Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,111)

Search Parameters:
Keywords = bidirectional long short-term memory (LSTM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3746 KB  
Article
BERNN: A Transformer-BiLSTM Hybrid Model for Cross-Domain Short Text Classification in Agricultural Expert Systems
by Xueyong Li, Menghao Zhang, Xiaojuan Guo, Jiaxin Zhang, Jiaxia Sun, Xianqin Yun, Liyuan Zheng, Wenyue Zhao, Lican Li and Haohao Zhang
Symmetry 2025, 17(9), 1374; https://doi.org/10.3390/sym17091374 - 22 Aug 2025
Viewed by 235
Abstract
With the advancement of artificial intelligence, Agricultural Expert Systems (AESs) show great potential in enhancing agricultural management efficiency and resource utilization. Accurate extraction of semantic features from agricultural short texts is fundamental to enabling key functions such as intelligent question answering, semantic retrieval, [...] Read more.
With the advancement of artificial intelligence, Agricultural Expert Systems (AESs) show great potential in enhancing agricultural management efficiency and resource utilization. Accurate extraction of semantic features from agricultural short texts is fundamental to enabling key functions such as intelligent question answering, semantic retrieval, and decision support. However, existing single-structure deep neural networks struggle to capture the hierarchical linguistic patterns and contextual dependencies inherent in domain-specific texts. To address this limitation, we propose a hybrid deep learning model—Bidirectional Encoder Recurrent Neural Network (BERNN)—which combines a domain-specific pre-trained Transformer encoder (AgQsBERT) with a Bidirectional Long Short-Term Memory (BiLSTM) network. AgQsBERT generates contextualized word embeddings by leveraging domain-specific pretraining, effectively capturing the semantics of agricultural terminology. These embeddings are then passed to the BiLSTM, which models sequential dependencies in both directions, enhancing the model’s understanding of contextual flow and word disambiguation. Importantly, the bidirectional nature of the BiLSTM introduces a form of architectural symmetry, allowing the model to process input in both forward and backward directions. This symmetric design enables balanced context modeling, which improves the understanding of fragmented and ambiguous phrases frequently encountered in agricultural texts. The synergy between semantic abstraction from AgQsBERT and symmetric contextual modeling from BiLSTM significantly enhances the expressiveness and generalizability of the model. Evaluated on a self-constructed agricultural question dataset with 110,647 annotated samples, BERNN achieved a classification accuracy of 97.19%, surpassing the baseline by 3.2%. Cross-domain validation on the Tsinghua News dataset further demonstrates its robust generalization capability. This architecture provides a powerful foundation for intelligent agricultural question-answering systems, semantic retrieval, and decision support within smart agriculture applications. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 11950 KB  
Article
A Novel Hybrid Attention-Based RoBERTa-BiLSTM Model for Cyberbullying Detection
by Mohammed A. Mahdi, Suliman Mohamed Fati, Mohammed Gamal Ragab, Mohamed A. G. Hazber, Shahanawaj Ahamad, Sawsan A. Saad and Mohammed Al-Shalabi
Math. Comput. Appl. 2025, 30(4), 91; https://doi.org/10.3390/mca30040091 - 21 Aug 2025
Viewed by 183
Abstract
The escalating scale and psychological harm of cyberbullying across digital platforms present a critical social challenge, demanding the urgent development of highly accurate and reliable automated detection systems. Standard fine-tuned transformer models, while powerful, often fall short in capturing the nuanced, context-dependent nature [...] Read more.
The escalating scale and psychological harm of cyberbullying across digital platforms present a critical social challenge, demanding the urgent development of highly accurate and reliable automated detection systems. Standard fine-tuned transformer models, while powerful, often fall short in capturing the nuanced, context-dependent nature of online harassment. This paper introduces a novel hybrid deep learning model called Robustly Optimized Bidirectional Encoder Representations from the Transformers with the Bidirectional Long Short-Term Memory-based Attention model (RoBERTa-BiLSTM), specifically designed to address this challenge. To maximize its effectiveness, the model was systematically optimized using the Optuna framework and rigorously benchmarked against eight state-of-the-art transformer baseline models on a large cyberbullying dataset. Our proposed model achieves state-of-the-art performance, outperforming BERT-base, RoBERTa-base, RoBERTa-large, DistilBERT, ALBERT-xxlarge, XLNet-large, ELECTRA-base, DeBERTa-v3-small with an accuracy of 94.8%, precision of 96.4%, recall of 95.3%, F1-score of 95.8%, and an AUC of 98.5%. Significantly, it demonstrates a substantial improvement in F1-score over the strongest baseline and reduces critical false negative errors by 43%, all while maintaining moderate computational efficiency. Furthermore, our efficiency analysis indicates that this superior performance is achieved with a moderate computational complexity. The results validate our hypothesis that a specialized hybrid architecture, which synergizes contextual embedding with sequential processing and attention mechanism, offers a more robust and practical solution for real-world social media applications. Full article
Show Figures

Figure 1

19 pages, 2604 KB  
Article
Bayesian-Optimized GCN-BiLSTM-Adaboost Model for Power-Load Forecasting
by Jiarui Li, Jian Li, Jiatong Li and Guozheng Zhang
Electronics 2025, 14(16), 3332; https://doi.org/10.3390/electronics14163332 - 21 Aug 2025
Viewed by 137
Abstract
Accurate and stable power-load forecasting is crucial for optimizing generation scheduling and ensuring the economic and secure operation of power grids. To address the issues of low prediction accuracy and poor robustness during abrupt load changes, this study proposes a Bayesian-optimized GCN-BiLSTM-Adaboost model [...] Read more.
Accurate and stable power-load forecasting is crucial for optimizing generation scheduling and ensuring the economic and secure operation of power grids. To address the issues of low prediction accuracy and poor robustness during abrupt load changes, this study proposes a Bayesian-optimized GCN-BiLSTM-Adaboost model (abbreviated as GCN-BiLSTM-AB). It combines Graph Convolutional Networks (GCN), Bidirectional Long Short-Term Memory Networks (BiLSTM), and a Bayesian-optimized AdaBoost framework. Firstly, the GCN is employed to capture the spatial correlation features of the input data. Then, the BiLSTM is employed to extract the long-term dependencies of the data time series. Finally, the AdaBoost framework is used to dynamically adjust the base learner weights, and a Bayesian method is employed to optimize the weight adjustment process and prevent overfitting. The experiment results on actual load data from a regional power grid show the GCN-BiLSTM-AB outperforms other compared models in prediction error metrics, with MAE, MAPE, and RMSE values of 1.86, 3.13%, and 2.26, respectively, which improve the prediction robustness during load change periods. Therefore, the proposed method shows that the synergistic effect of spatiotemporal feature extraction and dynamic weight adjustment improves prediction accuracy and robustness, which provides a new forecasting model with high precision and reliability for power system dispatch decisions. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

36 pages, 14083 KB  
Article
Workload Prediction for Proactive Resource Allocation in Large-Scale Cloud-Edge Applications
by Thang Le Duc, Chanh Nguyen and Per-Olov Östberg
Electronics 2025, 14(16), 3333; https://doi.org/10.3390/electronics14163333 - 21 Aug 2025
Viewed by 104
Abstract
Accurate workload prediction is essential for proactive resource allocation in large-scale Content Delivery Networks (CDNs), where traffic patterns are highly dynamic and geographically distributed. This paper introduces a CDN-tailored prediction and autoscaling framework that integrates statistical and deep learning models within an adaptive [...] Read more.
Accurate workload prediction is essential for proactive resource allocation in large-scale Content Delivery Networks (CDNs), where traffic patterns are highly dynamic and geographically distributed. This paper introduces a CDN-tailored prediction and autoscaling framework that integrates statistical and deep learning models within an adaptive feedback loop. The framework is evaluated using 18 months of real traffic traces from a production multi-tier CDN, capturing realistic workload seasonality, cache–tier interactions, and propagation delays. Unlike generic cloud-edge predictors, our design incorporates CDN-specific features and model-switching mechanisms to balance prediction accuracy with computational cost. Seasonal ARIMA (S-ARIMA), Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Online Sequential Extreme Learning Machine (OS-ELM) are combined to support both short-horizon scaling and longer-term capacity planning. The predictions drive a queue-based resource-estimation model, enabling proactive cache–server scaling with low rejection rates. Experimental results demonstrate that the framework maintains high accuracy while reducing computational overhead through adaptive model selection. The proposed approach offers a practical, production-tested solution for predictive autoscaling in CDNs and can be extended to other latency-sensitive edge-cloud services with hierarchical architectures. Full article
(This article belongs to the Special Issue Next-Generation Cloud–Edge Computing: Systems and Applications)
Show Figures

Graphical abstract

31 pages, 8900 KB  
Article
Attention-Fused Staged DWT-LSTM for Fault Diagnosis of Embedded Sensors in Asphalt Pavement
by Jiarui Zhang, Haihui Duan, Songtao Lv, Dongdong Ge and Chaoyue Rao
Materials 2025, 18(16), 3917; https://doi.org/10.3390/ma18163917 - 21 Aug 2025
Viewed by 193
Abstract
Fault diagnosis for embedded sensors in asphalt pavement faces significant challenges, including the scarcity of real-world fault data and the difficulty in identifying compound faults, which severely compromises the reliability of monitoring data. To address these issues, this study proposes an intelligent diagnostic [...] Read more.
Fault diagnosis for embedded sensors in asphalt pavement faces significant challenges, including the scarcity of real-world fault data and the difficulty in identifying compound faults, which severely compromises the reliability of monitoring data. To address these issues, this study proposes an intelligent diagnostic framework that integrates a Discrete Wavelet Transform (DWT) with a staged, attention-based Long Short-Term Memory (LSTM) network. First, various fault modes were systematically defined, including short-term (i.e., bias, gain, and detachment), long-term (i.e., drift), and their compound forms. A fine-grained fault injection and labeling strategy was then developed to generate a comprehensive dataset. Second, a novel diagnostic model was designed based on a “Decomposition-Focus-Fusion” architecture. In this architecture, the DWT is employed to extract multi-scale features, and independent sub-models—a Bidirectional LSTM (Bi-LSTM) and a stacked LSTM—are subsequently utilized to specialize in learning short-term and long-term fault characteristics, respectively. Finally, an attention network intelligently weights and fuses the outputs from these sub-models to achieve precise classification of eight distinct sensor operational states. Validated through rigorous 5-fold cross-validation, experimental results demonstrate that the proposed framework achieves a mean diagnostic accuracy of 98.89% (±0.0040) on the comprehensive test set, significantly outperforming baseline models such as SVM, KNN, and a unified LSTM. A comprehensive ablation study confirmed that each component of the “Decomposition-Focus-Fusion” architecture—DWT features, staged training, and the attention mechanism—makes an indispensable contribution to the model’s superior performance. The model successfully distinguishes between “drift” and “normal” states—which severely confuse the baseline models—and accurately identifies various complex compound faults. Furthermore, simulated online diagnostic tests confirmed the framework’s rapid response capability to dynamic faults and its computational efficiency, meeting the demands of real-time monitoring. This study offers a precise and robust solution for the fault diagnosis of embedded sensors in asphalt pavement. Full article
Show Figures

Figure 1

29 pages, 1051 KB  
Article
Urdu Toxicity Detection: A Multi-Stage and Multi-Label Classification Approach
by Ayesha Rashid, Sajid Mahmood, Usman Inayat and Muhammad Fahad Zia
AI 2025, 6(8), 194; https://doi.org/10.3390/ai6080194 - 21 Aug 2025
Viewed by 245
Abstract
Social media empowers freedom of expression but is often misused for abuse and hate. The detection of such content is crucial, especially in under-resourced languages like Urdu. To address this challenge, this paper designed a comprehensive multilabel dataset, the Urdu toxicity corpus (UTC). [...] Read more.
Social media empowers freedom of expression but is often misused for abuse and hate. The detection of such content is crucial, especially in under-resourced languages like Urdu. To address this challenge, this paper designed a comprehensive multilabel dataset, the Urdu toxicity corpus (UTC). Second, the Urdu toxicity detection model is developed, which detects toxic content from an Urdu dataset presented in Nastaliq Font. The proposed framework initially processed the gathered data and then applied feature engineering using term frequency-inverse document frequency, bag-of-words, and N-gram techniques. Subsequently, the synthetic minority over-sampling technique is used to address the data imbalance problem, and manual data annotation is performed to ensure label accuracy. Four machine learning models, namely logistic regression, support vector machine, random forest, and gradient boosting, are applied to preprocessed data. The results indicate that the RF outperformed all evaluation metrics. Deep learning algorithms, including long short-term memory (LSTM), Bidirectional LSTM, and gated recurrent unit, have also been applied to UTC for classification purposes. Random forest outperforms the other models, achieving a precision, recall, F1-score, and accuracy of 0.97, 0.99, 0.98, and 0.99, respectively. The proposed model demonstrates a strong potential to detect rude, offensive, abusive, and hate speech content from user comments in Urdu Nastaliq. Full article
Show Figures

Figure 1

23 pages, 4405 KB  
Article
Optimized NRBO-VMD-AM-BiLSTM Hybrid Architecture for Enhanced Dissolved Gas Concentration Prediction in Transformer Oil Soft Sensors
by Nana Wang, Wenyi Li and Xiaolong Li
Sensors 2025, 25(16), 5182; https://doi.org/10.3390/s25165182 - 20 Aug 2025
Viewed by 333
Abstract
Soft sensors have emerged as indispensable tools for predicting dissolved gas concentrations in transformer oil-critical indicators for fault diagnosis that defy direct measurement. Addressing the persistent challenge of prediction inaccuracy in existing methods, this study introduces a novel hybrid architecture integrating time-series decomposition, [...] Read more.
Soft sensors have emerged as indispensable tools for predicting dissolved gas concentrations in transformer oil-critical indicators for fault diagnosis that defy direct measurement. Addressing the persistent challenge of prediction inaccuracy in existing methods, this study introduces a novel hybrid architecture integrating time-series decomposition, deep learning prediction, and signal reconstruction. Our approach initiates with variational mode decomposition (VMD) to disassemble original gas concentration sequences into stationary intrinsic mode functions (IMFs). Crucially, VMD’s pivotal parameters (modal quantity and quadratic penalty term) governing bandwidth allocation and mode orthogonality are optimized via a Newton–Raphson-based optimization (NRBO) algorithm, minimizing envelope entropy to ensure sparsity preservation through information-theoretic energy concentration metrics. Subsequently, a bidirectional long short-term memory network with attention mechanism (AM-BiLSTM) independently forecasts each IMF. Final concentration trends are reconstructed through superposition and inverse normalization. The experimental results demonstrate the superior performance of the proposed model, achieving a root mean square error (RMSE) of 0.51 µL/L and a mean absolute percentage error (MAPE) of 1.27% in predicting hydrogen (H2) concentration. Rigorous testing across multiple dissolved gases confirms exceptional robustness, establishing this NRBO-VMD-AM-BiLSTM framework as a transformative solution for transformer fault diagnosis. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

27 pages, 3824 KB  
Article
Sustainable Data Construction and CLS-DW Stacking for Traffic Flow Prediction in High-Altitude Plateau Regions
by Wu Bo, Xu Gong, Fei Chen, Haisheng Ren, Junhao Chen, Delu Li and Fengying Gou
Sustainability 2025, 17(16), 7427; https://doi.org/10.3390/su17167427 - 17 Aug 2025
Viewed by 369
Abstract
This study proposes a novel vehicle speed prediction model for plateau transportation—CLS-DW Stacking (Constrained Least Squares Dynamic Weighting Model Stacking)—which holds significant implications for the sustainable development of transportation systems in high-altitude regions. Research on sharp-curved roads on mountainous plateaus remains scarce. Compared [...] Read more.
This study proposes a novel vehicle speed prediction model for plateau transportation—CLS-DW Stacking (Constrained Least Squares Dynamic Weighting Model Stacking)—which holds significant implications for the sustainable development of transportation systems in high-altitude regions. Research on sharp-curved roads on mountainous plateaus remains scarce. Compared with plain areas, data acquisition in such regions is constrained by government confidentiality policies, while complex environmental and topographical conditions lead to substantial variations in road alignment and elevation. To address these challenges, this study presents a sustainable data acquisition and construction method: unmanned aerial vehicle (UAV) video data are processed through road image segmentation, trajectory tracking, and three-dimensional modeling to generate multi-source heterogeneous datasets for both single-curve and continuous-curve scenarios. Building upon these datasets, the proposed framework integrates constrained least squares with multiple deep learning methods to achieve accurate traffic flow prediction. Bi-LSTM (Bidirectional Long Short-Term Memory), Informer, and GRU (Gated Recurrent Unit) are employed as base learners, and the loss function is redefined with non-negativity and normalization constraints on the weights. This ensures optimal weight coefficients for each base learner, with the final prediction obtained via weighted summation. The experimental results show that, compared with single deep learning models such as Informer, the proposed model reduces the mean squared error (MSE) by 1.9% on the single curve dataset and by 7.7% on the continuous curve dataset. Furthermore, by combining vehicle speed predictions across different altitude gradients with decision tree-based interpretable analysis, this research provides scientific support for developing altitude-specific and precision-oriented speed limit policies. The outcomes contribute to accident risk reduction, traffic congestion mitigation, and carbon emission reduction, thereby improving road resource utilization efficiency. This work not only fills the research gap in traffic prediction for sharp-curved plateau roads but also supports the construction of green transportation systems and the broader objectives of sustainable development in high-altitude regions. Full article
Show Figures

Figure 1

21 pages, 3564 KB  
Article
Integrating Multi-Source Data for Aviation Noise Prediction: A Hybrid CNN–BiLSTM–Attention Model Approach
by Yinxiang Fu, Shiman Sun, Jie Liu, Wenjian Xu, Meiqi Shao, Xinyu Fan, Jihong Lv, Xinpu Feng and Ke Tang
Sensors 2025, 25(16), 5085; https://doi.org/10.3390/s25165085 - 15 Aug 2025
Viewed by 315
Abstract
Driven by the increasing global population and rapid urbanization, aircraft noise pollution has emerged as a significant environmental challenge, impeding the sustainable development of the aviation industry. Traditional noise prediction methods are limited by incomplete datasets, insufficient spatiotemporal consistency, and poor adaptability to [...] Read more.
Driven by the increasing global population and rapid urbanization, aircraft noise pollution has emerged as a significant environmental challenge, impeding the sustainable development of the aviation industry. Traditional noise prediction methods are limited by incomplete datasets, insufficient spatiotemporal consistency, and poor adaptability to complex meteorological conditions, making it difficult to achieve precise noise management. To address these limitations, this study proposes a novel noise prediction framework based on a hybrid Convolutional Neural Network–Bidirectional Long Short-Term Memory–Attention (CNN–BiLSTM–Attention) model. By integrating multi-source data, including meteorological parameters (e.g., temperature, humidity, wind speed) and aircraft trajectory data (e.g., altitude, longitude, latitude), the framework achieves high-precision prediction of aircraft noise. The Haversine formula and inverse distance weighting (IDW) interpolation are employed to effectively supplement missing data, while spatiotemporal alignment techniques ensure data consistency. The CNN–BiLSTM–Attention model leverages the spatial feature extraction capabilities of CNNs, the bidirectional temporal sequence processing capabilities of BiLSTMs, and the context-enhancing properties of the attention mechanism to capture the spatiotemporal characteristics of noise. The experimental results indicate that the model’s predicted mean value of 68.66 closely approximates the actual value of 68.16, with a minimal difference of 0.5 and a mean absolute error of 0.89%. Notably, the error remained below 2% in 91.4% of the prediction rounds. Furthermore, ablation studies revealed that the complete CNN–BiLSTM–AM model significantly outperformed single-structure models. The incorporation of the attention mechanism was found to markedly enhance both the accuracy and generalization capability of the model. These findings highlight the model’s robust performance and reliability in predicting aviation noise. This study provides a scientific basis for effective aviation noise management and offers an innovative solution for addressing noise prediction problems under data-scarce conditions. Full article
(This article belongs to the Special Issue Computer Vision Recognition and Communication Sensing System)
Show Figures

Figure 1

22 pages, 2209 KB  
Article
Hybrid BiLSTM-ARIMA Architecture with Whale-Driven Optimization for Financial Time Series Forecasting
by Panke Qin, Bo Ye, Ya Li, Zhongqi Cai, Zhenlun Gao, Haoran Qi and Yongjie Ding
Algorithms 2025, 18(8), 517; https://doi.org/10.3390/a18080517 - 15 Aug 2025
Viewed by 232
Abstract
Financial time series display inherent nonlinearity and high volatility, creating substantial challenges for accurate forecasting. Advancements in artificial intelligence have positioned deep learning as a critical tool for financial time series forecasting. However, conventional deep learning models often fail to accurately predict future [...] Read more.
Financial time series display inherent nonlinearity and high volatility, creating substantial challenges for accurate forecasting. Advancements in artificial intelligence have positioned deep learning as a critical tool for financial time series forecasting. However, conventional deep learning models often fail to accurately predict future trends in complex financial data due to inherent limitations. To address these challenges, this study introduces a WOA-BiLSTM-ARIMA hybrid forecasting model leveraging parameter optimization. Specifically, the whale optimization algorithm (WOA) optimizes hyperparameters for the Bidirectional Long Short-Term Memory (BiLSTM) network, overcoming parameter tuning challenges in conventional approaches. Due to its strong capacity for nonlinear feature extraction, BiLSTM excels at modeling nonlinear patterns in financial time series. To mitigate the shortcomings of BiLSTM in capturing linear patterns, the Autoregressive Integrated Moving Average (ARIMA) methodology is integrated. By exploiting ARIMA’s strengths in modeling linear features, the model refines BiLSTM’s prediction residuals, achieving more accurate and comprehensive financial time series forecasting. To validate the model’s effectiveness, this paper applies it to the prediction experiment of future spread data. Compared to classical models, WOA-BiLSTM-ARIMA achieves significant improvements across multiple evaluation metrics. The mean squared error (MSE) is reduced by an average of 30.5%, the mean absolute error (MAE) by 20.8%, and the mean absolute percentage error (MAPE) by 29.7%. Full article
(This article belongs to the Special Issue Hybrid Intelligent Algorithms (2nd Edition))
Show Figures

Figure 1

24 pages, 5649 KB  
Article
Bangla Speech Emotion Recognition Using Deep Learning-Based Ensemble Learning and Feature Fusion
by Md. Shahid Ahammed Shakil, Fahmid Al Farid, Nitun Kumar Podder, S. M. Hasan Sazzad Iqbal, Abu Saleh Musa Miah, Md Abdur Rahim and Hezerul Abdul Karim
J. Imaging 2025, 11(8), 273; https://doi.org/10.3390/jimaging11080273 - 14 Aug 2025
Viewed by 329
Abstract
Emotion recognition in speech is essential for enhancing human–computer interaction (HCI) systems. Despite progress in Bangla speech emotion recognition, challenges remain, including low accuracy, speaker dependency, and poor generalization across emotional expressions. Previous approaches often rely on traditional machine learning or basic deep [...] Read more.
Emotion recognition in speech is essential for enhancing human–computer interaction (HCI) systems. Despite progress in Bangla speech emotion recognition, challenges remain, including low accuracy, speaker dependency, and poor generalization across emotional expressions. Previous approaches often rely on traditional machine learning or basic deep learning models, struggling with robustness and accuracy in noisy or varied data. In this study, we propose a novel multi-stream deep learning feature fusion approach for Bangla speech emotion recognition, addressing the limitations of existing methods. Our approach begins with various data augmentation techniques applied to the training dataset, enhancing the model’s robustness and generalization. We then extract a comprehensive set of handcrafted features, including Zero-Crossing Rate (ZCR), chromagram, spectral centroid, spectral roll-off, spectral contrast, spectral flatness, Mel-Frequency Cepstral Coefficients (MFCCs), Root Mean Square (RMS) energy, and Mel-spectrogram. Although these features are used as 1D numerical vectors, some of them are computed from time–frequency representations (e.g., chromagram, Mel-spectrogram) that can themselves be depicted as images, which is conceptually close to imaging-based analysis. These features capture key characteristics of the speech signal, providing valuable insights into the emotional content. Sequentially, we utilize a multi-stream deep learning architecture to automatically learn complex, hierarchical representations of the speech signal. This architecture consists of three distinct streams: the first stream uses 1D convolutional neural networks (1D CNNs), the second integrates 1D CNN with Long Short-Term Memory (LSTM), and the third combines 1D CNNs with bidirectional LSTM (Bi-LSTM). These models capture intricate emotional nuances that handcrafted features alone may not fully represent. For each of these models, we generate predicted scores and then employ ensemble learning with a soft voting technique to produce the final prediction. This fusion of handcrafted features, deep learning-derived features, and ensemble voting enhances the accuracy and robustness of emotion identification across multiple datasets. Our method demonstrates the effectiveness of combining various learning models to improve emotion recognition in Bangla speech, providing a more comprehensive solution compared with existing methods. We utilize three primary datasets—SUBESCO, BanglaSER, and a merged version of both—as well as two external datasets, RAVDESS and EMODB, to assess the performance of our models. Our method achieves impressive results with accuracies of 92.90%, 85.20%, 90.63%, 67.71%, and 69.25% for the SUBESCO, BanglaSER, merged SUBESCO and BanglaSER, RAVDESS, and EMODB datasets, respectively. These results demonstrate the effectiveness of combining handcrafted features with deep learning-based features through ensemble learning for robust emotion recognition in Bangla speech. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

16 pages, 815 KB  
Article
XSS Attack Detection Method Based on CNN-BiLSTM-Attention
by Zhiping Li, Fangzheng Liu, Zhaojun Gu and Yun Liu
Appl. Sci. 2025, 15(16), 8924; https://doi.org/10.3390/app15168924 - 13 Aug 2025
Viewed by 324
Abstract
Cross-site scripting (XSS) is one of the most common security threats to web applications, posing a serious challenge to network information security. Targetting the limitations of traditional detection methods in identifying complex XSS attacks, this paper proposes a hybrid deep learning model that [...] Read more.
Cross-site scripting (XSS) is one of the most common security threats to web applications, posing a serious challenge to network information security. Targetting the limitations of traditional detection methods in identifying complex XSS attacks, this paper proposes a hybrid deep learning model that integrates convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism. The model captures local attack feature patterns through the CNN layer, learns contextual long-term dependencies through the BiLSTM layer, and introduces a multi-head attention mechanism to enhance the focus on key attack vectors. In the preprocessing stage, an improved regular word segmentation algorithm is used to construct semantic feature vectors, which effectively solves the problem of text feature representation of XSS attacks. Experimental results show that compared with the baseline method, the proposed method achieves an accuracy of 0.9938, a precision of 0.9936, a recall of 0.9936, and an F1-score of 0.9937 on real datasets. This shows that by integrating CNN and BiLSTM features and combining the attention mechanism, the model can effectively deal with complex XSS attacks. Full article
Show Figures

Figure 1

15 pages, 2246 KB  
Article
DSC-CBAM-BiLSTM: A Hybrid Deep Learning Framework for Robust Short-Term Photovoltaic Power Forecasting
by Aiwen Shen, Yunqi Lin, Yiran Peng, KinTak U and Siyuan Zhao
Mathematics 2025, 13(16), 2581; https://doi.org/10.3390/math13162581 - 12 Aug 2025
Viewed by 274
Abstract
To address the challenges of photovoltaic (PV) power prediction in highly dynamic environments. We propose an improved Long Short-Term Memory (ILSTM) model. The model uses Principal Component Analysis (PCA) and Particle Swarm Optimization (PSO) for feature selection, ensuring key information is preserved while [...] Read more.
To address the challenges of photovoltaic (PV) power prediction in highly dynamic environments. We propose an improved Long Short-Term Memory (ILSTM) model. The model uses Principal Component Analysis (PCA) and Particle Swarm Optimization (PSO) for feature selection, ensuring key information is preserved while reducing dimensionality. The Depthwise Separable Convolution (DSC) module extracts spatial features, while the Channel-Spatial Attention Mechanism (CBAM) focuses on important time-dependent patterns. Finally, Bidirectional Long Short-Term Memory (BiLSTM) captures nonlinear dynamics and long-term dependencies, boosting prediction performance. The model is called DSC-CBAM-BiLSTM. It selects important features adaptively. It captures key spatial-temporal patterns and improves forecasting performance based on RMSE, MAE, and R2. Extensive experiments using real-world PV datasets under varied meteorological scenarios show the proposed model significantly outperforms traditional approaches. Specifically, RMSE and MAE are reduced by over 70%, and the coefficient of determination (R2) is improved by 8.5%. These results confirm the framework’s effectiveness for real-time, short-term PV forecasting and its applicability in energy dispatching and smart grid operations. Full article
Show Figures

Figure 1

21 pages, 1235 KB  
Article
Energy Demand Forecasting Using Temporal Variational Residual Network
by Simachew Ashebir and Seongtae Kim
Forecasting 2025, 7(3), 42; https://doi.org/10.3390/forecast7030042 - 12 Aug 2025
Viewed by 351
Abstract
The growing demand for efficient energy management has become essential for achieving sustainable development across social, economic, and environmental sectors. Accurate energy demand forecasting plays a pivotal role in energy management. However, energy demand data present unique challenges due to their complex characteristics, [...] Read more.
The growing demand for efficient energy management has become essential for achieving sustainable development across social, economic, and environmental sectors. Accurate energy demand forecasting plays a pivotal role in energy management. However, energy demand data present unique challenges due to their complex characteristics, such as multi-seasonality, hidden structures, long-range dependency, irregularities, volatilities, and nonlinear patterns, making energy demand forecasting challenging. We propose a hybrid dimension reduction deep learning algorithm, Temporal Variational Residual Network (TVRN), to address these challenges and enhance forecasting performance. This model integrates variational autoencoders (VAEs), Residual Neural Networks (ResNets), and Bidirectional Long Short-Term Memory (BiLSTM) networks. TVRN employs VAEs for dimensionality reduction and noise filtering, ResNets to capture local, mid-level, and global features while tackling gradient vanishing issues in deeper networks, and BiLSTM to leverage past and future contexts for dynamic and accurate predictions. The performance of the proposed model is evaluated using energy consumption data, showing a significant improvement over traditional deep learning and hybrid models. For hourly forecasting, TVRN reduces root mean square error and mean absolute error, ranging from 19% to 86% compared to other models. Similarly, for daily energy consumption forecasting, this method outperforms existing models with an improvement in root mean square error and mean absolute error ranging from 30% to 95%. The proposed model significantly enhances the accuracy of energy demand forecasting by effectively addressing the complexities of multi-seasonality, hidden structures, and nonlinearity. Full article
(This article belongs to the Collection Energy Forecasting)
Show Figures

Figure 1

18 pages, 2396 KB  
Article
Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column
by Nura Musa Tahir, Jie Zhang and Matthew Armstrong
ChemEngineering 2025, 9(4), 87; https://doi.org/10.3390/chemengineering9040087 - 11 Aug 2025
Viewed by 277
Abstract
This paper proposes the development of a robust nonlinear soft sensor for online estimation of product compositions in a Heat-Integrated Distillation Column (HIDiC). Traditional composition analyzers, such as gas chromatographs, are costly and suffer from long measurement delays, making them inefficient for real-time [...] Read more.
This paper proposes the development of a robust nonlinear soft sensor for online estimation of product compositions in a Heat-Integrated Distillation Column (HIDiC). Traditional composition analyzers, such as gas chromatographs, are costly and suffer from long measurement delays, making them inefficient for real-time monitoring and control. To address this, data-driven soft sensors are developed using tray temperature data obtained from a high-fidelity dynamic HIDiC simulation. The study investigates both linear and nonlinear modeling strategies for composition estimation, including principal component regression (PCR), artificial neural networks (ANNs), and, for the first time in HIDiC modeling, a Bidirectional Long Short-Term Memory (BiLSTM) network. The objective is to evaluate the capability of each method for accurate estimation of product compositions in a HIDiC. The results demonstrate that the BiLSTM-based soft sensor significantly outperforms conventional methods and offers strong potential for enhancing real-time composition estimation and control in HIDiC systems. Full article
Show Figures

Figure 1

Back to TopTop