Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = bio-asphalt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3630 KB  
Article
Multi-Characterization of Rejuvenators’ Impact on Aged Asphalt Binder Properties
by Sen Hu, Wentao Bu, Kaimin Niu and Haowu Wang
Materials 2025, 18(17), 4060; https://doi.org/10.3390/ma18174060 - 29 Aug 2025
Viewed by 502
Abstract
Aging of asphalt is a major cause of pavement distress. While regenerators restore aged asphalt, their mechanisms and efficacy differences remain unclear. This study quantified the repair effects of waste bio-oil (WBO) and mineral oil (MO) rejuvenators on aged asphalt binder using a [...] Read more.
Aging of asphalt is a major cause of pavement distress. While regenerators restore aged asphalt, their mechanisms and efficacy differences remain unclear. This study quantified the repair effects of waste bio-oil (WBO) and mineral oil (MO) rejuvenators on aged asphalt binder using a comprehensive characterization approach. Conventional properties (penetration, softening point, ductility), functional groups (FT-IR), thermal stability (TG), differential scanning calorimetry (DSC), and dynamic shear rheology (DSR) were analyzed. Results reveal distinct mechanisms: WBO acts chemically via polar molecules, selectively reducing oxygen-containing groups and significantly improving ductility, while MO acts physically through light components that dilute viscosity, exhibiting weaker chemical repair. WBO-regenerated asphalt showed a lower thermal-oxidative peak temperature, superior low-temperature ductility, and enhanced high-temperature rheological performance (higher rutting factor, optimized viscoelasticity). These mechanistic differences—chemical restoration (WBO) versus physical replenishment (MO)—determine performance outcomes at the binder level. The findings provide a theoretical basis for regenerator selection in pavement engineering, highlighting WBO’s advantages for functional group restoration and balanced thermal rheological properties, supporting sustainable road development. Full article
Show Figures

Figure 1

37 pages, 8995 KB  
Article
Process Analysis of Waste Animal Fat Pyrolysis and Fractional Distillation in Semi-Batch Reactors: Influence of Temperature and Reaction Time
by Alex Lopes Valente, Marcelo Figueiredo Massulo Aguiar, Ana Claudia Fonseca Baia, Lauro Henrique Hamoy Guerreiro, Renan Marcelo Pereira Silva, Lucas Sabino do Vale Scaff, Dilson Nazareno Pereira Cardoso, Hugo Fernando Meiguins da Silva, Davi do Socorro Barros Brasil, Neyson Martins Mendonça, Sergio Duvoisin Junior, Douglas Alberto Rocha de Castro, Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Energies 2025, 18(17), 4517; https://doi.org/10.3390/en18174517 - 26 Aug 2025
Viewed by 1039
Abstract
Waste animal fat (WAF) can be converted to distillate fractions similar to petroleum solvents and used as solvents via pyrolysis and fractional distillation. Pyrolysis oil from triglyceride materials presents adequate viscosity and volatility, compared to petroleum fuels, but shows acid values between 60–140 [...] Read more.
Waste animal fat (WAF) can be converted to distillate fractions similar to petroleum solvents and used as solvents via pyrolysis and fractional distillation. Pyrolysis oil from triglyceride materials presents adequate viscosity and volatility, compared to petroleum fuels, but shows acid values between 60–140 mg KOH/g, impeding its direct use as biofuels without considerable purification of its distillates. Fractional distillation can be applied for the purification of bio-oil, but only a few studies accurately describe the process. The purpose of this study was to evaluate the effect of temperature in the conversion of waste animal fat into fuel-like fractions by pyrolysis and fractional distillation in a semi-batch stirred bed reactor (2 L) according to reaction time. Waste animal fat was extracted (rendering) from disposed meat cuts obtained from butcher shops and pyrolyzed in a stainless-steel stirred bed reactor operating in semi-batch mode at 400–500 °C. The obtained liquid fraction was separated according to reaction time. The pyrolysis bio-oil at 400 °C was separated into four distinct fractions (gasoline, kerosene, diesel, and heavy phase) by fractional distillation with reflux. The bio-oil and distillate fractions were analyzed by density, kinematic viscosity, acid value, and chemical composition by gas chromatography coupled to mass spectra (GC-MS). The results show that, for semi-batch reactors with no inert gas flow, higher temperature is associated with low residence time, reducing the conversion of fatty acids to hydrocarbons. The distillate fractions were tested in a common application not sensible to the fatty acid concentration as a diluent in the preparation of diluted asphalt cutback for the priming of base pavements in road construction. Kerosene and diesel fractions can be successfully applied in the preparation of asphalt cutbacks, even with a high acid value. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

30 pages, 7635 KB  
Article
Characterization and Evaluation of Agar as a Bio-Based Asphalt Binder Alternative
by Melissa R. Frey, Sarah L. Williams, Wil V. Srubar and Cristina Torres-Machi
Infrastructures 2025, 10(9), 223; https://doi.org/10.3390/infrastructures10090223 - 22 Aug 2025
Cited by 1 | Viewed by 558
Abstract
Over 90% of roads in the United States are surfaced with asphaltic materials that use petroleum-based asphalt binders, a material with high negative environmental impacts and costs. Biopolymers are a sustainable alternative, as they are sourced from renewable materials and offer the potential [...] Read more.
Over 90% of roads in the United States are surfaced with asphaltic materials that use petroleum-based asphalt binders, a material with high negative environmental impacts and costs. Biopolymers are a sustainable alternative, as they are sourced from renewable materials and offer the potential to reduce carbon footprint. However, their performance and durability in construction applications remain insufficiently understood. This study analyzes the potential of agar, a biopolymer extracted from red seaweed, to serve as a direct and sustainable replacement for asphalt binders. The study characterizes the rheological properties and durability of agar-based binders and the mechanical and microstructural properties of composites. The study found that agar-based binders exhibited resistance to fungal deterioration, adequate stiffness to resist rutting at temperatures up to 80 °C, and potential for energy efficiencies associated with lower mixing and compacting temperatures. Results indicate that agar-based composites illustrate many properties in line with those of traditional engineering materials. Overall, these results suggest that agar-based materials exhibit promising fresh-state and biodeterioration resistance properties to serve as a sustainable alternative to traditional, petroleum-based asphalt binders. Full article
(This article belongs to the Special Issue Sustainable and Digital Transformation of Road Infrastructures)
Show Figures

Figure 1

22 pages, 4598 KB  
Article
Sustainable Bitumen Modification Using Bio-Based Adhesion Promoters
by Volodymyr Gunka, Olha Poliak, Yurii Hrynchuk, Vitalii Stadnik, Yuriy Demchuk, Khrystyna Besaha, Andrii Galkin and Yan Pyrig
Sustainability 2025, 17(16), 7187; https://doi.org/10.3390/su17167187 - 8 Aug 2025
Viewed by 570
Abstract
The growing emphasis on sustainable road construction has stimulated interest in environmentally friendly bitumen modifiers. This study presents the development of biodegradable adhesion promoters synthesized via the amidation of renewable raw materials (rapeseed oil and higher fatty acids) with polyethylene polyamine. The main [...] Read more.
The growing emphasis on sustainable road construction has stimulated interest in environmentally friendly bitumen modifiers. This study presents the development of biodegradable adhesion promoters synthesized via the amidation of renewable raw materials (rapeseed oil and higher fatty acids) with polyethylene polyamine. The main objective was to improve bitumen–aggregate adhesion while maintaining the essential physico-mechanical and rheological properties of the bitumen. The synthesized bio-based adhesion promoters were incorporated into penetration-grade bitumen at a dosage of 0.4 wt.%. Physico-mechanical testing confirmed that their inclusion does not significantly affect the fundamental properties of the bitumen, while substantially enhancing adhesion to both glass and mineral aggregates. Rheological analysis showed that the rapeseed oil-based adhesion promoter had minimal influence on viscoelastic behavior. In contrast, the fatty acid-based promoter increased the rutting resistance parameter (|G*|/sinδ) and decreased the phase angle (δ), indicating improved resistance to permanent deformation. FTIR spectroscopy further revealed that the fatty acid-based adhesion promoter significantly reduced the formation of carbonyl groups during short-term aging, suggesting a retardation in oxidative aging and potential rejuvenating effects. In conclusion, the proposed bio-based adhesion promoters, derived from renewable sources and fully biodegradable, represent a promising solution for enhancing bitumen performance and supporting the durability and sustainability of asphalt pavements. Full article
Show Figures

Figure 1

21 pages, 4264 KB  
Article
Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis
by Heng Yan, Xinxin Cao, Wei Wei, Yongjie Ding and Jukun Guo
Coatings 2025, 15(8), 917; https://doi.org/10.3390/coatings15080917 - 6 Aug 2025
Viewed by 2395
Abstract
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into [...] Read more.
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into aged asphalt binder via direct mixing at controlled dosages. Their effects were assessed using microscopy, droplet diffusion analysis, rheological testing (DSR and BBR), and molecular dynamics simulations. The aim is to compare the compatibility, solubility behavior, and rejuvenation potential of plant-based and mineral-based oils. The results indicate that N-oil and F-oil promote asphaltene aggregation, which supports structural rebuilding. In contrast, A-oil and W-oil act as solvents that disperse asphaltenes. Among the tested oils, N-oil exhibited the best overall performance in enhancing flowability, low-temperature flexibility, and chemical compatibility. This study presents a novel method to evaluate rejuvenator effectiveness by quantifying colloidal stability through grayscale analysis of droplet diffusion patterns. This integrated approach offers both mechanistic insights and practical guidance for selecting bio-based rejuvenators in asphalt recycling. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

20 pages, 14936 KB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Cited by 1 | Viewed by 606
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

21 pages, 3663 KB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 769
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

17 pages, 4239 KB  
Article
Molecular Dynamics Insights into Bio-Oil-Enhanced Self-Healing of Aged Asphalt
by Liuxiao Chen, Silu Tan, Mingyang Deng, Hao Xiang, Jiaxing Huang, Zhaoyi He and Lin Kong
Materials 2025, 18(15), 3472; https://doi.org/10.3390/ma18153472 - 24 Jul 2025
Viewed by 349
Abstract
Long-term aging deteriorates asphalt’s self-healing capacity, yet the molecular mechanisms of bio-oil rejuvenation remain unclear. The fluidity and healing index of an asphalt binder were tested using a dynamic shear rheometer, and a healing model was established using molecular dynamics software to analyze [...] Read more.
Long-term aging deteriorates asphalt’s self-healing capacity, yet the molecular mechanisms of bio-oil rejuvenation remain unclear. The fluidity and healing index of an asphalt binder were tested using a dynamic shear rheometer, and a healing model was established using molecular dynamics software to analyze the movement state. The results show that after adding the bio-oil, the healing index of aged asphalt increases significantly, lowering the optimal healing temperature by 10.1 °C. MD simulations demonstrate that bio-oil weakens van der Waals forces (with a 15.3% reduction in non-bonded energy) to enhance molecular diffusion, with a critical healing distance of 0.87 Å and aggregation at 1.11 Å. The bio-oil reduces the activation energy for healing from 4.97 kJ/mol (aged asphalt) to 3.75 kJ/mol. Molecular dynamics simulations can effectively aid scholars in understanding the asphalt healing process and movement patterns. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 8733 KB  
Article
Bio-Based Polyurethane Asphalt Binder with Continuous Polymer-Phase Structure: Critical Role of Isocyanate Index in Governing Thermomechanical Performance and Phase Morphology
by Haocheng Yang, Suzhou Cao, Chengwei Wu, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Molecules 2025, 30(11), 2466; https://doi.org/10.3390/molecules30112466 - 4 Jun 2025
Cited by 2 | Viewed by 802
Abstract
Polyurethane asphalt (PUA) has attracted considerable attention in the field of pavement engineering. However, traditional PUA systems typically exhibit low concentrations of polyurethane (PU), leading to a continuous bitumen-dominated phase that adversely affects mechanical properties. Furthermore, the non-renewable nature of raw materials raises [...] Read more.
Polyurethane asphalt (PUA) has attracted considerable attention in the field of pavement engineering. However, traditional PUA systems typically exhibit low concentrations of polyurethane (PU), leading to a continuous bitumen-dominated phase that adversely affects mechanical properties. Furthermore, the non-renewable nature of raw materials raises environmental concerns. To address these limitations, this study developed an eco-friendly and cost-efficient bio-based PUA binder (PUAB) featuring a continuous high-biomass PU matrix (over 70% biomass) and a high bitumen content (60 wt%). The effects of the isocyanate index (NCO/OH ratio) on the cure kinetics, rheological behavior (rotational viscosity over time), viscoelasticity, damping capacity, phase morphology, thermal stability, and mechanical performance were systematically investigated using Fourier-transform infrared spectroscopy, dynamic mechanical analysis, laser-scanning confocal microscopy, and tensile testing. Key findings revealed that while the rotational viscosity of PUABs increased with a higher isocyanate index, all formulations maintained a longer allowable construction time. Specifically, the time to reach 1 Pa·s for all PUABs at 120 °C exceeded 60 min. During curing, higher isocyanate indices reduced final conversions but enhanced the storage modulus and glass transition temperatures, indicating improved rigidity and thermal resistance. Phase structure analysis demonstrated that increasing NCO/OH ratios reduced bitumen domain size while improving dispersion uniformity. Notably, the PUAB with the NCO/OH ratio of 1.3 achieved a tensile strength of 1.27 MPa and an elongation at break of 238%, representing a 49% improvement in toughness compared to the counterpart with an NCO/OH ratio = 1.1. These results demonstrate the viability of bio-based PUAB as a sustainable pavement material, offering a promising solution for environmentally friendly infrastructure development. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Figure 1

22 pages, 3006 KB  
Article
Evaluation of Thermal Aging Susceptibility of Recycled Waste Plastic Aggregates (Low-Density Polyethylene, High-Density Polyethylene, and Polypropylene) in Recycled Asphalt Pavement Mixtures
by Yeong-Min Kim and Kyungnam Kim
Polymers 2025, 17(6), 731; https://doi.org/10.3390/polym17060731 - 10 Mar 2025
Cited by 1 | Viewed by 1422
Abstract
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and [...] Read more.
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and interactions with RAP remain insufficiently understood. This study evaluates the performance of RAP-based asphalt mixtures, incorporating three types of WPA—Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), and Polypropylene (PP)—under three thermal aging conditions: mild (60 °C for 7 days), moderate (80 °C for 14 days), and severe (100 °C for 30 days). The mixtures were designed with 30% RAP content, 10% and 20% WPA by aggregate weight, and SBS-modified binder rejuvenated with 2% and 4% sewage sludge bio-oil by binder weight. It is considered that thermal aging may impact the performance of WPA in RAP mixtures; therefore, this study evaluates the durability and mechanical properties of RAP mixtures incorporating LDPE, HDPE, and PP under varying thermal aging conditions to address these challenges. The results showed that incorporating WPA and bio-oil significantly enhanced the mechanical performance, durability, and sustainability of asphalt mixtures. Marshall Stability increased by 12–23%, with values ranging from 12.6 to 13.2 kN for WPA-enhanced mixtures compared to 12.7 kN for the control. ITS improved by 15–20% in dry conditions (1.34–1.44 MPa) and 12–18% in wet conditions (1.15–1.19 MPa), with TSR values reaching up to 82.64%. Fatigue life was extended by 28–43%, with load cycles increasing from 295,600 for the control to 352,310 for PP mixtures. High-temperature performance showed a 12–18% improvement in softening point (57.3 °C to 61.2 °C) and a 23% increase in rutting resistance, with rut depths decreasing from 7.1 mm for the control to 5.45 mm for PP mixtures after 20,000 passes. These results demonstrate that combining RAP, WPA, and bio-oil produces sustainable asphalt mixtures with superior performance under aging and environmental stressors, offering robust solutions for high-demand applications in modern infrastructure. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

25 pages, 938 KB  
Review
Biomass-Derived Bio-Oil for Asphalt Binder Applications: Production Feasibility and Performance Enhancement
by Aya A. El-Sherbeni, Ahmed M. Awed, Alaa R. Gabr and Sherif M. El-Badawy
Constr. Mater. 2025, 5(1), 11; https://doi.org/10.3390/constrmater5010011 - 18 Feb 2025
Viewed by 2793
Abstract
Biomass offers a renewable pathway for sustainable infrastructure, particularly in bio-oil production from biomass through processes such as fast pyrolysis to be used as an alternative to asphalt binders. This review explores biomass sources, production techniques, and the role of bio-oil in addressing [...] Read more.
Biomass offers a renewable pathway for sustainable infrastructure, particularly in bio-oil production from biomass through processes such as fast pyrolysis to be used as an alternative to asphalt binders. This review explores biomass sources, production techniques, and the role of bio-oil in addressing the demand for eco-friendly materials in the pavement construction industry. The review also examines the upgrading processes of bio-oil, its physical and chemical properties, and its application in producing bio-modified asphalt binder (BMA). The use of bio-oils in asphalt binders not only reduces the carbon footprint but also promotes the utilization of renewable resources, contributing to a more sustainable pavement industry. Additionally, bio-oil incorporation enhances asphalt binder performance by improving rutting resistance at high temperatures and stiffness at low temperatures, while reducing susceptibility to low-temperature cracking. Challenges include variability in high-temperature performance and moisture sensitivity. Based on the findings of this comprehensive review, future research directions should focus on optimizing production processes, broadening biomass feedstocks, and mitigating moisture issues to align bio-oil properties with asphalt binder specifications. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

28 pages, 6455 KB  
Article
Optimizing Bitumen Performance in Warm Mix Asphalt Using Cecabase RT BIO10: A Taguchi-Based Experimental Approach
by Mustafa Çakı and Fatih İrfan Baş
Appl. Sci. 2025, 15(4), 1761; https://doi.org/10.3390/app15041761 - 9 Feb 2025
Cited by 2 | Viewed by 1998
Abstract
Flexible pavements stand out as the most commonly used worldwide, compared to rigid and composite pavements, owing to their versatility and widespread application. The use of hot mix asphalt (HMA) in flexible pavements causes significant environmental concerns due to high CO2 emissions [...] Read more.
Flexible pavements stand out as the most commonly used worldwide, compared to rigid and composite pavements, owing to their versatility and widespread application. The use of hot mix asphalt (HMA) in flexible pavements causes significant environmental concerns due to high CO2 emissions and energy consumption, whereas warm mix asphalt (WMA) technologies have gained popularity in recent decades, offering a more sustainable alternative by enabling asphalt production at lower temperatures. WMA technologies can be categorized into three main groups: foaming, organic additives, and chemical additives, with each offering distinct benefits for performance and environmental impact. One of the chemical additives used in WMA production is Cecabase RT BIO10. In this study, virgin bitumen with 50/70 penetration was modified by adding Cecabase RT BIO10 at four levels: 0%, 0.3%, 0.4%, and 0.5% by weight. The experimental design employed a Taguchi L16 orthogonal array to systematically evaluate the effects of various factors on modified bitumen performance. Binders were prepared at four temperatures (110 °C, 120 °C, 130 °C, and 140 °C), four mixing durations (15, 20, 25, and 30 min), and four mixing speeds (1000, 2000, 3000, and 4000 rpm), enabling an efficient analysis of each parameter’s impact. The prepared binders were subjected to a series of tests, including penetration, softening point, flash point, rotational thin film oven test (RTFOT), elastic recovery, Marshall stability, ultrasonic pulse velocity (UPV), and FTIR analysis. These tests were conducted to investigate the effects of various parameters and levels on the binder properties. Additionally, stiffness and seismic modules were evaluated to provide a more comprehensive understanding of the binder’s performance. The experiment results revealed that the penetration, elastic recovery percentage, and Marshall stability increased with increasing additive content while the softening point and RTFOT mass loss decreased. At a high service temperature of 40 °C, the stiffness modulus of the modified bitumen decreased slightly. At a low service temperature of −10 °C, it decreased further. Additionally, the incorporation of Cecabase RT BIO10 led to an increase in the seismic modulus. Through optimization using the Taguchi method, the optimal levels were determined to be a 0.4% Cecabase RT BIO10 ratio, 140 °C mixing temperature, 30 min mixing time, and 1000 RPM mixing speed. The optimal responses for each test were identified and integrated into a unified optimal response, resulting in a comprehensive design guide with 95% confidence level estimates for all possible level combinations. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 17419 KB  
Article
Performance Evaluation of an Eco-Friendly Prime Coat Material Formulated with Reclaimed Asphalt Pavement and Waste Bio-Oil
by Shaoxiong Liu, Chaochao Liu, Zhiyu Yang, Jue Li and Jian Gong
Coatings 2025, 15(2), 201; https://doi.org/10.3390/coatings15020201 - 7 Feb 2025
Cited by 2 | Viewed by 1168
Abstract
To address the insufficient interlayer bonding performance and high preparation costs associated with conventional prime coat materials for semi-rigid base asphalt pavement, in this study, we utilized waste bio-oil to enhance asphalt–aggregate separation in recycled asphalt pavement (RAP) and collected the filtrate after [...] Read more.
To address the insufficient interlayer bonding performance and high preparation costs associated with conventional prime coat materials for semi-rigid base asphalt pavement, in this study, we utilized waste bio-oil to enhance asphalt–aggregate separation in recycled asphalt pavement (RAP) and collected the filtrate after separation. The RAP–bio-oil filtrate acts as a diluent, which is reintroduced into the asphalt to form a novel prime coat material: RAP–bio-oil filtrate cut-back asphalt (RFCA). The optimal proportions of each component in RFCA were determined through penetration tests, interlayer shear tests, and interlayer tensile tests. Subsequently, interlayer shear strength tests were conducted to evaluate the bond strength of RFCA compared to traditional prime coat materials, such as PC-2 emulsified asphalt (PC-2 EA) and kerosene cutback asphalt (KCA). Additionally, interlayer shear fatigue tests were performed to assess the durability of the bond provided by RFCA between the surface and base layers. The experimental results indicate that the optimal formulation for RFCA comprises 60% asphalt by mass of the RAP–bio-oil filtrate and 10% penetrant agent by mass of the RAP–bio-oil filtrate. Under conditions of 15 °C, 40 °C, and 15 °C water immersion, the interlayer shear strength of RFCA demonstrates an enhancement compared to PC-2 EA and KCA. Compared to PC-2 EA, the interlayer shear fatigue life of RFCA improved by 39.7% at a stress ratio of 0.2, 40.8% at 0.3, 51.2% at 0.4, and 40.3% at 0.5. The application of RFCA as a prime coat material significantly enhances interlayer durability. Based on the cost analysis, the application cost per square meter for RFCA is lower than that of PC-2A. Consequently, RFCA presents a viable option as a green, renewable, low-cost, and high-performance prime coat material for application on semi-rigid base asphalt pavement. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 4102 KB  
Article
Investigation on Dynamic and Static Modulus and Creep of Bio-Based Polyurethane-Modified Asphalt Mixture
by Biao Han, Yongming Xing and Chao Li
Polymers 2025, 17(3), 359; https://doi.org/10.3390/polym17030359 - 28 Jan 2025
Cited by 1 | Viewed by 1064
Abstract
The superior mechanical qualities of polyurethane have garnered increasing attention for its application in modifying asphalt mixtures. However, polyurethane needs to use polyols to cure, and polyols need to be produced by petroleum refining. As we all know, petroleum is a non-renewable energy [...] Read more.
The superior mechanical qualities of polyurethane have garnered increasing attention for its application in modifying asphalt mixtures. However, polyurethane needs to use polyols to cure, and polyols need to be produced by petroleum refining. As we all know, petroleum is a non-renewable energy source. In order to reduce oil consumption and conform to the trend of a green economy, lignin and chitin were used instead of polyols as curing agents. In this paper, a biological polyurethane-modified asphalt mixture (BPA-16) was designed and compared with a polyurethane-modified asphalt mixture (PA-16) and a matrix asphalt mixture (MA-16). The viscoelastic characteristics of the three asphalt mixtures were evaluated using dynamic modulus, static modulus, and creep tests. The interplay between dynamic and static modulus and frequency is examined, along with the variations in the correlation between dynamic and static modulus. The creep behavior of the mixture was ultimately examined by a uniaxial static load creep test. The findings indicate that the dynamic modulus of BPA-16 exceeds those of PA-16 and MA-16 by 8.7% and 30.4% at 25 Hz and −20 °C, respectively. At 25 Hz and 50 °C, the phase angle of BPA-16 decreases by 26.3% relative to that of MA-16. Lignin and chitin, when utilized as curing agents in place of polyol, can enhance the mechanical stability of asphalt mixtures at low temperatures and diminish their temperature sensitivity. A bio-based polyurethane-modified asphalt mixture can also maintain better elastic properties in a wider temperature range. At −20–20 °C, the dynamic and static moduli of BPA-16, PA-16 and MA-16 are linear, and they can be converted by formula at different frequencies. The failure stages of BPA-16, PA-16, and MA-16 are not observed during the 3600 s creep duration, with BPA-16 exhibiting the least creep strain, indicating that lignin and chitin enhance the resistance to permanent deformation in PU-modified asphalt mixes. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

10 pages, 753 KB  
Article
Gopal as a Sustainable Alternative: Chemical, Rheological, and Mechanical Insights
by Raden Anwar Yamin, Zuni Asih Nurhidayati, Laely Fitria Hidayatiningrum and Dani Hamdani
Constr. Mater. 2024, 4(4), 777-786; https://doi.org/10.3390/constrmater4040042 - 2 Dec 2024
Viewed by 976
Abstract
The availability of petroleum asphalt, derived from non-renewable natural sources, is steadily declining in tandem with dwindling petroleum reserves. To mitigate the reliance on petroleum, alternative renewable natural sources are being explored for use as both modifiers and replacements for petroleum asphalt, particularly [...] Read more.
The availability of petroleum asphalt, derived from non-renewable natural sources, is steadily declining in tandem with dwindling petroleum reserves. To mitigate the reliance on petroleum, alternative renewable natural sources are being explored for use as both modifiers and replacements for petroleum asphalt, particularly as binders in asphalt mixtures. The development of bio-asphalt represents a significant innovation aimed at reducing or even eliminating the dependence on petroleum as a source of asphalt. This paper examines the chemical, rheological, and mechanical properties of Gopal (Gondorukem Asphalt), a bio-asphalt derived from Gondorukem (gum rosin) and CPO (Crude Palm Oil). Two types of Gopal, Gopal-GEM130 and Gopal-GEG90, were analyzed using FTIR (Fourier Transform Infra-Red) and EDX (Energy Dispersive X-ray) tests, with Pen 60 petroleum asphalt serving as a control for comparison. The results indicate that the chemical groups of Gopal-GEG90 and Gopal-GEM130 share 86% similarity with those of Pen 60 petroleum asphalt. Compared to Pen 60, Gopal-GEM130 is less toxic and less alkaline, while Gopal-GEG90 is also less toxic but more alkaline. Rheologically, Gopal-GEG90 and Gopal-GEM130 fall within the same classification as Pen 60, based on the Pen 60 classification grade of asphalt. Gopal-GEG90 exhibits slightly better stripping resistance and lower aging resistance than Pen 60, whereas Gopal-GEM130 demonstrates significantly better stripping resistance but lower aging resistance. Performance-wise, both Gopal variants belong to the same performance grade (PG64S) as Pen 60 petroleum asphalt. However, Gopal-GEG90 has slightly better rutting resistance compared to Pen 60 but lower than Gopal-GEM130, and it ages faster with lower fatigue resistance. Conversely, Gopal-GEM130 has superior rutting resistance but lower fatigue resistance and ages faster than Pen 60 petroleum asphalt. Full article
Show Figures

Figure 1

Back to TopTop