Performance Enhancement and Nano-Scale Interaction Mechanism of Asphalt Modified with Solid Waste-Derived Nano-Micro-Powders
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Asphalt Binder
2.1.2. Solid Waste Nano-Micro-Powders
2.1.3. Preparation of Modified Asphalt
2.2. Test Methods
2.2.1. Nitrogen Adsorption and Scanning Electron Microscopy (SEM)
2.2.2. Dynamic Shear Frequency Sweep Test
2.2.3. Repeated Multi-Stress Creep Recovery Test (MSCR)
2.2.4. Bending Beam Rheometer (BBR) Test
2.2.5. Grey Relational Analysis (GRA)
2.2.6. Atomic Force Microscopy (AFM) Analysis
3. Results and Discussion
3.1. Surface Morphology and Pore Characteristics
3.2. Rheological Properties
3.3. High-Temperature Performance
3.4. Low-Temperature Performance
3.5. Grey Relational Analysis
3.6. Nano-Mechanical Properties
3.6.1. Surface Adhesion Force Analysis
3.6.2. Surface Modulus Analysis
3.6.3. Surface Roughness Analysis
4. Conclusions
5. Patents
- (1)
- Patent name: An asphalt feeding and mixing device, Authorization Announcement Number: CN 114214084 B.
- (2)
- Patent name: A method of adding powder particles to asphalt, Authorization Announcement Number: CN 114214083 B.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NMP | Nano-Micro-Powder |
HL | Hydrated lime |
PC | Portland cement |
SF | Silica fume |
BBR | Bending beam rheometer tests |
MSCR | Multi-stress creep recovery tests |
AFM | Atomic force microscopy |
References
- Zhang, K.; Wang, Z.R. LTPP data-based investigation on asphalt pavement performance using geospatial hot spot analysis and decision tree models. Int. J. Transp. Sci. Technol. 2023, 12, 606–627. [Google Scholar] [CrossRef]
- Xing, X.; Han, K.; Liu, R.; Chen, Z.; Li, H.; Li, P.; Zhou, Q.; Wen, Y. Study on the Rheological Properties of Fly Ash Modified Asphalt Mastics. Coatings 2023, 13, 1307. [Google Scholar] [CrossRef]
- Guo, T.; Chen, H.; Tang, D.; Ding, S.; Wang, C.; Wang, D.; Chen, Y.; Li, Z. Rheological Properties of Composite Inorganic Micropowder Asphalt Mastic. Coatings 2023, 13, 1068. [Google Scholar] [CrossRef]
- Tang, Y.; Kang, J.; Pang, L.; Sun, H.; Wang, W.; Sun, X.; Wang, G.; Du, S.; Ding, Y. Research Progress on Functionalization of Nano-modified Asphalt-based Materials. Mater. Rep. 2024, 38, 246–256. [Google Scholar]
- Editorial Department of China Journal of Highway and Transport. Review of Academic Research on Chinese Pavement Engineering·2024. China J. Highw. Transp. 2024, 37, 1–81. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Li, A.; Zhao, D.; Liu, L.; Chen, Q. State of the art review on inorganic powders modified asphalt materials: Reducing the temperature of asphalt pavement. J. Road Eng. 2025, 5, 279–296. [Google Scholar] [CrossRef]
- Jin, J.; Liu, S.; Qian, G.; Liu, P.; Liu, Y.; Zeng, Q. Interaction Characteristics of Activated Coal Gangue Synergistic Crumb Rubber Powder Modified Asphalt. China J. Highw. Transp. 2023, 36, 155–170. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Y.; Liu, S.; Gao, Y.; Li, R.; Feng, M.; Xiong, J.; Liu, P. Research progress and prospect of environment-friendly green road. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 2137. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, J.; He, X.; Su, Y.; Chen, W.; Yang, C.; Hu, S.; Zheng, G. Surface Modification of Ultrafine Silica by Waste Engine Oil under Mechanochemical Action to Enhance the Dispersion in High-Viscosity Asphalt. J. Mater. Civ. Eng. 2025, 37. [Google Scholar] [CrossRef]
- Jia, X.D.; Liang, N.X.; Peng, Y.W. Analysis on fatigue performance of asphalt mortar with inorganic micro-powder filler. J. Harbin Inst. Technol. 2022, 54, 148. [Google Scholar]
- Zhang, J.; Guo, C.; Su, C.; Liang, M. Dynamic response and water stability improvement of red mud asphalt mixture. J. Chang’an Univ. (Nat. Sci. Ed.) 2021, 41, 11–22. [Google Scholar] [CrossRef]
- Arabani, M.; Moghaddam, M.Z. A comparative study into the effect of spent coffee powder and ash on improving the mechanical properties of bitumen. Constr. Build. Mater. 2024, 449, 138319. [Google Scholar] [CrossRef]
- Ou, L.; Zhang, X.; Zhu, H.; Shan, B.; Chen, R.; Yang, S.; Tan, Q.; Yang, X. Phosphogypsum as a warm mix asphalt additive: Preparation and performance. Constr. Build. Mater. 2025, 490, 142326. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Z.; Cui, Q.; Li, X.; Zhang, L.; Yang, X.; Li, X. Crack monitoring and self-healing properties of multifunctional asphalt mixture containing steel slag and carbon fiber towards sustainable pavement. Sustain. Mater. Technol. 2025, 45, e01511. [Google Scholar] [CrossRef]
- Aboelmagd, A.Y.; Khedr, S.; Moussa, G.S.; Abdalla, E.-S.M.; Enieb, M. Waste nanomaterial-modified asphalt for economic and sustainable pavement construction. Innov. Infrastruct. Solut. 2022, 7, 144. [Google Scholar] [CrossRef]
- Cao, K.; Xu, W.; Chen, D.; Feng, H. High- and Low-Temperature Properties and Thermal Stability of Silica Fume/SBS Composite-Modified Asphalt Mortar. Adv. Mater. Sci. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Ran, W.; Zhang, S.; Zhu, H.; Li, L.; Zhang, Y. Stability of Asphalt Mortar from Pyrolysis Residue of Oil Sludge Modified with Hydrated Lime Based on Rheological Properties. China J. Highw. Transp. 2023, 36, 107–119. [Google Scholar] [CrossRef]
- Li, W.; Hao, P.; Liu, G.; Li, Z.; Le, C.; Wang, C.; Ma, W.; Li, S. Research on the Microscopic Aging Characteristics of Asphalt Binder Based on Atomic Force Microscopy. Polymers 2025, 17, 1000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Y.; Zhang, W.; Du, W.; Li, X.; Wang, X.; Liu, X. Adhesion characteristics of montmorillonite modified asphalt unveiled by surface free energy and AFM. Int. J. Adhes. Adhes. 2024, 132, 103699. [Google Scholar] [CrossRef]
- Yu, T.; Liu, H.; Wang, M. Study on enhancement mechanism of asphalt microstructure by graphene/ graphene oxide based on MD and AFM. Surf. Interfaces 2024, 55, 105468. [Google Scholar] [CrossRef]
- Almashaqbeh, H.K.; Majdoub, M.; Sengottuvelu, D.; Nouranian, S.; Doyle, J.D.; Algharibeh, O.; Alkhateb, H.; Rushing, G.; Al-Shraideh, N.; Ucak-Astarlioglu, M.G.; et al. Efficacy of octadecylamine-functionalized graphene versus graphene nanoplatelets and graphene oxide as asphalt binder modifiers for high-temperature performance. Mater. Struct. 2025, 58, 44. [Google Scholar] [CrossRef]
- Liu, S.F.; Forrest, J.; Yang, Y.J. A brief introduction to grey systems theory. Grey Syst. Theory Appl. 2012, 2, 89–104. [Google Scholar] [CrossRef]
- Wei, W.; Chen, B.M.; Shen, J.A. Zero Shear Viscosity of Hybrid Modified Asphalts and Its Gray Correlation with Other Properties. Materials 2022, 15, 7056. [Google Scholar] [CrossRef]
- Liu, T.; Guo, N.; You, Z.; Jin, X.; Zhu, J.; Gao, M.; Fang, C. High and low-rheological properties and modification mechanism of PUP/SBS composite-modified asphalt. J. Southeast Univ. (Nat. Sci. Ed.) 2023, 53, 672–681. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, H.; Sun, J.; Yu, T. Comparative analysis on rheological characteristics of different modified asphalt based on DSR and BBR evaluation. J. Eng. Des. Technol. 2023, 21, 1568–1587. [Google Scholar] [CrossRef]
Test Items | Units | Technical Requirements | Test Results |
---|---|---|---|
Penetration degree (25 °C) | 0.1 mm | 60~80 | 68 |
Ductility (15 °C) | cm | ≮100 | >150 |
Softening point | °C | ≮45 | 47.4 |
Density (15 °C) | g/cm3 | / | 1.019 |
RTFO residue | |||
Mass loss | % | ≯±0.8 | Qualified |
Penetration ratio | % | ≮61 | 70 |
Ductility after aging (15 °C) | cm | ≮15 | >100 |
Number | Code | Type | Mesh | Content (%) | D5 (μm) | D50 (μm) | D90 (μm) |
---|---|---|---|---|---|---|---|
1 | Hydrated lime | HL-P1 | 200−300 | 2.5% | 15.221 | 26.156 | 59.523 |
2 | HL-P1 | 5.0% | |||||
3 | HL-P1 | 7.5% | |||||
4 | HL-P2 | 400−500 | 5.0% | 7.156 | 15.486 | 42.335 | |
5 | HL-P3 | 800−1000 | 4.389 | 6.134 | 21.336 | ||
6 | Portland cement | PC-P1 | 200−300 | 10.358 | 29.268 | 63.123 | |
7 | Silica fume | SF-P1 | 2000−3000 | 0.396 | 3.126 | 6.135 |
Number | Type | Mesh | Content (%) | Experimental Conditions | ||
---|---|---|---|---|---|---|
Temperature (°C) | Time (min) | Speed (r/min) | ||||
1 | HL-P1 | 200–300 | 2.5% | 150 | 40 | 5000 |
2 | HL-P1 | 5.0% | 150 | 40 | 5000 | |
3 | HL-P1 | 7.5% | 150 | 40 | 5000 | |
4 | HL-P2 | 400–500 | 5.0% | 170 | 20 | 5000 |
5 | HL-P3 | 800–1000 | 170 | 20 | 5000 | |
6 | PC-P1 | 200–300 | 150 | 40 | 5000 | |
7 | SF-P1 | 2000–3000 | 170 | 20 | 5000 | |
8 | OR | / | / | / | / | / |
Type | Code | Dosage (%) | 0.1 kpa | 3.2 kpa | ||||
---|---|---|---|---|---|---|---|---|
Jnr | Jnr | |||||||
Original asphalt | OR | / | 4.20% | 3.39 | 0.12% | 5.87 | 97.14% | 73.16% |
Hydrated lime | HL-P1 | 2.5 | 25.30% | 1.18 | 0.88% | 1.89 | 96.52% | 60.17% |
5 | 29.30% | 0.95 | 1.59% | 1.36 | 94.57% | 43.16% | ||
7.5 | 33.20% | 0.85 | 1.89% | 1.15 | 94.31% | 35.29% | ||
HL-P2 | 5 | 32.50% | 0.78 | 2.23% | 1.01 | 93.14% | 29.49% | |
HL-P3 | 35.20% | 0.61 | 3.39% | 0.76 | 90.37% | 24.59% | ||
Portland cement | PC-P1 | 15.80% | 1.29 | 0.45% | 2.11 | 97.15% | 63.57% | |
Silica fume | SF-P1 | 35.20% | 0.52 | 3.85% | 0.62 | 89.06% | 19.23% |
Type | Content (%) | (MPa) | (MPa) | (MPa·s) | (MPa·s) | R2 | |
---|---|---|---|---|---|---|---|
OR | / | 661.25 | 399.45 | 58,072.18 | 11,945.33 | 87.85 | 0.999 |
HL-P1 | 2.5 | 726.15 | 592.33 | 69,259.69 | 23,562.15 | 95.38 | 0.992 |
5.0 | 885.45 | 669.87 | 88,593.52 | 31,536.25 | 100.05 | 0.996 | |
7.5 | 936.58 | 745.22 | 105,515.12 | 41,879.22 | 112.66 | 0.995 | |
HL-P2 | 5.0 | 1145.78 | 938.78 | 152,834.84 | 138,596.15 | 133.39 | 0.989 |
HL-P3 | 1378.29 | 1239.16 | 192,489.33 | 399,263.45 | 139.66 | 0.993 | |
PC-P1 | 688.33 | 428.33 | 65,214.26 | 12,656.33 | 94.74 | 0.999 | |
SF-P1 | 1525.44 | 1553.15 | 223,645.22 | 524,536.55 | 146.61 | 0.991 |
Comparative Sequences | GRA | Grey Correlation Degree | ||
---|---|---|---|---|
PC-P1 | HL-P1 | SF-P1 | ||
Density (g/cm3) | 1.00 | 0.42 | 0.33 | 0.584 |
major component content (%) | 0.40 | 1.00 | 0.33 | 0.576 |
SSA (m2/g) | 1.00 | 0.92 | 0.33 | 0.752 |
hydrophilic coefficient | 0.64 | 0.33 | 1.00 | 0.657 |
particle size (μm) | 0.33 | 0.81 | 1.00 | 0.716 |
pore structure | 1.00 | 0.33 | 0.38 | 0.572 |
Type | OR | PC-P1 | HL-P1 | HL-P1 | HL-P1 | HL-P2 | HL-P3 | SF-P1 |
---|---|---|---|---|---|---|---|---|
Content | / | 5% | 2.5% | 5.0% | 7.5% | 5.0% | ||
Fa(max) (nN) | 9.9 | 10.7 | 11.5 | 11.4 | 11.9 | 12.5 | 12.5 | 12.7 |
Fa(min) (nN) | 4 | 4.4 | 5.7 | 6.5 | 6.9 | 7.6 | 8.1 | 8.5 |
Code | Rmax (nm) | ISAD (%) |
---|---|---|
OR | 58.9 | 0.0326 |
PC-P1-5.0% | 55.9 | 0.0389 |
HL-P1-2.5% | 56.1 | 0.0405 |
HL-P1-5.0% | 55.3 | 0.0424 |
HL-P1-7.5% | 56.2 | 0.0411 |
HL-P2-5.0% | 30.2 | 0.0488 |
HL-P3-5.0% | 29.5 | 0.0635 |
SF-P1-5.0% | 24.6 | 0.0924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Ge, Y.; Zhu, H.; Zheng, K. Performance Enhancement and Nano-Scale Interaction Mechanism of Asphalt Modified with Solid Waste-Derived Nano-Micro-Powders. Coatings 2025, 15, 1079. https://doi.org/10.3390/coatings15091079
Jia X, Ge Y, Zhu H, Zheng K. Performance Enhancement and Nano-Scale Interaction Mechanism of Asphalt Modified with Solid Waste-Derived Nano-Micro-Powders. Coatings. 2025; 15(9):1079. https://doi.org/10.3390/coatings15091079
Chicago/Turabian StyleJia, Xiaodong, Yao Ge, Hongzhou Zhu, and Kaifeng Zheng. 2025. "Performance Enhancement and Nano-Scale Interaction Mechanism of Asphalt Modified with Solid Waste-Derived Nano-Micro-Powders" Coatings 15, no. 9: 1079. https://doi.org/10.3390/coatings15091079
APA StyleJia, X., Ge, Y., Zhu, H., & Zheng, K. (2025). Performance Enhancement and Nano-Scale Interaction Mechanism of Asphalt Modified with Solid Waste-Derived Nano-Micro-Powders. Coatings, 15(9), 1079. https://doi.org/10.3390/coatings15091079