative modifiers. Based on material type, dosage, and particle size, the high-temperature rheological properties, low-temperature rheological behavior, and nano-scale mechanical characteristics of NMP-modified asphalt were systematically evaluated through dynamic shear frequency tests, Multiple Stress Creep Recovery (MSCR) tests, Bending Beam Rheometer (BBR) tests, and Atomic Force Microscopy (AFM) measurements. Additionally, the grey relational analysis method was employed to quantify the impact of key nanoparticle characteristics on modified asphalt performance. The results demonstrate the following: (1) With increasing NMP dosage and decreasing particle size, the complex modulus (G*) of modified asphalt increases significantly, while the creep recovery rate (R) rises and non-recoverable creep compliance (Jnr) decreases. The creep stiffness slope (m-value) diminishes under low-temperature conditions. (2) Among different NMP types, silica fume-modified asphalt exhibits the highest G*, R, and m-value parameters. (3) At the nanoscale, adhesion force, modulus, and surface roughness all increase with higher NMP dosage and smaller particle size. Silica fume demonstrates superior performance in these nano-mechanical properties compared to hydrated lime and cement powders. (4) Grey relational analysis reveals that specific surface area shows the strongest correlation with the overall performance of NMP-modified asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

33 pages, 12112 KB  
Article
Innovative Retrofitting for Disaster Resilience: Optimizing Steel Plate Grade and Scheme in RC Non-Seismic Frames to Prevent Progressive Collapse
by Hussein M. Elsanadedy, Tarek H. Almusallam, Husain Abbas and Yousef A. Al-Salloum
Buildings 2025, 15(18), 3325; https://doi.org/10.3390/buildings15183325 - 14 Sep 2025
Cited by 1 | Viewed by 331
Abstract
Reinforced concrete (RC) non-seismic frames in Middle Eastern multistory buildings often have beam–column connections with discontinuous bottom reinforcement, heightening the risk of progressive collapse if an outer column fails. This study aimed to reduce the potential for progressive collapse when a column is [...] Read more.
Reinforced concrete (RC) non-seismic frames in Middle Eastern multistory buildings often have beam–column connections with discontinuous bottom reinforcement, heightening the risk of progressive collapse if an outer column fails. This study aimed to reduce the potential for progressive collapse when a column is lost by investigating the use of bolted steel plates to enhance the beam–column joints of such frames. In this regard, high-fidelity finite element (FE) analysis was carried out on ten half-scale, two-span, two-story RC frames to simulate the removal of a center column. The numerical analysis accounted for the nonlinear rate-dependent response of steel and concrete, as well as the bond-slip model at steel bars/concrete interaction. The analysis matrix had three unstrengthened specimens that served as references for comparison, in addition to seven assemblies, which were strengthened using bolted steel plates. In the upgraded assemblies, the studied variables were the grade of steel plate (three grades were examined) and the upgrading scheme (three different schemes were investigated). The performance of the specimens was evaluated by comparing their failure patterns and the characteristics of load versus displacement of the middle column during both flexural and catenary action phases. Based on this comparison, the most efficient strengthening method was suggested. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 8253 KB  
Article
Experimental and Theoretical Studies on Shear Performance of Corrugated Steel–Concrete Composite Arches Considering the Shear–Compression Ratio
by Xiangfei Xia, Tianyu Li, Bowen Chen, Jinsheng Yang, Xinhao Han, Zhan Yu, Chenyang Wei and Hongwei Zhao
Buildings 2025, 15(18), 3316; https://doi.org/10.3390/buildings15183316 - 13 Sep 2025
Viewed by 402
Abstract
Corrugated steel–concrete (CSC) composite arches, an innovative structural system with simplified construction and enhanced stiffness, are widely used in bridge and tunnel modular engineering. However, insufficient research on their shear performance limits prefabricated applications. Similarly to beams, their shear behavior is significantly affected [...] Read more.
Corrugated steel–concrete (CSC) composite arches, an innovative structural system with simplified construction and enhanced stiffness, are widely used in bridge and tunnel modular engineering. However, insufficient research on their shear performance limits prefabricated applications. Similarly to beams, their shear behavior is significantly affected by loading location. Specifically, as a parameter significantly affected by the loading location, the shear–compression ratio exerts a notable influence on the shear bearing capacity of CSC arches by altering the development pattern of cracks and the inclination angle of shear cracks. To investigate the influence mechanism of the loading location, this study is the first to systematically link shear–compression ratio variation to load location in CSC arches. In this context, shear performance tests were conducted on two CSC specimens with different loading locations (mid-span and quarter-point) to investigate the influence of loading locations on the shear behavior of CSC arches. To further investigate the impact of key parameters on the shear bearing capacity of CSC arches, a validated finite element model was employed to support the parametric analysis. The parameters involved include the span-to-rise ratio, shear connector spacing, strength and thickness of corrugated steel, as well as strength and thickness of concrete. Theoretical calculations for internal forces under varying rise-to-span ratios and loading methods are conducted, proposing an analytical solution method. Validation using 2 experiments and 96 finite element results show that a modified method is applicable, with a mean value of 1.066, corresponding to a standard deviation of 0.071, and all relative errors within 15%. By introducing the shear–compression ratio, this study extends existing methods to make them applicable under single-point loading, thereby enabling their use for guiding engineering. Similarly, the internal force analysis method proposed herein can serve as a theoretical foundation, providing a valuable reference for future research on shear capacity calculation methods for CSC arches with varying cross-sectional configurations and those where bending moments play a more significant role. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop