Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = biocompatibility and cytocompatibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3298 KB  
Article
A Comparative Study of Stainless Steel and PEEK TiO2 Composite: Effects on Cell Behavior and Bacterial Adhesion in Pediatric Crowns
by Helena Pereira, Flávio Rodrigues, Ana Arieira, Filipe Silva and João Pinto
Appl. Sci. 2025, 15(19), 10809; https://doi.org/10.3390/app151910809 (registering DOI) - 8 Oct 2025
Abstract
Dental materials are well-established, with stainless steel 316L (SS) still being a common choice for components such as pediatric crowns and abutments. However, SS has some drawbacks, particularly in terms of mechanical properties and, more importantly, aesthetics, due to its metallic gray color. [...] Read more.
Dental materials are well-established, with stainless steel 316L (SS) still being a common choice for components such as pediatric crowns and abutments. However, SS has some drawbacks, particularly in terms of mechanical properties and, more importantly, aesthetics, due to its metallic gray color. In this sense, PEEK (polyetheretherketone) has emerged as a promising material for dental applications, combining good mechanical properties with improved aesthetic features. This study compared the cytocompatibility of PEEK TiO2 composite and SS using human fetal osteoblasts (hFOB) and human gingival fibroblasts (HGF). Cytocompatibility was evaluated over 1–7 days through metabolic activity and alkaline phosphatase (ALP) assays. Additionally, bacterial adhesion was assessed using Staphylococcus aureus and Pseudomonas aeruginosa in both monoculture and co-culture. The results showed that both materials were non-cytotoxic and supported cell growth. Notably, after 7 days of culture, PEEK TiO2 surfaces promoted approximately 7% higher ALP activity than stainless steel, demonstrating a significantly enhanced osteogenic response (p < 0.01). Moreover, at day 7, PEEK TiO2 promoted ~25% higher metabolic activity in HGF cells compared to SS. Regarding the bacterial adhesion, it was consistently low in PEEK TiO2 for both S. aureus and P. aeruginosa, with a marked reduction (~50%) observed for P. aeruginosa under co-culture conditions. PEEK TiO2 demonstrated enhanced biological performance and lower bacterial adhesion compared with SS, highlighting its potential as a biocompatible and aesthetically promising option for dental applications, including pediatric crowns. Full article
(This article belongs to the Special Issue Advanced Dental Materials and Its Applications)
Show Figures

Figure 1

19 pages, 10886 KB  
Article
Characterization of a Hydrogel Composite Containing Bioactive Moringa as a Novel Pulp-Capping Material
by Mustafa Tariq Mutar and Anas F. Mahdee
Polymers 2025, 17(19), 2626; https://doi.org/10.3390/polym17192626 - 28 Sep 2025
Viewed by 1009
Abstract
Hydrogels are hydrophilic biocompatible polymers that can be used as a drug delivery material in different medical branches, including vital pulp therapy. The aim of this study is to characterize the physical and biological properties of the newly developed formula as a candidate [...] Read more.
Hydrogels are hydrophilic biocompatible polymers that can be used as a drug delivery material in different medical branches, including vital pulp therapy. The aim of this study is to characterize the physical and biological properties of the newly developed formula as a candidate direct pulp-capping material. The hydrogel composite was prepared from natural and synthetic origins (polyvinyl alcohol (PVA), hyaluronic acid (HA), and sodium alginate (SA)) with the incorporation of bioactive Moringa. Different formulas of hydrogel containing different concentrations were evaluated for physicochemical (FTIR, XRD, SEM, degradation, and swelling), mechanical (viscosity, folding endurance, film thickness), and biological (antioxidant, antibacterial, and cytotoxicity) properties. FTIR and XRD confirmed successful incorporation and partial cross-linking between moringa and hydrogel compounds. At low concentrations of moringa, the hydrogel formula showed integrity, scavenging activity, and homogeneity. The moringa-loaded films showed concentration-dependent antioxidant and antibacterial properties, especially at higher concentrations, with acceptable cytocompatibility. The low concentration of moringa (0.5%) may be considered a promising candidate as a novel pulp-capping agent supporting tissue healing and regeneration. Full article
(This article belongs to the Special Issue Drug-Loaded Polymer Colloidal Systems in Nanomedicine III)
Show Figures

Figure 1

28 pages, 4396 KB  
Article
Kelulut Honey-Incorporated Hybrid Gelatin-PVA Hydrogel for Wound Healing: Fabrication and In Vitro Characterization
by Andik Nisa Zahra Zainuddin, Raniya Razif, Aifa Asyhira Khairul Nizam, Manira Maarof, Nur Izzah Md Fadilah, Yang-Hee Kim, Ebrahim Mahmoudi and Mh Busra Fauzi
Polymers 2025, 17(19), 2618; https://doi.org/10.3390/polym17192618 - 27 Sep 2025
Viewed by 477
Abstract
Hydrogels are attractive biomaterials for skin replacement and tissue regeneration, offering advantages over split-skin grafts for large or irregular wounds. Honey-containing hydrogels are of particular interest, combining honey’s natural healing properties with the versatility of hydrogel matrices. This study aimed to develop a [...] Read more.
Hydrogels are attractive biomaterials for skin replacement and tissue regeneration, offering advantages over split-skin grafts for large or irregular wounds. Honey-containing hydrogels are of particular interest, combining honey’s natural healing properties with the versatility of hydrogel matrices. This study aimed to develop a biocompatible, biodegradable, and mechanically stable hydrogel as a cutaneous substitute. To achieve this, different formulations were prepared using gelatin (GE), polyvinyl alcohol (PVA), and Kelulut honey (KH). The formulations were designated as: GE-PVA (6% (w/v) GE: 5% (w/v) PVA, without KH), GE-PVA-H1 (containing 1% (v/v) KH), GE-PVA-H5 (containing 5% (v/v) KH), and GE-PVA-H10 (containing 10% (v/v) KH). All formulations were crosslinked with 0.1% (w/v) genipin (GNP). GE-PVA-H1 and GE-PVA-H1-GNP showed swelling ratios of 110.18 ± 20.14% and 86.31 ± 14.27%, lower than GE-PVA-H5 (125.79 ± 23.76%), GE-PVA-H10 (132.79 ± 20.86%), and their crosslinked counterparts. All formulations had WVTR <1500 g/m−2h−1, with GE-PVA-H1-GNP at 501.21 ± 41.35 g/m−2h−1, GE-PVA-H5-GNP at 473.77 ± 44.10 g/m−2h−1, and GE-PVA-H10-GNP at 467.51 ± 73.59 g/m−2h−1. GE-PVA-H1-GNP exhibited the slowest biodegradation (0.0036 ± 0.0003 g/h vs. 0.0096–0.0206 g/h for other groups). Contact angle was lowest for GE-PVA-H1-GNP (38.46° ± 3.89°), confirming higher hydrophilicity compared with GE-PVA-H5/H10 groups. Resilience (98.85% ± 1.03%) and compression strength (77.42% ± 7.17%) of GE-PVA-H1-GNP were comparable to GE-PVA-H5-GNP and GE-PVA-H10-GNP. MTT assays confirmed cytocompatibility across all groups. Collectively, GE-PVA-H1-GNP emerged as the optimal formulation, combining mechanical stability, hydrophilicity, and biocompatibility for wound healing applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

20 pages, 5964 KB  
Article
Synthesis and Characterization of Bioactive Coatings with Bone Regeneration Potential and Anti-Resorptive Effect
by Maxim V. Maximov, Lea Sleiman, Oana Cristina Maximov, Roxana Doina Trușcă, Ludmila Motelica, Angela Spoială, Denisa Ficai, Anton Ficai and Sorina Dinescu
Coatings 2025, 15(10), 1120; https://doi.org/10.3390/coatings15101120 - 26 Sep 2025
Viewed by 325
Abstract
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine [...] Read more.
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine through spraying. This strategy integrates three components: a metallic substrate as a stable and inexpensive support, a bioactive glass layer with well-known osteogenic potential, and a superficial organic layer of benfotiamine, a lipid-soluble analog of vitamin B1 with higher bioavailability. Samarium doping was selected based on previously reported antimicrobial potential against clinically relevant staphylococci, while the rationale for benfotiamine functionalization derives from literature describing vitamin B1 derivatives with anti-resorptive and osteogenic activity. The coatings were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) microscopy. Bioactivity was assessed by immersion in simulated body fluid (SBF), where phosphate bands indicated the formation of calcium phosphate phases (CaPs). Wettability tests showed a reduced contact angle after benfotiamine functionalization. Cytocompatibility was evaluated by LDH and MTT assays with MC3T3-E1 cells, suggesting overall biocompatibility and enhanced cell viability after 7 days for the benfotiamine-functionalized coatings. The present findings support a simple and cost-effective route to multifunctional coatings with potential relevance for future orthopedic applications. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 667
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

27 pages, 13129 KB  
Article
Biofunctional Polyvinyl Alcohol/Xanthan Gum/Gelatin Hydrogel Dressings Loaded with Curcumin: Antibacterial Properties and Cell Viability
by María José Rivera, Alejandro Cament, Manuel Ahumada, Teresa Corrales, Verónica García, Jesús L. Pablos, Javiera Osorio, Giselle Ramos-González, Leslie Vargas-Saturno, Marcelo Ezquer and J. Andrés Ortiz
Gels 2025, 11(10), 764; https://doi.org/10.3390/gels11100764 - 23 Sep 2025
Viewed by 442
Abstract
This study explores the development of biocompatible hydrogel dressings incorporating curcumin as an alternative antibacterial agent. In this context, hydrogels were prepared using polyvinyl alcohol, xanthan gum, gelatin, and curcumin as a therapeutic component. FTIR spectroscopy confirmed the successful incorporation of curcumin into [...] Read more.
This study explores the development of biocompatible hydrogel dressings incorporating curcumin as an alternative antibacterial agent. In this context, hydrogels were prepared using polyvinyl alcohol, xanthan gum, gelatin, and curcumin as a therapeutic component. FTIR spectroscopy confirmed the successful incorporation of curcumin into the hydrogel matrix, while release profiles demonstrated sustained release. Mechanical testing indicated that xanthan gum reduced elongation and strength in hydrogels, while the combination of xanthan gum and gelatin increased stiffness without loss of elasticity. Curcumin had no major effect on the tensile and rheological properties, preserving the structural integrity of the hydrogels. The hydrogels demonstrated antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus ATCC strains, as well as multidrug methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. Biocompatibility was confirmed through viability assays with immortalized human keratinocytes (HaCaT) and adult human dermal fibroblasts (HDFa), showing no acute cytotoxic effects after 48 h of exposure. Their effective action against clinically relevant bacteria and high cytocompatibility position these hydrogels as promising candidates for infection management and antibiotic resistance mitigation in wound care applications. Full article
Show Figures

Figure 1

17 pages, 3324 KB  
Article
Silica Nanoparticle-Reinforced Bioactive Oxidized Alginate/Polyacrylamide–Gelatin Interpenetrating Polymer Network Composite Hydrogels
by Yanan Bu, Jiayi Liu, Jiji Fan, Xiuqiong Chen, Huiqiong Yan and Qiang Lin
Gels 2025, 11(9), 748; https://doi.org/10.3390/gels11090748 - 17 Sep 2025
Viewed by 368
Abstract
Alginate hydrogels are promising tissue engineering biomaterials due to their biocompatibility and structural similarity to the extracellular matrix, but their poor mechanical strength, rapid degradation, and lack of bioactivity limit applications. To address this, a novel oxidized alginate/polyacrylamide/silica nanoparticle–gelatin (OA/PAAm/SiO2-GT) composite [...] Read more.
Alginate hydrogels are promising tissue engineering biomaterials due to their biocompatibility and structural similarity to the extracellular matrix, but their poor mechanical strength, rapid degradation, and lack of bioactivity limit applications. To address this, a novel oxidized alginate/polyacrylamide/silica nanoparticle–gelatin (OA/PAAm/SiO2-GT) composite hydrogel was developed using an interpenetrating polymer network (IPN) strategy, reinforced with silica nanoparticles and coated with gelatin. The influence of SiO2 content on the microstructure, mechanical properties, swelling behavior, biodegradability, biomineralization, and cytocompatibility of the composite hydrogel was systematically investigated. Experimental results revealed that SiO2 nanoparticles interacted with the polymer matrix within the composite hydrogel. With increasing content of SiO2, the porosity of the OA/PAAm/SiO2-GT composite hydrogel gradually decreased, while the mechanical properties exhibited a trend of initial enhancement followed by reduction, with maximum compressive strength at a SiO2 content of 1.0% (w/v). Moreover, the incorporation of SiO2 nanoparticles effectively modulated the swelling behavior, biodegradability, and biomineralization capacity of the composite hydrogel under in vitro conditions. Meanwhile, the OA/PAAm/SiO2-GT composite hydrogel supported favorable cell adhesion and proliferation, optimal at a SiO2 content of 0.5% (w/v). Furthermore, with increasing concentration of SiO2 nanoparticles, the intracellular alkaline phosphatase (ALP) activity progressively increased, suggesting a promotive effect of SiO2 nanoparticles on the osteogenic differentiation of MG63 cells. Therefore, the incorporation of SiO2 nanoparticles into the OA/PAAm IPN matrices provides an effective means to tailor its biological properties, rendering it great potential for biomedical applications such as tissue engineering. Full article
Show Figures

Figure 1

26 pages, 3907 KB  
Article
Green-Synthesized MgO Nanoparticles: Structural Insights and Antimicrobial Applications
by Denisa-Maria Radulescu, Ionela Andreea Neacsu, Bodgan Stefan Vasile, Vasile-Adrian Surdu, Ovidiu-Cristian Oprea, Roxana-Doina Trusca, Cristina Chircov, Roxana Cristina Popescu, Cornelia-Ioana Ilie, Lia-Mara Ditu, Veronica Drumea and Ecaterina Andronescu
Int. J. Mol. Sci. 2025, 26(18), 9021; https://doi.org/10.3390/ijms26189021 - 16 Sep 2025
Viewed by 777
Abstract
Magnesium oxide nanoparticles, or MgO NPs, have garnered a lot of attention because of their exceptional stability, biocompatibility, and antibacterial properties. However, many of the green production methods used today have limited mechanistic knowledge and low reproducibility. In order to get over these [...] Read more.
Magnesium oxide nanoparticles, or MgO NPs, have garnered a lot of attention because of their exceptional stability, biocompatibility, and antibacterial properties. However, many of the green production methods used today have limited mechanistic knowledge and low reproducibility. In order to get over these challenges, we created a standardized and environmentally friendly process for producing MgO NPs using orange peel extract, a naturally occurring biowaste source rich in phytochemicals that acts as a stabilizing and reducing agent. Active precursor alteration during synthesis was clearly shown by X-ray diffraction (XRD) and thermal analysis (TGA-FTIR), while imaging techniques showed extremely crystalline cubic-phase MgO nanoparticles that were about 9 nm in size. The NPs displayed an irregular shape between 10 and 40 nm and a positive surface charge of +11.74 mV. Terpenoids, polymethoxyflavones, fatty acids, and sugars all work in collaboration with direct nucleation, regulate particle growth, and stabilize the nanoparticles, according to GC-MS analysis. The MgO NPs showed remarkable cytocompatibility in biology, preserving >80% viability in fibroblast and osteoblast cell lines while causing distinct metabolic regulation in osteoblasts without changing the shape of the cells. Consistent moderate activity against a variety of pathogens was confirmed by antimicrobial and antibiofilm assays, with special effectiveness against Gram-positive bacteria and Pseudomonas aeruginosa biofilms. This study shows that these MgO NPs have good biocompatibility and antimicrobial qualities, indicating the need for more research for possible biomedical applications. It also clarifies the molecular role of phytochemicals in nanoparticle formation and provides a repeatable green synthesis pathway. Full article
(This article belongs to the Special Issue Multifunctional Nanocomposites for Bioapplications)
Show Figures

Figure 1

32 pages, 9779 KB  
Article
Cinnamon-Mediated Silver Nanoparticles and Beta-Carotene Nanocarriers in Alginate Dressings for Wound Healing Applications
by Anca Elena Țăin (Anastasiu), Alexandra Cătălina Bîrcă, Monica Sânziana Nedelcu, Alina Maria Holban, Adelina-Gabriela Niculescu, Alexandru Mihai Grumezescu and Ariana Hudiță
Gels 2025, 11(9), 738; https://doi.org/10.3390/gels11090738 - 15 Sep 2025
Viewed by 550
Abstract
The natural wound healing process is often insufficient to restore tissue integrity in the case of chronic wounds, particularly when skin disruption is accompanied by pathological complications. The severity of these wounds is frequently exacerbated by persistent inflammation and the formation of bacterial [...] Read more.
The natural wound healing process is often insufficient to restore tissue integrity in the case of chronic wounds, particularly when skin disruption is accompanied by pathological complications. The severity of these wounds is frequently exacerbated by persistent inflammation and the formation of bacterial biofilms, which significantly hinder skin regeneration. In this study, a pharmaceutical hydrogel-based wound dressing was developed and evaluated, incorporating silver nanoparticles synthesized with cinnamon essential oil that serves as both a stabilizer and antimicrobial agent, polymeric beta-carotene nanoparticles, and Centella asiatica extract. The work details the synthesis of both types of nanoparticles, their integration into an alginate-based matrix, and the subsequent formulation of composite dressings. The influence of each therapeutic agent on the morphology and structural characteristics of the dressings was demonstrated, along with the evaluation of their antimicrobial performance against both Gram-positive and Gram-negative bacterial strains. The antimicrobial effects observed within the first 24 h, critical for wound dressing application, highlight the potential of the developed materials for effective chronic wound management. A comprehensive set of analyses was performed to characterize the synthesized nanostructures and the final dressings. These included XRD, FTIR, SEM, EDS, and DLS. Additionally, swelling and degradation tests were conducted to assess hydrogel performance, while antimicrobial and antibiofilm activities were tested against Staphylococcus aureus and Escherichia coli over a 24-h period. The biocompatibility screening of the alginate-based wound dressings was performed on human keratinocyte cells and revealed that the incorporation of beta-carotene and Centella asiatica into alginate-based wound dressings effectively mitigates silver-induced cytotoxicity and oxidative stress and determines the development of highly biocompatible wound dressings. This paper presents an alginate hydrogel co-loaded with Ag nanoparticles, BC@PVP, and Centella asiatica extract that balances antimicrobial efficacy with cytocompatibility. Pairing silver with natural antioxidant/anti-inflammatory components mitigates cell stress while retaining broad activity, and the nanoparticle choice tunes pore architecture to optimize moisture and exudate control in chronic wounds. Full article
Show Figures

Figure 1

17 pages, 2473 KB  
Article
Inhibition of Pseudomonas aeruginosa Biofilms Using Robust Silk Fibroin-Poly(ethyleneimine) Microparticles
by Grace Neven, Tippabattini Jayaramudu, Mingyang Mao and Tugba Ozdemir
Polymers 2025, 17(18), 2470; https://doi.org/10.3390/polym17182470 - 12 Sep 2025
Viewed by 519
Abstract
Controlling bacterial growth and biofilm formation remains a major challenge in the treatment of chronic wounds and in preventing infection after biomedical device implantation. Thus, creating materials with inherent antibacterial potential is necessary. Here, we report silk fibroin–polyethylenimine-based (SF-PEI) microparticles to control the [...] Read more.
Controlling bacterial growth and biofilm formation remains a major challenge in the treatment of chronic wounds and in preventing infection after biomedical device implantation. Thus, creating materials with inherent antibacterial potential is necessary. Here, we report silk fibroin–polyethylenimine-based (SF-PEI) microparticles to control the growth of Pseudomonas aeruginosa, which is a highly infectious and biofilm-forming pathogen. SF-PEI microparticles were fabricated using a solvent displacement method, and their microparticle formation was confirmed using Fourier-transform infrared spectroscopy (FTIR). The morphology and size of the microparticles were characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The SEM and DLS methods revealed that the microparticles formed showed a uniform, spherical morphology with a consistent size distribution, showing a Z-average of 834.82 nm. The antibacterial and biofilm inhibition properties of the SF-PEI microparticles were tested against P. aeruginosa. The results show significant control of bacterial growth and biofilm formation when treated with the SF-PEI particles. Further, a cell viability assay was evaluated using human dermal fibroblasts, and the results demonstrated that the SF-PEI microparticles developed demonstrated cytocompatibility, with no significant cytotoxic effects observed. These results suggest that SF-PEI microparticles offer a promising biocompatible strategy for reducing bacterial growth and their biofilm-associated infections, particularly in wound healing and medical device applications. Full article
(This article belongs to the Special Issue Advanced Antibacterial Polymers and Their Composites)
Show Figures

Graphical abstract

16 pages, 2457 KB  
Article
Humics-Functionalized Iron(III) Oxyhydroxides as Promising Nanoferrotherapeutics: Synthesis, Characterization, and Efficacy in Iron Delivery
by Anastasiya M. Zhirkova, Maria V. Zykova, Evgeny E. Buyko, Karina A. Ushakova, Vladimir V. Ivanov, Denis A. Pankratov, Elena V. Udut, Lyudmila A. Azarkina, Sergey R. Bashirov, Evgenii V. Plotnikov, Alexey N. Pestryakov, Mikhail V. Belousov and Irina V. Perminova
Nanomaterials 2025, 15(18), 1400; https://doi.org/10.3390/nano15181400 - 11 Sep 2025
Viewed by 416
Abstract
Iron deficiency anemia (IDA) remains a global health challenge. This study pioneers the use of humic substances (HS) as natural, biocompatible macroligands to develop safer and more effective nanoferrotherapeutics. We synthesized a series of nanoscale Fe(III) oxyhydroxide complexes stabilized by different HS, employing [...] Read more.
Iron deficiency anemia (IDA) remains a global health challenge. This study pioneers the use of humic substances (HS) as natural, biocompatible macroligands to develop safer and more effective nanoferrotherapeutics. We synthesized a series of nanoscale Fe(III) oxyhydroxide complexes stabilized by different HS, employing various solvents (ethanol, isopropanol, and acetone) and precipitation methods to isolate fractions with optimized properties. The nanocomposites were comprehensively characterized using inductively coupled plasma atomic emission spectrometry, total organic carbon analysis, X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy. Cytotoxicity and iron bioavailability of all HS-Fe(III) formulations were assessed in Caco-2 intestinal epithelial cells. The type of HS and precipitation conditions significantly influenced the nanocomposites’ properties, yielding spherical nanoparticles (1–2 nm) of ferrihydrite or goethite. Physicochemical analysis confirmed that solvent-driven fractionation effectively tailored the nanocomposites’ size, crystallinity, and elemental composition. All HS-Fe(III) formulations demonstrated exceptional cytocompatibility, starkly contrasting the significant cytotoxicity of the reference drug Ferrum Lek®. Several complexes, particularly CHSFe-Et67, surpassed Ferrum Lek® in cellular iron uptake efficiency. We conclude that HS are a highly promising platform for developing effective and safe iron-delivery nanoferrotherapeutics, leveraging their natural polyfunctionality to enhance bioavailability and mitigate toxicity. Full article
Show Figures

Figure 1

15 pages, 1941 KB  
Article
Development of Conjugated Linoleic Acid Nanostructured Lipid Carriers and Their Synergistic Efficacy with Curcumin
by Huan Liu, Xingyu Huang, Yuxiu Liu, Guangming Zheng, Wei Yang and Bo Li
Foods 2025, 14(17), 3104; https://doi.org/10.3390/foods14173104 - 5 Sep 2025
Viewed by 670
Abstract
Curcumin has good anti-cancer and antioxidant properties. However, the poor water solubility and low bioavailability limit its application in food products. This study constructed a nanostructured lipid carrier (Cur-CLA-NLC) encapsulating curcumin using conjugated linoleic acid (CLA) as the liquid lipid and stearic acid [...] Read more.
Curcumin has good anti-cancer and antioxidant properties. However, the poor water solubility and low bioavailability limit its application in food products. This study constructed a nanostructured lipid carrier (Cur-CLA-NLC) encapsulating curcumin using conjugated linoleic acid (CLA) as the liquid lipid and stearic acid as the solid lipid. Cur-CLA-NLC exhibits significantly enhanced bioaccessibility, antioxidant activity, and cytocompatibility. CLA, as a liquid lipid in Cur-CLA-NLC, has a dual role as a structural stabilizer and bioactive agent, and synergistically enhances antioxidant activity with curcumin. In vitro simulated digestion studies showed that the bioaccessibility of curcumin in Cur-CLA-NLC (85.7%) was much higher than that in the pure curcumin (11.7%) and curcumin lipid mixtures (9.3%). In addition, the Cur-CLA-NLC system showed anti-lipid peroxidation ability and good biocompatibility. Therefore, CLA-NLC can serve as a potential delivery system for enhancing health benefits via functional foods. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

24 pages, 4015 KB  
Article
Selenium Nanoparticles: Synthesis, Stability and In Vitro Evaluation in Human Lens Epithelial Cells
by Lulwah Al-Bassam, Mohammed M. Naiyer, Christopher J. Morris, Steve Brocchini and Gareth R. Williams
Pharmaceutics 2025, 17(9), 1157; https://doi.org/10.3390/pharmaceutics17091157 - 3 Sep 2025
Viewed by 766
Abstract
Background/Objectives: Oxidative stress plays a critical role in the development of ocular diseases such as cataracts. Selenium nanoparticles (SeNPs) offer antioxidant benefits with low toxicity. This study aimed to evaluate the antioxidant activity of SeNPs coated with D-α-tocopheryl polyethylene glycol succinate (TPGS) [...] Read more.
Background/Objectives: Oxidative stress plays a critical role in the development of ocular diseases such as cataracts. Selenium nanoparticles (SeNPs) offer antioxidant benefits with low toxicity. This study aimed to evaluate the antioxidant activity of SeNPs coated with D-α-tocopheryl polyethylene glycol succinate (TPGS) in human lens epithelial (HLE) cells. Methods: SeNPs were synthesised by reducing sodium selenite with ascorbic acid in the presence of TPGS. Physicochemical characterisation was carried out using dynamic light scattering to assess size and surface charge. Antioxidant activity was measured by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Cytocompatibility was assessed on adult retinal pigment epithelial (ARPE-19) and HLE cells using PrestoBlue. Functional antioxidant performance was determined through enzymatic assays for glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and glutathione (GSH), and lipid peroxidation was assessed using malondialdehyde (MDA) quantification. Catalase mimicry was evaluated under 3-amino-1,2,4-triazole (3-AT)-induced inhibition. Results: The optimal SeNP formulation had an average hydrodynamic diameter of 44 ± 3 nm, low PDI (<0.1), and a surface charge of −15 ± 3 mV. These TPGS-SeNPs demonstrated strong radical scavenging (EC50 ≈ 1.55 µg/mL) and were well tolerated by ARPE-19 cells (IC50 = 524 µg/mL), whereas HLE cells had a narrower biocompatibility window (≤0.4 µg/mL, IC50 = 2.2 µg/mL). Under oxidative stress, SeNPs significantly enhanced GPx and TrxR activity but did not affect GSH or MDA levels. No catalase-mimetic activity was observed. Conclusions: TPGS-SeNPs exhibit potent antioxidant enzyme modulation under stress conditions in HLE cells. Although not affecting all oxidative markers, these nanoparticles show promise for non-invasive strategies targeting lens-associated oxidative damage, including cataract prevention. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

22 pages, 7456 KB  
Article
Mg-Ca-Sr Biodegradable Alloys for Medical Applications: Production, Biomaterials’ Properties Characterization, and In Vitro and In Vivo Biocompatibility Evaluation
by Gabriela Leață, Kamel Earar, Corneliu Munteanu, Fabian Cezar Lupu, Maria Daniela Vlad, Bogdan Istrate, Ramona Cimpoesu, Aurelian-Sorin Pașca and Eusebiu Viorel Șindilar
Bioengineering 2025, 12(9), 939; https://doi.org/10.3390/bioengineering12090939 - 30 Aug 2025
Viewed by 598
Abstract
The research of biomaterials is an area of significant interest in the biomedical field, and the present study investigates how the strontium (Sr) concentration influences the microstructure, corrosion resistance, and both in vitro and in vivo behavior of alloys in the ternary Mg-Ca-Sr [...] Read more.
The research of biomaterials is an area of significant interest in the biomedical field, and the present study investigates how the strontium (Sr) concentration influences the microstructure, corrosion resistance, and both in vitro and in vivo behavior of alloys in the ternary Mg-Ca-Sr system. Using an induction furnace with a controlled atmosphere (argon as the shielding gas), Mg-0.5Ca-xSr alloys (x = 0.5; 1; 1.5; 2; 3 at.%) were synthesized. Microstructural analyses, performed using optical microscopy and scanning electron microscopy (SEM), revealed a uniform and refined structure. Corrosion behavior assessments, carried out using linear and cyclic potentiometry, demonstrated favorable corrosion resistance for all samples. However, for the system containing 0.5% Sr, the corrosion rate values were lower compared to the other systems, and this alloy also exhibited the lowest corrosion current density. Cytocompatibility assay indicated the cytocompatible behavior of all the studied alloys, with favorable influence on cell viability and a stimulatory effect on the osteoblastic cell proliferation. In vivo biocompatibility assessments of the alloys showed that, for alloys containing 0.5% and 1% Sr, a more rapid degradation occurred in comparison with the other alloys (1.5, 2 and 3% Sr), which still persisted at the tissue level even after 12 weeks post-implantation. In all the batches examined, the inflammatory reaction was directly proportional and persistent in relation to the presence of the material in the tissue. In regions where the material was resorbed/degraded, the local inflammatory response was reduced or absent, and the fibrous tissue was denser and better organized. The field of biomaterials is in continuous development, and this study highlighted the applicability of these five alloy systems for dental and maxillofacial applications such as implants, plates, and related devices. Full article
(This article belongs to the Special Issue Engineering Biodegradable-Implant Materials, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 1806 KB  
Article
Release and Cytocompatibility Study of New Hybrid Materials Based on Ferulic Acid for Biomedical Use
by Federico Barrino, Federica Giuliano and Clelia Dispenza
Int. J. Mol. Sci. 2025, 26(17), 8450; https://doi.org/10.3390/ijms26178450 - 30 Aug 2025
Viewed by 484
Abstract
In recent years, research into the synthesis of innovative biomaterials for prosthetic applications has been increasingly growing. In particular, there is a demand for biomaterials with an excellent biocompatibility that can interact with biological fluids. This study involved the development of new silica [...] Read more.
In recent years, research into the synthesis of innovative biomaterials for prosthetic applications has been increasingly growing. In particular, there is a demand for biomaterials with an excellent biocompatibility that can interact with biological fluids. This study involved the development of new silica (SiO2)-based composite materials using the sol–gel technique and functionalization with ferulic acid (FA), a natural phenolic compound renowned for its biological properties. The synthesis involved controlling the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) in acidic and alcoholic environments to incorporate ferulic acid into the sol phase matrix at different weight compositions (5, 10, 15, and 20 wt%). Fourier transform infrared spectroscopy analyses (FTIR) confirmed the successful incorporation of the bioactive compound, and in vitro tests revealed a good cytocompatibility and controlled ferulic acid release over time. These results demonstrate that the developed material shows promise as a bioactive coating for orthopedic prostheses, improving bone integration and reducing undesirable post-operative phenomena. Full article
(This article belongs to the Special Issue Emerging Biomaterials for Cartilage Regeneration)
Show Figures

Figure 1

Back to TopTop