Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,761)

Search Parameters:
Keywords = binding site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1479 KB  
Article
Structure-Guided In-Use Stability Assessment of Monoclonal Antibody Tislelizumab
by David Andre Rudd and Ghizal Siddiqui
Pharmaceuticals 2025, 18(10), 1539; https://doi.org/10.3390/ph18101539 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: Monoclonal antibody (mAb) stability is critical not only during manufacturing but also at the point of clinical administration. For therapies like tislelizumab (Tevimbra), a programmed death-1 (PD-1) targeting IgG mAb, delays in dosing often result in prepared infusions being discarded, contributing [...] Read more.
Background/Objectives: Monoclonal antibody (mAb) stability is critical not only during manufacturing but also at the point of clinical administration. For therapies like tislelizumab (Tevimbra), a programmed death-1 (PD-1) targeting IgG mAb, delays in dosing often result in prepared infusions being discarded, contributing to substantial drug waste despite being engineered for improved stability. Methods: To evaluate the physicochemical in-use stability of tislelizumab in a ready-to-administer format, we mapped degradation pathways, including post-translational modifications (PTMs); peptide alterations; pH and solution characteristics—under 12-month storage (ultra-long), under 1-month storage (0, 7, 14, 21, 28 and 31 days), and under exposure-related forced degradation conditions including room temperature, elevated temperature, pH (acidic/basic), oxidation and UV exposure. Structural analysis was contextualised to the known PD-1 binding site, making stability assessment relevant to tislelizumab’s mechanism-of-action in blocking PD-1. To assess solution stability, a validated size-exclusion chromatography (SEC) assay was applied to all conditions. Results: Aggregation was identified as the primary degradation pathway during ultra-long-term storage. SEC and chemical assessment revealed no measurable changes in protein quantity, aggregation, peptide integrity, or PTM profile over 31 days at 2–8 °C in polyolefin intravenous bags (1.6 mg/mL). Conclusions: These results support the structural and physicochemical stability of tislelizumab under refrigerated conditions. Full article
(This article belongs to the Topic Optimization of Drug Utilization and Medication Adherence)
Show Figures

Graphical abstract

26 pages, 5572 KB  
Article
Targeting GPR55 with Cannabidiol Derivatives: A Molecular Docking Approach Toward Novel Neurotherapeutics
by Catalina Mares, Andra-Maria Paun, Maria Mernea, Cristina Matanie and Speranta Avram
Processes 2025, 13(10), 3261; https://doi.org/10.3390/pr13103261 (registering DOI) - 13 Oct 2025
Abstract
This study investigated the interaction between cannabidiol (CBD) derivatives and the GPR55 receptor using a bioinformatics-driven molecular docking approach. GPR55, implicated in central nervous system (CNS) pathologies, represents a promising target for novel therapeutics. Drug-likeness evaluation via SwissADME confirmed that all selected derivatives [...] Read more.
This study investigated the interaction between cannabidiol (CBD) derivatives and the GPR55 receptor using a bioinformatics-driven molecular docking approach. GPR55, implicated in central nervous system (CNS) pathologies, represents a promising target for novel therapeutics. Drug-likeness evaluation via SwissADME confirmed that all selected derivatives complied with Lipinski′s Rule of Five, exhibiting favorable physicochemical properties with molecular weights below 500 Da and acceptable logP values. Molecular docking simulations, performed using AutoDock Vina through PyRx, revealed strong binding affinities, with docking scores ranging from −9.2 to −7.2 kcal/mol, indicating thermodynamically feasible interactions. Visualization and interaction analysis identified a conserved binding pocket involving key residues, including TYR101, PHE102, TYR106, ILE156, PHE169, MET172, TRP177, PRO184, LEU185, LEU270 and MET274. Ligand clustering in this region further supports the presence of a structurally defined binding site. Molecular dynamics simulations of GPR55 in complex with the three top-scoring ligands (3″-HOCBD, THC, and CBL) revealed that all ligands remained stably bound within the cavity over 100 ns, with ligand-specific rearrangements. Predicted oral bioavailability was moderate (0.55), consistent with the need for optimized formulations to enhance systemic absorption. These findings suggest that CBD derivatives may act as potential modulators of GPR55, offering a basis for the development of novel CNS-targeted therapeutics. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

18 pages, 3726 KB  
Article
Biosynthesis of Selenium Nanoparticles from Rosa rugosa Extract: Mechanisms and Applications for Sustainable Crop Protection
by Le Song, Man Liang, Yingxiu Wang and Yanli Bian
Agronomy 2025, 15(10), 2385; https://doi.org/10.3390/agronomy15102385 (registering DOI) - 13 Oct 2025
Abstract
Selenium nanoparticles (SeNPs) show great potential for sustainable agriculture, but their green synthesis and practical application still need further optimization. This study established a green synthesis method for SeNPs using lyophilized rose (Rosa rugosa Thunb.) powder as both a reducing and stabilizing [...] Read more.
Selenium nanoparticles (SeNPs) show great potential for sustainable agriculture, but their green synthesis and practical application still need further optimization. This study established a green synthesis method for SeNPs using lyophilized rose (Rosa rugosa Thunb.) powder as both a reducing and stabilizing agent to reduce sodium selenite (Na2SeO3), key parameters, including template concentration, Na2SeO3/VC ratio, and reaction temperature were systematically optimized. This process yielded stable, spherical SeNPs with optimal properties, exhibiting a diameter of 90 nm and a zeta potential of −35 mV. Structural characterization confirmed that selenium forms chelation complexes through carboxyl and hydroxyl oxygen-binding sites. The SeNPs exhibited exceptional stability (retained 426 days at 25 °C) and pH tolerance (pH 4–10), though divalent cations (Ca2+) triggered aggregation. In agricultural application tests, 5 mg/L SeNPs increased tomato plant biomass by 84% and antioxidant capacity by 152% compared to controls, and the biosynthesis pathways of salicylic acid and jasmonic acid were upregulated. Moreover, the SeNPs exhibited strong concentration-dependent antifungal activity against several major pathogens. Among these pathogens, tomato gray mold (Botrytis cinerea) was the most sensitive, as evidenced by its low EC50 (4.86 mg/L) and sustained high inhibition rates, which remained substantial even at 1 mg/L and reached 94% at 10 mg/L. These findings highlight SeNPs as a friendly alternative for minimizing agrochemical use in sustainable agriculture. Full article
21 pages, 2459 KB  
Article
Phenolic Derivatives of Astragalus Aitosensis with Selective MAO-B Inhibition and Mitochondrial Protection
by Preslav Enchev, Magdalena Kondeva-Burdina, Emilio Mateev, Iliana Ionkova and Yancho Zarev
Molecules 2025, 30(20), 4069; https://doi.org/10.3390/molecules30204069 (registering DOI) - 13 Oct 2025
Abstract
Astragalus aitosensis, also known as Astracantha arnacantha (M. Bieb.) Podlech subsp. aitosensis (Ivanisch.) Réer & Podlech, a Bulgarian endemic species, was investigated for its phenolic profile and neuroprotective potential. A targeted extraction approach led to the isolation of 14 phytochemicals. According to [...] Read more.
Astragalus aitosensis, also known as Astracantha arnacantha (M. Bieb.) Podlech subsp. aitosensis (Ivanisch.) Réer & Podlech, a Bulgarian endemic species, was investigated for its phenolic profile and neuroprotective potential. A targeted extraction approach led to the isolation of 14 phytochemicals. According to our literature review, none of the isolated chemicals have been reported before for A. aitosensis. Two of them are previously undescribed molecules—an isomer of odoratin and 6-hydroxy-3-(2-hydroxy-4-methoxyphenyl)-7-methoxy-4H-1-benzopyran-4-one—and four of them had not been observed before our study in the genus Astragalus: 3′-methoxydaidzein, fujikinetin, sayanedine, and 6,4′-dimethoxy-7,2′-dihydroxyisoflavone. Five of the phytochemicals—maackiain, cajanin, onogenin, afrormosin, and sayanedine—exhibited selective inhibition of human monoamine oxidase-B (MAO-B), with maackiain reducing activity by 45%, nearing the effect of selegiline. The investigated phytochemicals also showed significant antioxidant and neuroprotective effects in ex vivo models using isolated rat brain synaptosomes, mitochondria, and microsomes, mitigating oxidative stress by preserving glutathione levels and reducing lipid peroxidation. Molecular docking confirmed favorable binding of active phytochemicals, particularly maackiain, within the MAO-B active site. Structure–activity relationship (SAR) analysis highlighted the role of specific substituents and fused-ring systems in MAO-B inhibition. This study expands our knowledge of the phytochemical diversity of A. aitosensis and supports the therapeutic relevance of its phenolic compounds in neurodegenerative disorders such as Parkinson’s disease. Full article
11 pages, 1738 KB  
Brief Report
FLAG Immunoprecipitation-Based Mapping of the In Vivo Assembled Spliceosomal C* Complex
by Sweta Kumari and Kusum K. Singh
Int. J. Mol. Sci. 2025, 26(20), 9914; https://doi.org/10.3390/ijms26209914 (registering DOI) - 12 Oct 2025
Abstract
Pre-mRNA splicing is catalyzed by the ribonucleoprotein (RNP) complex known as the spliceosome. The spliceosomes are dynamic and undergo constant rearrangement, leading to the formation of the different spliceosomal complexes A, B, Bact, C, C*, and P. Isolation of the spliceosomal [...] Read more.
Pre-mRNA splicing is catalyzed by the ribonucleoprotein (RNP) complex known as the spliceosome. The spliceosomes are dynamic and undergo constant rearrangement, leading to the formation of the different spliceosomal complexes A, B, Bact, C, C*, and P. Isolation of the spliceosomal complex at a specific intermediate stage requires a means to enrich it. This study describes a strategy for studying intermediate spliceosomal complexes by combining BioID with splicing assays. The MINX splicing substrate with a mutation at the 3′ splice site was utilized to arrest and capture the spliceosomal C* complex before the second catalytic step of splicing. The splicing substrate also contains binding sites for the MS2 coat protein, which facilitates the pull-down of assembled complex by FLAG-MS2-tagged RNP immunoprecipitation and determines the captured proximal proteins by mass spectrometry. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 6985 KB  
Article
Investigation of the Role of miR-1236-3p in Heat Tolerance of American Shad (Alosa sapidissima) by Targeted Regulation of hsp90b1
by Mingkun Luo, Ying Liu, Wenbin Zhu, Bingbing Feng, Wei Xu and Zaijie Dong
Int. J. Mol. Sci. 2025, 26(20), 9908; https://doi.org/10.3390/ijms26209908 (registering DOI) - 11 Oct 2025
Abstract
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating [...] Read more.
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating the regulatory role of miR-1236-3p and its target gene hsp90b1. The results indicate that the full-length cDNA of the hsp90b1 gene is 2023 bp and comprises a 5’ end of 58 bp, a 3’ end of 84 bp, and a coding region of 1881 bp, encoding 626 amino acids. Sequence alignment and phylogenetic tree analysis reveal that the hsp90b1 sequence is highly conserved across species. In situ hybridization showed that hsp90b1 is mainly localized in the cytoplasm. Software prediction identified a potential binding site between miR-1236-3p and hsp90b1. Through the construction of wild-type and mutant 3’UTR hsp90b1 dual luciferase reporter plasmids, the targeted relationship between the two was confirmed. In addition, the spatiotemporal expression levels of the hsp90b1 was found to be highest in the multicellular stage and liver tissue at a cultivation temperature of 27 °C; miR-1236-3P was highly expressed in the hatching stage and heart tissue at 30 °C. These findings provide a theoretical foundation for further investigating the regulatory role of non-coding RNA in A. sapidissima heat stress and offer data for subsequent molecular breeding studies. Full article
Show Figures

Figure 1

18 pages, 1844 KB  
Article
The Tumor Suppressor p53 Downregulates p107 (RBL1) Through p21–RB/E2F Signaling and Tandem E2F Sites
by Khaled Azzahrani and Faleh Alqahtani
Int. J. Mol. Sci. 2025, 26(20), 9903; https://doi.org/10.3390/ijms26209903 (registering DOI) - 11 Oct 2025
Viewed by 23
Abstract
RBL1 (p107) is a member of the retinoblastoma (RB) family of pocket proteins involved in cell cycle regulation and E2F transcriptional repression. While its promoter contains conserved E2F motifs, the integrated regulation of RBL1 by upstream tumor suppressor pathways remains incompletely understood. Here, [...] Read more.
RBL1 (p107) is a member of the retinoblastoma (RB) family of pocket proteins involved in cell cycle regulation and E2F transcriptional repression. While its promoter contains conserved E2F motifs, the integrated regulation of RBL1 by upstream tumor suppressor pathways remains incompletely understood. Here, we investigate the p53-dependent transcriptional regulation of RBL1 and dissect the contribution of its tandem E2F binding sites to this mechanism. Luciferase assays in synchronized cells demonstrated that these two conserved E2F sites are required for cell cycle-dependent activation of the RBL1 promoter. Overexpression of p53 showed that p53 represses RBL1 promoter activity in an E2F site-dependent manner. Using HCT116 p21 knockout cells, we revealed that this p53-dependent repression is mediated by p21. Chromatin immunoprecipitation confirmed dynamic in vivo binding of E2F1–3 and E2F4, while DNA pull-down assays revealed specific in vitro recruitment of RB, p107, and E2F1-4 to the two E2F sites, along with weak binding of MuvB components. Additional experiments in RB–/– and LIN37–/– knockouts showed that RB/E2F repressing complex plays the main role in repressing the RBL1 promoter, while E2F4, p107, and p130 can support this effect to a lesser extent. Overall, our findings demonstrate that p53 controls RBL1 expression indirectly through the p21–RB–E2F pathway by utilizing two E2F binding sites within the RBL1 promoter. Full article
Show Figures

Figure 1

19 pages, 8401 KB  
Article
Identification of the Metallocarboxypeptidase M14 Gene Family in Lysiosquillina maculata, Odontodactylus scyllarus and Oratosquilla oratoria Based on the Full-Length Transcriptome
by Jiantong Zhang, Xiuqiang Dong, Xinyan Hu, Xiaowen Duan, Bin Xu and Fangrui Lou
Fishes 2025, 10(10), 515; https://doi.org/10.3390/fishes10100515 - 10 Oct 2025
Viewed by 103
Abstract
Metallocarboxypeptidase (MCP) is a crucial protein enzyme involved in food digestion and absorption in animals, which has a potential influence on the differentiation of the trophic niche. Considering that stomatopods have raptorial appendage-specific trophic niches, the present study screened and compared [...] Read more.
Metallocarboxypeptidase (MCP) is a crucial protein enzyme involved in food digestion and absorption in animals, which has a potential influence on the differentiation of the trophic niche. Considering that stomatopods have raptorial appendage-specific trophic niches, the present study screened and compared the MCP M14 gene family of three stomatopods (Lysiosquillina maculata, Odontodactylus scyllarus, and Oratosquilla oratoria) with different raptorial appendage morphologies based on full-length transcriptome information. There are 13 and 17 MCP M14 gene family members identified in L. maculata and O. scyllarus, respectively, which are classified as M14A, M14B, and M14D subfamilies. However, 15 MCP M14 family members have been identified in O. oratoria, all belonging to the M14A subfamily. The physicochemical properties, phylogenetic relationships, conserved motifs, and secondary and tertiary structures of the MCP M14 amino acid sequences were also analyzed in the present study. The results revealed that each amino acid sequence had unique physicochemical properties. Ten conserved motifs were further characterized across the MCP M14 amino acid sequences, and the type and number of motifs from the same subfamily remained highly conserved. Meanwhile, we found that most of the MCP M14 gene family members have critical residues (including Zn2+ binding sites [His69, Glu72, and His196], substrate-binding residues [Arg124, Arg127, and Arg145], and disulfide bond-forming residues [Cys138 and Cys161]) involved in disulfide bond formation and enzyme activity stabilization. Furthermore, the random coil is the predominant structural feature of the MCP M14 amino acid sequence. In conclusion, these results are undoubtedly valuable for exploring the evolution and regulation mechanisms of the trophic niche in stomatopods. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

17 pages, 4552 KB  
Article
Antiviral Efficacy of Lignan Derivatives (-)-Asarinin and Sesamin Against Foot-and-Mouth Disease Virus by Targeting RNA-Dependent RNA Polymerase (3Dpol)
by Ploypailin Semkum, Natjira Mana, Varanya Lueangaramkul, Nantawan Phetcharat, Porntippa Lekcharoensuk and Sirin Theerawatanasirikul
Vet. Sci. 2025, 12(10), 971; https://doi.org/10.3390/vetsci12100971 - 10 Oct 2025
Viewed by 70
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral infection affecting livestock. Although inactivated vaccines are commonly used, their effectiveness is limited by an immunity gap. Therefore, complementary antiviral strategies are required for effective control and prevention. Lignans, plant-derived compounds, have shown promising antiviral [...] Read more.
Foot-and-mouth disease (FMD) is a highly contagious viral infection affecting livestock. Although inactivated vaccines are commonly used, their effectiveness is limited by an immunity gap. Therefore, complementary antiviral strategies are required for effective control and prevention. Lignans, plant-derived compounds, have shown promising antiviral properties, yet their potential against foot-and-mouth disease virus (FMDV) remains underexplored. This study employed virtual screening to identify lignan compounds targeting viral RNA-dependent RNA polymerase (3Dpol). Six lignan compounds were selected for cytotoxicity and antiviral activity evaluation including pre-viral entry, post-viral entry, and protective effect assays. Antiviral activity assay showed that (-)-asarinin and sesamin exhibit potent inhibition effects in the post-viral entry with EC50 of 15.11 μM and 52.98 μM, respectively, using immunoperoxidase monolayer assay. Both compounds exhibited dose-dependent reduction in viral replication with significant suppression of negative-strand RNA production. Lignans’ ability to target FMDV 3Dpol was further confirmed using a cell-based FMDV minigenome assay. Among the tested lignans, (-)-asarinin demonstrated remarkable inhibition of GFP expression (IC50 value at 10.37 μM), while sesamin required a higher concentration for similar effects. In silico prediction revealed that these lignans preferentially bind to FMDV 3Dpol active site. These findings are the first to establish (-)-asarinin and sesamin as promising antiviral candidates against FMDV. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
15 pages, 3801 KB  
Article
Mechanisms of Substrate Recognition by the Multispecific Protein Lysine Methyltransferase SETD6
by Gizem T. Ulu, Sara Weirich, Jana Kehl, Thyagarajan T. Chandrasekaran, Franziska Dorscht, Dan Levy and Albert Jeltsch
Life 2025, 15(10), 1578; https://doi.org/10.3390/life15101578 - 10 Oct 2025
Viewed by 172
Abstract
The SETD6 protein lysine methyltransferase monomethylates specific lysine residues in a diverse set of substrates which contain the target lysine residue in a highly variable amino acid sequence context. To investigate the mechanism underlying this multispecificity, we analyzed SETD6 substrate recognition using AlphaFold [...] Read more.
The SETD6 protein lysine methyltransferase monomethylates specific lysine residues in a diverse set of substrates which contain the target lysine residue in a highly variable amino acid sequence context. To investigate the mechanism underlying this multispecificity, we analyzed SETD6 substrate recognition using AlphaFold 3 docking and peptide SPOT array methylation experiments. Structural modeling of the SETD6–E2F1 complex suggested that substrate binding alone is insufficient to restrict SETD6 activity to only one lysine residue, pointing to additional sequence readout at the target site. Methylation of mutational scanning peptide SPOT arrays derived from four different SETD6 substrates (E2F1 K117, H2A.Z K7, RELA K310, and H4 K12) revealed sequence preferences of SETD6 at positions −1, +2, and +3 relative to the target lysine. Notably, glycine or large aliphatic residues were favored at −1, isoleucine/valine at +2, and lysine at +3. These preferences, however, were sequence context dependent and variably exploited among different substrates, indicating conformational variability of the enzyme–substrate interface. Mutation of SETD6 residue L260, which forms a contact with the +2 site in the available SETD6-RELA structure, further demonstrated substrate-specific differences in recognition at the +2/+3 sites. Together, these findings reveal a versatile mode of peptide recognition in which the readout of each substrate position depends on the overall substrate peptide sequence. These findings can explain the multispecificity of SETD6 and similar mechanisms may underlie substrate selection in other protein methyltransferases. Full article
Show Figures

Figure 1

22 pages, 4802 KB  
Article
Comparative Analyses Reveal Potential Genetic Variations in Hypoxia- and Mitochondria-Related Genes Among Six Strains of Common Carp Cyprinus carpio
by Mohamed H. Abo-Raya, Jing Ke, Jun Wang and Chenghui Wang
Fishes 2025, 10(10), 509; https://doi.org/10.3390/fishes10100509 - 9 Oct 2025
Viewed by 90
Abstract
The ability of common carp to withstand both short-term and long-term oxygen deprivation has been well documented; however, the potential genetic mechanisms behind common carp’s hypoxia response remain unclear. Therefore, to understand the possible genetic foundation of their response to hypoxia, comparative genomic [...] Read more.
The ability of common carp to withstand both short-term and long-term oxygen deprivation has been well documented; however, the potential genetic mechanisms behind common carp’s hypoxia response remain unclear. Therefore, to understand the possible genetic foundation of their response to hypoxia, comparative genomic analyses were conducted among six common carp varieties: Color, Songpu, European, Yellow, Mirror, and Hebao common carps. We identified 118 single-copy orthologous positively selected genes (PSGs) (dN/dS > 1) in all common carps under study, with GO functions directly related to the cellular responses to hypoxia in Color and European common carp PSGs, such as oxygen transport activity, oxygen binding activity, respiratory burst activity, and superoxide anion production. The Bayes Empirical Bayes (BEB) technique identified possible amino acid substitutions in mitochondrial and hypoxic genes under positive selection. Exonic and intronic structural variations (SVs) were discovered in the CYGB2 hypoxia-related gene of Color and European common carps, as well as in several mitochondrial genes, including MRPL20, MRPL32, NSUN3, GUF1, TMEM17B, PDE12, ACAD6, and COX10 of Color, European, Songpu, Yellow, and Hebao common carps. Moreover, Color common carp and Songpu common carp were found to share the greatest percentage of collinear genes (49.8%), with seven Songpu common carp chromosomes (chr A2, chr A9, chr A13, chr B13, chr B15, chr B2, and chr B12) showing distinct translocation events with the corresponding chromosomes of Color common carp. Additionally, we found 570 translocation sites that contained 3572 translocation-related genes in Color common carp, some of which are directly relevant to mitochondrial and hypoxic GO functions and KEGG pathways. Our results offer strong genome-wide evidence of the possible evolutionary response of Cyprinus carpio to hypoxia, providing important insights into the potential molecular mechanisms that explain their survival in hypoxic environments and guiding future research into carp hypoxia tolerance. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

17 pages, 2141 KB  
Article
Adsorption of Pharmaceutical Compounds from Water on Chitosan/Glutaraldehyde Hydrogels: Theoretical and Experimental Analysis
by Billy Alberto Ávila Camacho, Miguel Andrés Rojas Pabón, Norma Aurea Rangel Vázquez, Edgar A. Márquez Brazón, Hilda Elizabeth Reynel Ávila, Didilia Ileana Mendoza Castillo and Yectli A. Huerta
Polysaccharides 2025, 6(4), 90; https://doi.org/10.3390/polysaccharides6040090 - 9 Oct 2025
Viewed by 200
Abstract
Chitosan-based hydrogels are used in the adsorption of pharmaceutical compounds from water. The adsorption process of diclofenac and naproxen on chitosan hydrogels cross-linked with glutaraldehyde has been studied theoretically and experimentally. According to the thermodynamic properties, the adsorption processes were spontaneous and endothermic, [...] Read more.
Chitosan-based hydrogels are used in the adsorption of pharmaceutical compounds from water. The adsorption process of diclofenac and naproxen on chitosan hydrogels cross-linked with glutaraldehyde has been studied theoretically and experimentally. According to the thermodynamic properties, the adsorption processes were spontaneous and endothermic, due to the negative values of Gibbs free energy, and the enthalpies of formation were positive. Furthermore, the different systems were studied by electrostatic potential maps, where the functional groups (amino and hydroxyl) represented the active sites of the hydrogel. The maximum adsorption capacity obtained for diclofenac and naproxen was 108.85 and 97.22 mg/g, respectively, at a temperature of 308.15 K. On the other hand, the adsorbent was characterized by FTIR (Fourier Transform Infrared Spectroscopy) and XRD (X-ray Diffraction) before and after the adsorption of the drugs to confirm the binding of the adsorbates on the surface of the material. Full article
Show Figures

Figure 1

18 pages, 1984 KB  
Article
PGRMC1 Promotes the Development of Cervical Intraepithelial Neoplasia in HPV-Positive Patients
by Wen Lai, Shuyu Liu, Tianming Wang, Min Gong, Qiaoling Liu, Ling Ling and Jianquan Chen
Biomedicines 2025, 13(10), 2454; https://doi.org/10.3390/biomedicines13102454 - 9 Oct 2025
Viewed by 162
Abstract
Background/Objectives: Persistent human papillomavirus (HPV) infection is the leading cause of cervical intraepithelial neoplasia (CIN), a known precursor to cervical squamous carcinoma. While progesterone receptor membrane component 1 (PGRMC1) has been implicated in various cancers, its specific role in cervical carcinogenesis has [...] Read more.
Background/Objectives: Persistent human papillomavirus (HPV) infection is the leading cause of cervical intraepithelial neoplasia (CIN), a known precursor to cervical squamous carcinoma. While progesterone receptor membrane component 1 (PGRMC1) has been implicated in various cancers, its specific role in cervical carcinogenesis has remained uncertain. This study aimed to elucidate the function of PGRMC1 in the progression of CIN. Methods: Bioinformatics techniques were employed to assess the expression levels of PGRMC1 in cervical cancer tissues and to investigate its correlation with patient prognosis. To explore the functional role of PGRMC1, we manipulated its expression in the cervical cancer cell line HeLa using siRNA. Subsequently, we evaluated cell migration via the scratch assay, and invasion through the Transwell assay. We employed mass spectrometry to identify proteins interacting with PGRMC1 and confirmed these interactions using co-immunoprecipitation (co-IP). Further co-IP experiments were conducted to pinpoint the specific binding sites of these protein interactions, and immunofluorescence staining was utilized to observe the spatial distribution of interacting proteins within the cells. The phosphorylation status of VIM was further confirmed by WB. At the clinical level, we collected cervical biopsy specimens from HPV-positive patients and verified the expression patterns of PGRMC1 and VIM using immunohistochemical staining in cervical squamous cell carcinoma (CSCC) tissues. Results: We discovered a correlation between progressively increasing PGRMC1 expression and the severity of CIN as well as a poor prognosis. Knockdown of PGRMC1 resulted in the inhibition of migration and invasion capabilities in cervical cancer cells. Furthermore, PGRMC1 was found to physically interact and colocalize with Vimentin (VIM). Notably, PGRMC1 knockdown specifically increased phosphorylation at the Ser-39 residue of VIM. Conclusions: Our findings suggest that PGRMC1 facilitates CIN progression by binding to VIM and suppressing Ser-39 phosphorylation, thereby promoting the migration and invasion of cervical carcinoma cells. This study enhances our understanding of PGRMC1’s role in CIN progression and lays an experimental foundation for targeted therapeutic approaches to cervical squamous carcinoma. Full article
(This article belongs to the Special Issue Current Perspectives on Human Papillomavirus (HPV)—Second Edition)
Show Figures

Figure 1

15 pages, 3884 KB  
Article
Effect of B/N Doping on Enhanced Hydrogen Storage in Transition Metal-Modified Graphene: A First-Principles DFT Study
by Qian Nie, Lei Wang, Ye Chen and Zhengwei Nie
Materials 2025, 18(19), 4635; https://doi.org/10.3390/ma18194635 - 8 Oct 2025
Viewed by 271
Abstract
Hydrogen energy is viewed as a promising green energy source because of its high energy density, abundant availability, and clean combustion results. Hydrogen storage is the critical link in a hydrogen economy. Using first-principles density functional theory calculations, this work explored the role [...] Read more.
Hydrogen energy is viewed as a promising green energy source because of its high energy density, abundant availability, and clean combustion results. Hydrogen storage is the critical link in a hydrogen economy. Using first-principles density functional theory calculations, this work explored the role of B and N in modulating the binding properties of transition metal-modified graphene. The hydrogen storage performance of Sc-, Ti-, and V-modified B-doped graphene was evaluated. Boron doping induces an electron-deficient state, enhancing interactions between transition metals and graphene. Sc, Ti, and V preferentially adsorbed at the carbon ring’s hollow site in B-doped graphene, with their binding energies being 1.87, 1.74, and 1.69 eV higher than those in pure graphene, respectively. These systems can stably adsorb up to 5, 4, and 4 H2 molecules, with average adsorption energies of −0.528, −0.645, and −0.620 eV/H2, respectively. The hydrogen adsorption mechanism was dominated by orbital interactions and polarization effects. Among the systems studied, Sc-modified B-doped graphene exhibited superior hydrogen storage characteristics, making it a promising candidate for reversible applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Gaseous Storage)
Show Figures

Graphical abstract

33 pages, 5368 KB  
Review
Zinc-Mediated Defenses Against Toxic Heavy Metals and Metalloids: Mechanisms, Immunomodulation, and Therapeutic Relevance
by Roopkumar Sangubotla, Shameer Syed, Anthati Mastan, Buddolla Anantha Lakshmi and Jongsung Kim
Int. J. Mol. Sci. 2025, 26(19), 9797; https://doi.org/10.3390/ijms26199797 - 8 Oct 2025
Viewed by 439
Abstract
Zinc (Zn), a naturally occurring trace element ubiquitous in the Earth’s crust, soil, and water, is indispensable for human health due to its physiological and nutritive benefits. In this scenario, Zn is pivotal for maintaining homeostasis against toxic effects exerted by heavy metals [...] Read more.
Zinc (Zn), a naturally occurring trace element ubiquitous in the Earth’s crust, soil, and water, is indispensable for human health due to its physiological and nutritive benefits. In this scenario, Zn is pivotal for maintaining homeostasis against toxic effects exerted by heavy metals (HMs) through bioaccumulation and metabolic interference. Zinc is an enticing cofactor for miscellaneous biochemical enzymes such as Zn metalloenzymes, which mediate crucial cellular processes, including cell proliferation, protein synthesis, immune modulation, epigenetic regulation, and nucleic acid synthesis. Recently, several research studies have focused on the thorough investigation of Zn supplementation in controlling HM toxicity by competing for binding sites and boosting protective mechanisms in humans. The current article discusses the upper limits for various toxic HMs in staple crop foods, as provided by globally recognized organizations. Clinical studies recommend a daily dose of 11 mg of Zn for healthy men and 8–12 mg for women in healthy and pregnancy conditions. However, during Zn deficiency, therapeutic supplementation is expected to be adjustable, and the dosage is increased from 15 to 30 mg daily. This review discusses the dysregulation of specific Zn importers and transporters (ZIPs/ZnTs) due to their clinical significance in immune system dysfunction as well as the progression of a myriad of cancers, including prostate, breast, and pancreas. Moreover, this review emphasizes indispensable in vitro and in vivo studies, as well as key molecular mechanisms related to Zn supplementation for treating toxicities exacerbated by HMs. Full article
Show Figures

Graphical abstract

Back to TopTop