Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = bedload trap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8418 KB  
Article
Bedload Sediment Transport Estimation in Sand-Bed Rivers Comparing Traditional Methods and Surrogate Technologies
by Philipe Ratton, Tobias Bernward Bleninger, Rodrigo Bahia Pereira and Fábio Veríssimo Gonçalves
Appl. Sci. 2023, 13(1), 5; https://doi.org/10.3390/app13010005 - 20 Dec 2022
Cited by 4 | Viewed by 3637
Abstract
Bedload sediment transport in rivers can cause impacts, such as bed erosion/deposition, sandbank formation and changes in flow capacity. Bedload sampling techniques have limitations related to spatial and temporal resolution. These constraints are more relevant in rivers with dunes and high sediment transport. [...] Read more.
Bedload sediment transport in rivers can cause impacts, such as bed erosion/deposition, sandbank formation and changes in flow capacity. Bedload sampling techniques have limitations related to spatial and temporal resolution. These constraints are more relevant in rivers with dunes and high sediment transport. This paper presents a comparison between bedload transport rates estimated with direct and indirect methods in a river with sand dunes. The case study area is a stretch of the Taquari River, in Brazil. Surveys were carried out on three consecutive days, during a flood season. A SonTek M9-ADCP with HydroSurveyor capabilities activated was used to simultaneously measure bathymetry and water velocities throughout a river reach, and also to perform moving-bed tests at six verticals along a predefined cross-section. A mechanical trap (Helley–Smith) was used to collect bedload samples at the same time and positions where the moving-bed tests were performed. Sediment transport was calculated and compared following different approaches: (1) ADCP-BT (Bottom Tracking); (2) modified ISSDOTv2 method (dune tracking); (3) HelleySmith mechanical trap; (4) and five empirical equations. The results showed good agreement between the methodologies, indicating the potential of using ADCPs for hydro sedimentological studies due to the advantages of integrating bathymetry, flow velocity and bedload data. Full article
(This article belongs to the Special Issue Sediment Transport)
Show Figures

Figure 1

19 pages, 2035 KB  
Article
Total Mercury Mass Load from the Paglia–Tiber River System: The Contribution to Mediterranean Sea Hg Budget
by Silvia Fornasaro, Guia Morelli, Pilario Costagliola, Valentina Rimondi, Pierfranco Lattanzi and Cesare Fagotti
Toxics 2022, 10(7), 395; https://doi.org/10.3390/toxics10070395 - 16 Jul 2022
Cited by 9 | Viewed by 2543
Abstract
The Mediterranean Sea is characterized by a marked mercury (Hg) geochemical anomaly, arising in part from large Hg deposits. Mercury mass loads discharged from the Monte Amiata mining district (Central Italy) to the Mediterranean Sea through the Paglia–Tiber River system were estimated. Data [...] Read more.
The Mediterranean Sea is characterized by a marked mercury (Hg) geochemical anomaly, arising in part from large Hg deposits. Mercury mass loads discharged from the Monte Amiata mining district (Central Italy) to the Mediterranean Sea through the Paglia–Tiber River system were estimated. Data from two seasons showed that up to 40 kg year−1 of Hg are drained to Tiber River and finally to the Mediterranean Sea. The mercury mass loads varied in different seasons, from 3 mg day−1 in the upper section of Paglia River in November to 42 g day−1 before the confluence with Tiber River in June. Along Tiber River, up to 15 ng L−1 of the total Hg found at a site after Rome showed that Hg can be discharged to the sea. The Alviano reservoir along Tiber River acts as a temporary trap for Hg-rich particulate, while dam operations may promote Hg release (up to 223 g day−1). The combination of hydrologic factors controlling Hg transport, the torrential regime in the upper catchment of Paglia River, the waterway steepness, together with Hg-contaminated legacy sediments in the Paglia River floodplain, make the Paglia–Tiber River system a long-lasting intermittent source of Hg to Tiber River and the Mediterranean Sea. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

16 pages, 3375 KB  
Communication
Sentinel-1 Satellite Radar Images: A New Source of Information for Study of River Channel Dynamics on the Lower Vistula River, Poland
by Klaudia Kryniecka, Artur Magnuszewski and Artur Radecki-Pawlik
Remote Sens. 2022, 14(5), 1056; https://doi.org/10.3390/rs14051056 - 22 Feb 2022
Cited by 7 | Viewed by 3369
Abstract
The amount of sediments transported by a river is difficult to estimate, while this parameter could influence channel geometry. It is possible to derive the bedload transport rate per unit width of the river channel by measuring the migration distance of bedform profiles [...] Read more.
The amount of sediments transported by a river is difficult to estimate, while this parameter could influence channel geometry. It is possible to derive the bedload transport rate per unit width of the river channel by measuring the migration distance of bedform profiles over time and thickness of bedload layer in motion. Other possible methods include instrumental measurements using bedload traps and empirical formulas. It is possible to use remote-sensing techniques to measure the dynamics of bedform movements and geometries. Landsat images and aerial photographs have been used for this. A new source of remote-sensing information is radar satellite images. Sentinel-1 images have a temporal resolution of 2–3 days and spatial resolution of 25 m at middle latitudes, which make them usable on large rivers. The research area is the 814–820 km reach of the Lower Vistula River, where seven alternate sandbars were selected. The bank lines of the sandbars were delineated on Sentinel-1 images sensed during two low-flow periods of 4 August–26 September 2018 and 1 July–31 August 2019, when discharges at low flow were similar. From water stage observations at gauges, water elevations were assigned to every bank line of the alternate sandbars. The following morphometric parameters were calculated: alternate sandbar centers, volumes and longitudinal profile. Average daily movement of the sandbars in the period 4 August 2018–1 July 2019 was calculated as 0.97 m·day−1. A similar alternate sandbar movement velocity was obtained from a study of Sentinel-2 optical satellite images and hydro-acoustic measurements on the Lower Vistula River. Having depth of bedload in motion and alternate sandbar shift velocities, it was possible to calculate the rate of bedload transport according to the Exner approach formula. Rate of bedload transport was estimated as qb = 0.027 kg·s−1·m−1. This study shows a novel use of Sentinel-1 images to study the 3D geometry and movement rate of sandbars. Full article
Show Figures

Figure 1

16 pages, 3327 KB  
Article
The Role of Bedload Transport in the Development of a Proglacial River Alluvial Fan (Case Study: Scott River, Southwest Svalbard)
by Waldemar Kociuba
Hydrology 2021, 8(4), 173; https://doi.org/10.3390/hydrology8040173 - 22 Nov 2021
Cited by 5 | Viewed by 3195
Abstract
This study, which was conducted between 2010 and 2013, presents the results of direct, continuous measurements of the bedload transport rate at the mouth section of the Scott River catchment (NW part of Wedel-Jarlsberg Land, Svalbard). In four consecutive melt seasons, the bedload [...] Read more.
This study, which was conducted between 2010 and 2013, presents the results of direct, continuous measurements of the bedload transport rate at the mouth section of the Scott River catchment (NW part of Wedel-Jarlsberg Land, Svalbard). In four consecutive melt seasons, the bedload flux was analyzed at two cross-sections located in the lower reaches of the gravel-bed proglacial river. The transported bedload was measured using two sets of River Bedload Traps (RBTs). Over the course of 130 simultaneous measurement days, a total of 930 bedload samples were collected. During this period, the river discharged about 1.32 t of bedload through cross-section I (XS I), located at the foot of the alluvial fan, and 0.99 t through cross-section II (XS II), located at the river mouth running into the fjord. A comparison of the bedload flux showed a distinctive disproportion between cross-sections. Specifically, the average daily bedload flux QB was 130 kg day−1 (XS I) and 81 kg day−1 (XS II) at the individual cross-profiles. The lower bedload fluxes that were recorded at specified periods in XS II, which closed the catchment at the river mouth from the alluvial cone, indicated an active role of aggradation processes. Approximately 40% of all transported bedload was stored at the alluvial fan, mostly in the active channel zone. However, comparative Geomorphic Change Detection (GCD) analyses of the alluvial fan, which were performed over the period between August 2010 and August 2013, indicated a general lowering of the surface (erosion). It can be assumed that the melt season’s average flows in the active channel zone led to a greater deposition of bedload particles than what was discharged with high intensity during floods (especially the bankfull stage, effectively reshaping the whole surface of the alluvial fan). This study documents that the intensity of bedload flux was determined by the frequency of floods. Notably, the highest daily rates recorded in successive seasons accounted for 12–30% of the total bedload flux. Lastly, the multi-seasonal analysis showed a high spatio-temporal variability of the bedload transport rates, which resulted in changes not only in the channel but also on the entire surface of the alluvial fan morphology during floods. Full article
(This article belongs to the Special Issue Observations in Water Resources)
Show Figures

Figure 1

16 pages, 5976 KB  
Article
Wood Retention at Inclined Bar Screens: Effect of Wood Characteristics on Backwater Rise and Bedload Transport
by Isabella Schalko, Virginia Ruiz-Villanueva, Fiona Maager and Volker Weitbrecht
Water 2021, 13(16), 2231; https://doi.org/10.3390/w13162231 - 16 Aug 2021
Cited by 9 | Viewed by 3062
Abstract
In forested mountain catchment areas, both bedload and large wood (LW) can be transported during ordinary flows. Retention structures such as sediment traps or racks are built to mitigate potential hazards downstream. Up to now, the design of these retention structures focuses on [...] Read more.
In forested mountain catchment areas, both bedload and large wood (LW) can be transported during ordinary flows. Retention structures such as sediment traps or racks are built to mitigate potential hazards downstream. Up to now, the design of these retention structures focuses on either LW or bedload. In addition, the majority of LW retention racks tend to retain both LW and bedload, while bedload transport continuity during ordinary flows is an important aspect to be considered in the design. Therefore, a series of flume experiments was conducted to study the effect of LW accumulations at an inclined bar screen with a bottom clearance on backwater rise and bedload transport. The main focus was put on testing different LW characteristics such as LW size, density, fine material, and shape (branches and rootwads), as well as a sequenced flood. The results demonstrated that a few logs (wood volume of ≈ 7 m3 prototype scale with a model scale factor of 30) are sufficient to reduce the bedload transport capacity to below 75% compared to the condition without LW. Fine material and smaller wood sizes further reduced bedload transport and increased backwater rise. In contrast, LW density and LW shape had a negligible effect. The test focusing on a sequenced flood highlighted the need for maintenance measures to avoid self-flushing of the bed material. The results of this study further indicate that an inclined bar screen may need to be adapted by considering LW characteristics in the design of the bottom clearance to enable bedload continuity during ordinary flows. Full article
(This article belongs to the Special Issue Impact of Large Wood on River Ecosystems)
Show Figures

Figure 1

19 pages, 7039 KB  
Article
Did the Construction of the Bhumibol Dam Cause a Dramatic Reduction in Sediment Supply to the Chao Phraya River?
by Matharit Namsai, Warit Charoenlerkthawin, Supakorn Sirapojanakul, William C. Burnett and Butsawan Bidorn
Water 2021, 13(3), 386; https://doi.org/10.3390/w13030386 - 2 Feb 2021
Cited by 10 | Viewed by 6588
Abstract
The Bhumibol Dam on Ping River, Thailand, was constructed in 1964 to provide water for irrigation, hydroelectric power generation, flood mitigation, fisheries, and saltwater intrusion control to the Great Chao Phraya River basin. Many studies, carried out near the basin outlet, have suggested [...] Read more.
The Bhumibol Dam on Ping River, Thailand, was constructed in 1964 to provide water for irrigation, hydroelectric power generation, flood mitigation, fisheries, and saltwater intrusion control to the Great Chao Phraya River basin. Many studies, carried out near the basin outlet, have suggested that the dam impounds significant sediment, resulting in shoreline retreat of the Chao Phraya Delta. In this study, the impact of damming on the sediment regime is analyzed through the sediment variation along the Ping River. The results show that the Ping River drains a mountainous region, with sediment mainly transported in suspension in the upper and middle reaches. By contrast, sediment is mostly transported as bedload in the lower basin. Variation of long-term total sediment flux data suggests that, while the Bhumibol Dam does effectively trap sediment, there was only a 5% reduction in sediment supply to the Chao Phraya River system because of sediment additions downstream. Full article
Show Figures

Figure 1

21 pages, 11140 KB  
Article
Calculated Potential Bedload Versus Real Transported Sands along the Guadiana River Estuary (Spain–Portugal)
by Juan A. Morales, Claudio Lozano and Mouncef Sedrati
J. Mar. Sci. Eng. 2019, 7(11), 393; https://doi.org/10.3390/jmse7110393 - 5 Nov 2019
Cited by 3 | Viewed by 2911
Abstract
The Guadiana estuary is a coastal system located in the southwest of the Iberian Peninsula and is the natural border between Portugal and Spain. It is a rock-bounded estuary which extends along more than 40 km and is characterized by a semidiurnal mesotidal [...] Read more.
The Guadiana estuary is a coastal system located in the southwest of the Iberian Peninsula and is the natural border between Portugal and Spain. It is a rock-bounded estuary which extends along more than 40 km and is characterized by a semidiurnal mesotidal regime. This paper represents an approach to the bedload transport across two flow sections located in the fluvial and marine domains. In the fluvial profile, the most frequent bedform is the plane bed. In the marine area the bed of the deep channel is composed of well-sorted sand, while a lateral bar displays partially cohesive sediments with dominant fine sands in a matrix of clayey silts. Data were acquired during spring and neap tides. Near-bottom water velocities were registered by an acoustic Doppler current profiler (ADCP). Density and bed rugosity were determined in sediment samples. These data were employed using Bagnold’s equation (1963) to quantify the potential bedload (Qb). Further, real bedload values (Sb) were obtained by using Poliakoff traps. The comparison of the results of Qb under both ebb and flood conditions demonstrated a clear river-to-sea net transport in both sectors. The values of Sb were lower than those of Qb in every condition. The sand input across the fluvial estuary cannot supply the potential bedload in the lower domain of the channel, thereby causing a deficit that explains this lack of agreement between potential and real transport. Full article
(This article belongs to the Special Issue Coastal Morphodynamics II)
Show Figures

Figure 1

22 pages, 3572 KB  
Article
Estimating the Sediment Flux and Budget for a Data Limited Rift Valley Lake in Ethiopia
by Alemu O. Aga, Assefa M. Melesse and Bayou Chane
Hydrology 2019, 6(1), 1; https://doi.org/10.3390/hydrology6010001 - 23 Dec 2018
Cited by 43 | Viewed by 7624 | Correction
Abstract
Information on sediment concentration in rivers is important for the design and management of reservoirs. In this paper, river sediment flux and siltation rate of a rift valley lake basin (Lake Ziway, Ethiopia) was modeled using suspended sediment concentration (SSC) samples from four [...] Read more.
Information on sediment concentration in rivers is important for the design and management of reservoirs. In this paper, river sediment flux and siltation rate of a rift valley lake basin (Lake Ziway, Ethiopia) was modeled using suspended sediment concentration (SSC) samples from four rivers and lake outlet stations. Both linear and non-linear least squares log–log regression methods were used to develop the model. The best-fit model was tested and evaluated qualitatively by time-series plots, quantitatively by using watershed model evaluation statistics, and validated by calculating the prediction error. Sediment yield (SY) of ungauged rivers were assessed by developing and using a model that includes catchment area, slope, and rainfall, whereas bedload was estimated. As a result, the gross annual SY transported into the lake was 2.081 Mton/year. Annually, 0.178 Mton/year of sediment is deposited in floodplains with a sediment trapping rate of 20.6%, and 41,340 ton/year of sediment leaves the lake through the Bulbula River. The annual sediment deposition in the lake is 2.039 Mton/year with a mean sediment trapping efficiency of 98%. Based on the established sediment budget with average rainfall, the lake will lose its volume by 0.106% annually and the lifetime of Lake Ziway will be 947 years. The results show that the approach used can be replicated at other similar ungauged watersheds. As one of the most important sources of water for irrigation in the country, the results can be used for planning and implementing a lake basin management program targeting upstream soil erosion control. Full article
Show Figures

Figure 1

15 pages, 14392 KB  
Article
Grain Size Distribution of Bedload Transport in a Glaciated Catchment (Baranowski Glacier, King George Island, Western Antarctica)
by Joanna Sziło and Robert Józef Bialik
Water 2018, 10(4), 360; https://doi.org/10.3390/w10040360 - 23 Mar 2018
Cited by 19 | Viewed by 6308
Abstract
The relationships among grain size distribution (GSD), water discharge, and GSD parameters are investigated to identify regularities in the evolution of two gravel-bed proglacial troughs: Fosa Creek and Siodło Creek. In addition, the potential application of certain parameters obtained from the GSD analysis [...] Read more.
The relationships among grain size distribution (GSD), water discharge, and GSD parameters are investigated to identify regularities in the evolution of two gravel-bed proglacial troughs: Fosa Creek and Siodło Creek. In addition, the potential application of certain parameters obtained from the GSD analysis for the assessment of the formation stage of both creeks is comprehensively discussed. To achieve these goals, River Bedload Traps (RBTs) were used to collect the bedload, and a sieving method for dry material was applied to obtain the GSDs. Statistical comparisons between both streams showed significant differences in flow velocity; however, the lack of significant differences in bedload transport clearly indicated that meteorological conditions are among the most important factors in the erosive process for this catchment. In particular, the instability of flow conditions during high water discharge resulted in an increase in the proportion of medium and coarse gravels. The poorly sorted fine and very fine gravels observed in Siodło Creek suggest that this trough is more susceptible to erosion and less stabilized than Fosa Creek. The results suggest that GSD analyses can be used to define the stage of development of riverbeds relative to that of other riverbeds in polar regions. Full article
(This article belongs to the Special Issue Modeling and Practice of Erosion and Sediment Transport under Change)
Show Figures

Figure 1

28 pages, 8204 KB  
Article
Bedload and Suspended Load Transport in the 140-km Reach Downstream of the Mississippi River Avulsion to the Atchafalaya River
by Sanjeev Joshi and Y. Jun Xu
Water 2017, 9(9), 716; https://doi.org/10.3390/w9090716 - 18 Sep 2017
Cited by 35 | Viewed by 10063
Abstract
The Mississippi River Delta has been continuously losing land since the 1930s due to several factors, chief of which is the reduced sediment supply. A few recent studies have estimated individual components of short-term sediment transport, i.e., bedload and suspended load, separately for [...] Read more.
The Mississippi River Delta has been continuously losing land since the 1930s due to several factors, chief of which is the reduced sediment supply. A few recent studies have estimated individual components of short-term sediment transport, i.e., bedload and suspended load, separately for some locations along the Lowermost Mississippi River (LmMR, commonly considered as the last 500-km reach of the Mississippi River before entering the Gulf of Mexico). However, the combined effects of both components on the long-term sediment supply along the river reach are still unclear. One of the major obstacles here hindering our understanding is that it is difficult and impractical to accurately measure bedloads in large alluvial rivers, such as the Mississippi. In this study, we estimated bedloads of three medium grain sizes (D50 = 0.125, 0.25 and 0.5 mm) for three locations along the uppermost 140-km reach of the LmMR: Tarbert Landing (TBL) at river kilometer (rk) 493, St Francisville (St F) at rk 419, and Baton Rouge (BTR) at rk 367.5 during 2004–2015. We also estimated suspended loads at St F during 1978–2015 and at BTR during 2004–2015 in order to discern the interactive relationship between bedloads and suspended loads. We found gradually increasing bedloads for all the three medium grain sizes from TBL (83, 41.5 and 20.75 million tons (MT), respectively) to BTR (96, 48 and 24 MT). We also found that suspended loads at TBL (reported previously) were significantly higher than those at St F and BTR during corresponding overlapping periods. Bedloads increased almost linearly with suspended loads, river discharge and river stage at the upstream locations (TBL and St F); however, such a relationship was not evident downstream at BTR. The total sediment load (bedload + suspended sediment load) was substantially higher at TBL (931 MT), while lower and nearly equal at other two downstream locations (550 MT at St F and 544 MT at BTR) during 2004–2010 (the matching period of availability of both loads). These findings indicate that the uppermost 20–25 km LmMR reach (covering TBL) has potentially entrapped substantial suspended load over the last three to four decades, while bedload transport prevails in the lower reach (covering St F and BTR). We suggest that future sediment management in the river should seek engineering solutions for moving trapped coarse sediments downstream towards the coast for the Mississippi River Delta restoration Full article
(This article belongs to the Special Issue Recent Progress in Research on River Deltas)
Show Figures

Figure 1

Back to TopTop