Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = bioherbicides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2060 KB  
Review
Plant-Based Bioherbicides: Review of Eco-Friendly Strategies for Weed Control in Organic Bean and Corn Farming
by Bianca Motta Dolianitis, Viviane Dal Souto Frescura, Guilherme de Figueiredo Furtado, Marcus Vinícius Tres and Giovani Leone Zabot
AgriEngineering 2025, 7(9), 288; https://doi.org/10.3390/agriengineering7090288 (registering DOI) - 4 Sep 2025
Abstract
Weeds are among the primary factors limiting corn and bean productivity, accounting for up to 30% of yield losses. Although chemical herbicides remain the predominant weed control strategy, their toxicity poses significant risks to human health and the environment. In response, organic agriculture [...] Read more.
Weeds are among the primary factors limiting corn and bean productivity, accounting for up to 30% of yield losses. Although chemical herbicides remain the predominant weed control strategy, their toxicity poses significant risks to human health and the environment. In response, organic agriculture has gained prominence as a more sustainable production system, with an increasing interest in alternative weed management approaches. Plants that produce allelopathic compounds capable of inhibiting the growth of unwanted species have emerged as promising sources of natural bioherbicides. While recent reviews have primarily focused on bioherbicides derived from microorganisms, a notable gap remains regarding the production and application of bioherbicides based on plant extracts. This review addresses this gap by summarizing current knowledge on the use of plant extracts for weed control in corn and bean cultivation. It discusses extraction methods, key plant species and active compounds, target weed species, herbicidal effects, modes of action, and patented technologies. Promising plants include Cuscuta campestris, Cymbopogon citratus, Mentha spp., Eucalyptus spp., and Pinus spp., which are rich in bioactive compounds such as phenolics (i.e., flavonoids), quinones, aldehydes and ketones, lactones, terpenoids (i.e., 8-cineole), and steroids. Plant extract-based bioherbicides show promising potential as sustainable and effective alternatives for weed management in organic agriculture, contributing to reducing the synthetic chemical herbicides, avoiding more resistances of weeds resistance of control, and promoting more environmentally friendly agricultural practices. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

16 pages, 1384 KB  
Article
Water Residues from Rosemary Essential Oil Production: Transforming Waste into a Potential Bioherbicide
by Federico Leoni, Francesco Nigro, Celia Duce, José González-Rivera, Marco Mattonai, Erika Ribechini, Paolo Bàrberi and Stefano Carlesi
Plants 2025, 14(17), 2717; https://doi.org/10.3390/plants14172717 - 1 Sep 2025
Viewed by 204
Abstract
Transforming industrial by-products into new resources is a fundamental principle of sustainable agriculture and circular bioeconomy. Waste products from rosemary (Rosmarinus officinalis L.) essential oil extraction, such as exhausted biomass and water residues (WRs), are rich in bioactive compounds like phenols and [...] Read more.
Transforming industrial by-products into new resources is a fundamental principle of sustainable agriculture and circular bioeconomy. Waste products from rosemary (Rosmarinus officinalis L.) essential oil extraction, such as exhausted biomass and water residues (WRs), are rich in bioactive compounds like phenols and terpenes. These by-products may represent a promising and economically viable option for agricultural management, particularly in weed control. This study evaluates the potential use of WR as a bioherbicide. In vitro experiments were conducted to assess the inhibitory effects of WR on the germination and seedling morphology (root and shoot development) of four detrimental weed species for temperate cropping systems: two monocotyledonous (Alopecurus myosuroides and Lolium multiflorum) and two dicotyledonous (Sinapis alba and Amaranthus retroflexus). WR was tested at four concentrations (0, 25, 50, and 100), corresponding to an increasing gradient of WR, with 100 representing pure WR. The results showed that WR did not significantly inhibit germination in A. myosuroides, L. multiflorum and S. alba, whereas A. retroflexus exhibited a dose-dependent inhibition, with germination reduced by 37.5%, 64.5%, and 91.6% at doses of 25, 50, and 100, respectively, compared with the control (dose 0). Furthermore, germination delays were observed across all tested species with promising application of WR for regulating weed–crop competitive interactions in the early crop growth stages. Results on the morphological traits of weed seedlings showed that WR application affected root more than shoot growth inhibition. In particular, WR demonstrated a pronounced root inhibitory effect in A. myosuroides, L. multiflorum, and A. retroflexus. In contrast, a dose-dependent increase in root length was observed for S. alba (21.41 mm at dose 0 and 25.77 mm, 30.97 mm and 35.96 mm, respectively, at doses 25, 50, and 100). The results of this study highlight the potential application of WR as a sustainable solution to be included in an integrated weed management (IWM) toolbox and underscore their role in promoting the valorization of waste from essential oil production. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 2195 KB  
Article
Biofertilizer and Bioherbicide Potential of Microalgae-Based Wastewater and Diplotaxis harra Boiss for Sustainable Barley Production
by Ghofrane Jmii, Chema Keffala, Jesús G. Zorrilla, Fouad Zouhir, Hugues Jupsin, Ameni Mokhtar and Bernard Tychon
Agronomy 2025, 15(9), 2020; https://doi.org/10.3390/agronomy15092020 - 22 Aug 2025
Viewed by 646
Abstract
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex [...] Read more.
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex spinosa (L.) Campd., along with the effects of algal biomass (primarily composed of Closterium, Chlorella, and Scenedesmus spp.) and Diplotaxis harra leaf powder. Initial pot trials applied microalgae and D. harra at 2, 4, and 6 g·kg−1 soil, also confirming that the treated wastewater met reuse standards and did not affect plant growth. The combined treatment at 4 g·kg−1 led to the highest H. vulgare increases in fresh weight (162.71%), root length (73.75%), and shoot length (72.87%), while reducing E. spinosa shoot and root lengths by 30.79% and 52.18%, and fresh weight by 68.24%. Subsequent field experiments using 1.26 t ha−1 of 0.5-cm-applied D. harra and microalgae powders enhanced H. vulgare growth, while reducing the growth of E. spinosa. The reduction in E. spinosa growth was associated with increased electrolyte leakage and malondialdehyde content. These results support the integration of high-rate algal ponds into agriculture, promoting water reuse and reducing reliance on synthetic fertilizers and herbicides in barley production. Full article
(This article belongs to the Special Issue Natural Products in Crop Diseases Control)
Show Figures

Figure 1

48 pages, 3314 KB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 - 1 Aug 2025
Viewed by 494
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

15 pages, 1445 KB  
Article
Gas Chromatography–Mass Spectrometry Analysis of Artemisia judaica Methanolic Extract: Chemical Composition, Radical Scavenging Potential, Bioherbicidal Activity, and Dengue Vector Control
by Naimah Asid H. Alanazi, Amani Alhejely, Sultan Mohammed Areshi, Hanan K. Alghibiwi, Samiah A. Alhabardi, Mohammed A. Akeel, Amal Naif Alshammari, Sarah Mohammed Alrajeh, Gadah A. Al-Hamoud and Salama A. Salama
Int. J. Mol. Sci. 2025, 26(15), 7355; https://doi.org/10.3390/ijms26157355 - 30 Jul 2025
Viewed by 444
Abstract
Today’s primary challenges include identifying efficient, affordable, and environmentally sustainable substances to serve as raw materials in industrial, agricultural, and medicinal applications. This study aimed to evaluate the chemical composition and biological properties (namely antioxidant and allelopathic activities) of the methanolic extract derived [...] Read more.
Today’s primary challenges include identifying efficient, affordable, and environmentally sustainable substances to serve as raw materials in industrial, agricultural, and medicinal applications. This study aimed to evaluate the chemical composition and biological properties (namely antioxidant and allelopathic activities) of the methanolic extract derived from the above-ground portions of Artemisia judaica collected in Jazan, Saudi Arabia. GC-MS was used to evaluate the chemical composition of the methanolic extract derived from Artemisia judaica. GC-MS analysis revealed a total of 22 volatile compounds in the extract. The most prominent compounds identified were 2-ethylhexanoic acid, 5-hydroxy-6-(1-hydroxyethyl)-2,7-dimethoxynaphtho-quinone, and piperitone. The extract demonstrated strong antioxidant activity in both the DPPH and ABTS radical scavenging assays, comparable to the standard antioxidant ascorbic acid. The IC50 value for the extract was 31.82 mg/mL in the DPPH assay and 39.93 mg/mL in the ABTS testing. Additionally, the extract exhibited dose-dependent inhibition of seed germination, root growth, and shoot growth of the weed Chenopodium murale in allelopathic bioassays. The most significant suppression was observed in shoot growth with an IC50 value of 45.90 mg/mL, which was lower than the IC50 values for root development and seed germination of C. murale, recorded at 56.16 mg/mL and 88.80 mg/mL, respectively. Furthermore, the findings indicated that methanolic extracts had significant lethal toxic effects on the life cycle of Aedes aegypti. Future research will focus on extracting uncontaminated substances and evaluating the biological effects of each specific constituent. Full article
Show Figures

Figure 1

28 pages, 2736 KB  
Article
Bioherbicidal Evaluation of Methanol Extract of Sorghum halepense L. Rhizome and Its Bioactive Components Against Selected Weed Species
by Jasmina Nestorović Živković, Milica Simonović, Danijela Mišić, Marija Nešić, Vladan Jovanović, Uroš Gašić, Ivana Bjedov and Slavica Dmitrović
Molecules 2025, 30(15), 3060; https://doi.org/10.3390/molecules30153060 - 22 Jul 2025
Viewed by 934
Abstract
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic [...] Read more.
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic technology and explores the effects of a methanol extract of S. halepense rhizomes (ShER) and its major bioactive compounds (p-hydroxybenzoic acid and chlorogenic acid) on three noxious weed species. The phytotoxic effects of ShER are reflected through the inhibition of seed germination and reduced seedling growth, which are accompanied by changes in the antioxidant system of seedlings. Phytotoxicity is species specific and concentration dependent, and it is more pronounced against Chenopodiastrum murale (L.) S. Fuentes, Uotila & Borsch and Datura stramonium L. than highly tolerant Amaranthus retroflexus L. Catalase (CAT) is most likely the major mediator in the removal of reactive oxygen species, which are generated during germination and early seedling growth of Ch. murale exposed to ShER. The results of the present study imply the high potential of ShER in the management of amaranthaceous and solanaceous weeds, such as Ch. murale and D. stramonium, respectively. The present study offers an environmentally friendly solution for the biological control of weeds belonging to the families Amaranthaceae and Solanaceae. Also, the results of this research highlight the possibility of effective management of S. halepense by using it as a feedstock for bioherbicide production. Full article
Show Figures

Figure 1

17 pages, 2284 KB  
Article
Herbicidal Activity of Baccharis trimera Extract on Oryza sativa L. and Cyperus ferax
by Aline Mazoy Lopes, Lucas Kila Ribeiro, Maurício Ricardo de Melo Cogo, Lucas Mironuk Frescura, Marcelo Barcellos da Rosa, Alex Schulz, Ederson Rossi Abaide, Marcus Vinícius Tres and Giovani Leone Zabot
Agriculture 2025, 15(13), 1431; https://doi.org/10.3390/agriculture15131431 - 3 Jul 2025
Viewed by 447
Abstract
This study evaluated the application of the aqueous extract from Baccharis trimera (Less) DC. in the control of weed species Oryza sativa L. and Cyperus ferax Rich. during the germination and early development stages. Extracts were obtained through pressurized liquid extraction using kinetic [...] Read more.
This study evaluated the application of the aqueous extract from Baccharis trimera (Less) DC. in the control of weed species Oryza sativa L. and Cyperus ferax Rich. during the germination and early development stages. Extracts were obtained through pressurized liquid extraction using kinetic assays. Shorter extraction times (1 to 10 min) showed extracts with higher inhibitory effects on seed germination, shoot and root lengths, and fresh and dry mass of the plants. The survival of treated plants was also affected, especially during the early stages of development, reaching up to 40% of mortality. HPLC analysis identified phenolic compounds such as ferulic acid, rutin, quercitrin, and quercetin, with higher concentrations found in the extracts obtained at shorter times of extraction. The reduction in these compounds over longer extraction times was correlated with decreased inhibitory activity. The results indicate that the aqueous extract of B. trimera (Less) DC. holds potential for ecological weed management, standing out as a viable alternative to reduce weed resistance to synthetic herbicides. Full article
(This article belongs to the Special Issue Preparation, Function and Application of Agrochemicals)
Show Figures

Figure 1

15 pages, 9151 KB  
Article
Study of the Herbicidal Potential and Infestation Mechanism of Fusarium oxysporum JZ-5 on Six Broadleaved Weeds
by Suifang Zhang, Haixia Zhu, Yongqiang Ma and Liang Cheng
Microorganisms 2025, 13(7), 1541; https://doi.org/10.3390/microorganisms13071541 - 30 Jun 2025
Viewed by 358
Abstract
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally [...] Read more.
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally friendly characteristics has become a crucial research direction for sustainable agriculture. This study aimed to develop a fungal bioherbicide by isolating and purifying a pathogenic fungal strain (JZ-5) from infected redroot pigweed (Amaranthus retroflexus L.). The strain exhibited pathogenicity rates ranging from 23.46% to 86.25% against six weed species, with the most pronounced control efficacy observed against henbit deadnettle (Lamium amplexicaule L.), achieving a pathogenicity rate of 86.25%. Through comprehensive characterization of cultural features, morphological observations, and molecular biological identification, the strain was taxonomically classified as Fusarium oxysporum. Scanning electron microscopy revealed that seven days post-inoculation, F. oxysporum JZ-5 formed dense mycelial networks on the leaf surfaces of cluster mallow (Malva verticillata L.), causing severe tissue damage. Safety assessments demonstrated that the spore suspension (104 spores/mL) had no adverse effects on three crops: hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). These findings suggest that F. oxysporum strain JZ-5 warrants further investigation as a potential bioherbicide for controlling three problematic weed species—Chenopodium album L. (common lambsquarters), Elsholtzia densa Benth. (dense-flowered elsholtzia), and Lamium amplexicaule L. (henbit deadnettle)—in cultivated fields of hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). This discovery provides valuable fungal resources for ecologically sustainable weed management strategies, contributing significantly to the advancement of sustainable agricultural practices. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions—3rd Edition)
Show Figures

Figure 1

16 pages, 2144 KB  
Article
Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture
by José Humberto Sánchez-Robles, Ana G. Reyes, Leopoldo J. Ríos-González, Elan I. Laredo-Alcalá, Marisol Cruz-Requena, Roberto Arredondo-Valdés, Thelma K. Morales-Martínez and Miguel A. Medina-Morales
Processes 2025, 13(7), 2064; https://doi.org/10.3390/pr13072064 - 30 Jun 2025
Viewed by 537
Abstract
Biopesticides represent a safe and sustainable strategy for biological pest management, applicable to weed and fungal control. Biotechnological processing offers a promising approach to enhance the bioactivity of natural products for agricultural use. In this study, guishe juice, an agroindustrial residue derived from [...] Read more.
Biopesticides represent a safe and sustainable strategy for biological pest management, applicable to weed and fungal control. Biotechnological processing offers a promising approach to enhance the bioactivity of natural products for agricultural use. In this study, guishe juice, an agroindustrial residue derived from Agave lechuguilla, was bioprocessed via inoculation with Fusarium chlamydosporum, and its fungicidal and herbicidal potentials were evaluated. The fungal biotransformation led to the accumulation of phytochemicals, including flavonoids and polyphenols, significantly enhancing antioxidant activity to 76% and 96% as measured by DPPH and ABTS assays, respectively. The resulting bioprocessed guishe extract (BGE), particularly at 10% concentration (BGE-10), exhibited strong fungicidal activity, achieving 100% control of phytopathogenic fungi Fusarium spp. and Penicillium spp. Additionally, BGE-10 demonstrated a bioherbicidal effect, with a 77% weed control rate against Verbesina encelioides. These findings emphasize the potential of bioprocessed agave residues as dual-action bioagents, supporting the development of novel, eco-friendly agricultural solutions. Full article
Show Figures

Figure 1

13 pages, 2967 KB  
Article
Production, Purification, and Application of a Biomolecule with Herbicidal Activity Produced by Fusarium fujikuroi in Submerged Cultivation
by Silvana Schmaltz, Clair Walker, Keli Souza da Silva, Renata Gulart Ninaus, Cláudia Braga Dutra, Luiza Andrea Schmidt, Gilson Zeni and Marcio Antonio Mazutti
Fermentation 2025, 11(7), 375; https://doi.org/10.3390/fermentation11070375 - 29 Jun 2025
Viewed by 450
Abstract
This study investigated the production, purification, and evaluation of a microbial metabolite with herbicidal activity produced by Fusarium fujikuroi via submerged fermentation. The purified compound (PC) was obtained through organic solvent extraction and chromatographic purification, and assessed in bioassays using Raphanus sativus and [...] Read more.
This study investigated the production, purification, and evaluation of a microbial metabolite with herbicidal activity produced by Fusarium fujikuroi via submerged fermentation. The purified compound (PC) was obtained through organic solvent extraction and chromatographic purification, and assessed in bioassays using Raphanus sativus and Triticum aestivum as bioindicator plants. A concentration of 23 mg mL−1 completely inhibited seed germination in 96-well plate assays, while the crude extract (EXT) and cell-free broth (CFB) allowed radicle protrusion but resulted in abnormal seedlings with chlorosis and reduced growth. Mathematical models estimated that concentrations of 16.0 mg mL−1 for radish and 0.9 mg mL−1 for wheat were sufficient to suppress germination with the PC. In substrate experiments, the PC at 6.4 and 64.0 mg mL−1 did not inhibit germination but caused anomalies in radish and significantly reduced wheat seedling growth. In naturally infested soil, the PC maintained phytotoxicity symptoms for 21 days, and after 28 days, a concentration of 64.0 mg mL−1 significantly reduced radish seedling growth. The results highlight the potential of the compound as a bioherbicide. Full article
Show Figures

Figure 1

26 pages, 12189 KB  
Article
Acorus calamus L. Essential Oil Induces Oxidative Stress and DNA Replication Disruptions in Root Meristem Cells of Two Fabaceae and Two Brassicaceae Species
by Mateusz Wróblewski, Konrad Krajewski, Natalia Gocek, Aneta Żabka and Justyna T. Polit
Int. J. Mol. Sci. 2025, 26(10), 4715; https://doi.org/10.3390/ijms26104715 - 14 May 2025
Viewed by 717
Abstract
Environmental concerns regarding synthetic herbicides have sparked interest in plant-derived bioactive compounds as eco-friendly alternatives. This study investigated the cellular targets of sweet flag essential oil (Acorus calamus L., SEO at IC50 concentration) in root meristem cells of Fabaceae (Vicia [...] Read more.
Environmental concerns regarding synthetic herbicides have sparked interest in plant-derived bioactive compounds as eco-friendly alternatives. This study investigated the cellular targets of sweet flag essential oil (Acorus calamus L., SEO at IC50 concentration) in root meristem cells of Fabaceae (Vicia faba, Lupinus luteus) and Brassicaceae (Brassica napus, Arabidopsis thaliana), focusing on reactive oxygen species (ROS) accumulation (DAB, NBT staining), DNA replication dynamics (EdU labeling), and genome integrity (γ-H2AX immunocytochemistry, TUNEL assay, and DNA electrophoresis). SEO induced oxidative stress (200–250% of control depending on the species) and replication stress, causing DNA double-strand breaks in 50% of proliferating cells, confirmed by γ-H2AX/TUNEL. Consequently, cells were prolonged in the G1 phase, replication activity dropped to 70% of control in Fabaceae and 80% in Brassicaceae, and EdU incorporation intensity decreased to 80% and 70% of control, respectively. An increased proportion of cells replicating heterochromatin indicated slowed S-phase progression. Despite genotoxic effects, SEO did not trigger endoreplication, apoptotic DNA fragmentation, or extensive cell death. All species exhibited a uniform stress response, although sensitivity varied, which previously enabled the establishment of selective SEO doses between Fabaceae and Brassicaceae. These findings suggest that SEO exerts phytotoxicity by disrupting S-phase progression, supporting its potential as a selective bioherbicide. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 1653 KB  
Article
Isolation of Metabolites Produced by Phoma dimorpha Under Submerged Fermentation and Its Evaluation as a Bioherbicide
by Silvana Schmaltz, Clair Walker, Keli Souza da Silva, Renata Gulart Ninaus, Carolina Poletto Zamin, Gilson Zeni and Marcio A. Mazutti
Processes 2025, 13(5), 1488; https://doi.org/10.3390/pr13051488 - 13 May 2025
Viewed by 430
Abstract
Weeds are a significant challenge to global agricultural production, significantly impacting crop yields. The evolution of resistance to synthetic herbicides, along with their adverse environmental effects, underscores the need for alternative control strategies. This study reports the production, purification, and evaluation of the [...] Read more.
Weeds are a significant challenge to global agricultural production, significantly impacting crop yields. The evolution of resistance to synthetic herbicides, along with their adverse environmental effects, underscores the need for alternative control strategies. This study reports the production, purification, and evaluation of the herbicidal activity of a metabolite produced by Phoma dimorpha (NRRL 43879) via submerged fermentation. To the best of our knowledge, this is the first report on the evaluation of the herbicidal potential of metabolites isolated from the cultivation of this microorganism. Metabolites extracted with ethyl acetate were fractionated into three fractions, with only one showing herbicidal activity. Fraction 1 controlled 96.25% of Amaranthus retroflexus plants in a leaf puncture bioassay at 2 mg mL−1 and 96.67% when applied to the aerial parts at 600 µg mL−1 with 0.1% Tween 80. The purified compound was also tested on Raphanus sativus seed germination, reducing rates by 80% and 26% at 24.5 mg mL−1 and 12.25 mg mL−1, respectively. Seedling length decreased by 80% and 31% under the same treatments. These results highlight the potential of this metabolite as a sustainable alternative for weed management, supporting the development of novel bioherbicides. Full article
Show Figures

Figure 1

14 pages, 606 KB  
Article
Toxicity Assessment of (4Z)-Lachnophyllum and (4Z,8Z)-Matricaria Lactones: Implications for Environmental Safety of Bioherbicides
by Edith Guadalupe Padilla Suarez, Jesús G. Zorrilla, Marisa Spampinato, Teresa Pannullo, Francesca Esposito, Mónica Fernández-Aparicio, Giovanni Libralato, Antonietta Siciliano, Marco Masi and Alessio Cimmino
Toxins 2025, 17(4), 169; https://doi.org/10.3390/toxins17040169 - 1 Apr 2025
Viewed by 661
Abstract
(4Z,8Z)-Matricaria lactone (MAT) and (4Z)-lachnophyllum lactone (LAC) are natural acetylenic furanones with bioherbicidal potential. This study evaluates their possibilities and ecotoxicological impact on aquatic (Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna) and terrestrial [...] Read more.
(4Z,8Z)-Matricaria lactone (MAT) and (4Z)-lachnophyllum lactone (LAC) are natural acetylenic furanones with bioherbicidal potential. This study evaluates their possibilities and ecotoxicological impact on aquatic (Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna) and terrestrial (Caenorhabditis elegans, Lepidum sativum) model organisms. MAT exhibited rapid degradation, with 90% decomposition within 24 h and over 98% by day 16, while LAC was more stable, degrading by only 8.5% in 24 h and 67% by day 16. Despite its rapid breakdown, MAT exhibited higher acute toxicity to A. fischeri (EC10 = 0.063 mg L−1; EC50 = 0.642 mg L−1) compared to LAC (EC10 = 0.524 mg L−1; EC50 = 8.078 mg L−1). Toxicity patterns in R. subcapitata differed, with MAT promoting slightly higher growth compared to the control, suggesting hormetic effects (EC10 = 3.417 mg L−1; EC50 = 4.520 mg L−1), while LAC inhibited growth concentration (EC10 = 0.304 mg L−1; EC50 = 9.880 mg L−1). Both compounds immobilized D. magna, with LAC showing greater delayed toxicity (EC50 = 1.728 mg L−1 vs. MAT EC50 = 2.239 mg L−1). Furthermore, for L. sativum, there were no effects on the germination, but effects were observed in the lengths of the shoots (LAC EC50 = 85.89 mg L−1 vs. MAT EC50 = 82.30 mg L−1). In contrast, C. elegans showed no mortality, suggesting lower terrestrial toxicity. These findings suggest that MAT and LAC may pose risks to aquatic ecosystems through runoff or leaching, necessitating further studies on their degradation products, soil microbiota, and non-target terrestrial organisms. Comparative analyses with conventional herbicides highlight MAT and LAC as selective, lower-impact alternatives. Future research should focus on their effects on terrestrial organisms, the ecological safety of degradation products, and large-scale bioassays to ensure their sustainability in agriculture. Full article
Show Figures

Figure 1

16 pages, 1565 KB  
Article
Phytochemicals from Eucalyptus camaldulensis and Coleus barbatus Control Eragrostis plana in Horticulture
by Bianca Motta Dolianitis, Renan Pfeifenberg, Viviane Dal-Souto Frescura, Marcus Vinícius Tres and Giovani Leone Zabot
Horticulturae 2025, 11(3), 291; https://doi.org/10.3390/horticulturae11030291 - 7 Mar 2025
Cited by 2 | Viewed by 892
Abstract
Eragrostis plana is an invasive plant in horticulture that is extremely difficult to control. The use of chemical herbicides causes weed resistance and contamination of crops. Therefore, leaf extracts obtained from E. camaldulensis, C. barbatus, and L. leucocephala were evaluated in [...] Read more.
Eragrostis plana is an invasive plant in horticulture that is extremely difficult to control. The use of chemical herbicides causes weed resistance and contamination of crops. Therefore, leaf extracts obtained from E. camaldulensis, C. barbatus, and L. leucocephala were evaluated in the control of this weed. The extracts were obtained from leaves by infusion, pressurized liquid extraction, and ultrasound-assisted extraction using water or ethanol as solvents, which are green methods. The phytochemicals from E. camaldulensis and C. barbatus reduced the germination and growth of the weed, reaching up to 97% inhibition of germination, 52% reduction in shoot length, and 46% reduction in root length for the germinated seeds. Full article
(This article belongs to the Special Issue Phytochemicals and Their Applications in Horticulture Production)
Show Figures

Graphical abstract

56 pages, 4659 KB  
Review
Via Air or Rhizosphere: The Phytotoxicity of Nepeta Essential Oils and Malus Dihydrochalcones
by Slavica Dmitrović, Jasmina Nestorović Živković, Dijana Smailagić, Milena Trajković, Nevena Banjac, Slavica Ninković and Mariana Stanišić
Plants 2025, 14(5), 701; https://doi.org/10.3390/plants14050701 - 25 Feb 2025
Cited by 1 | Viewed by 1551
Abstract
Many specialized metabolites found in plants have significant potential for developing environmentally friendly weed management solutions. This review focuses on the phytotoxic effects of volatile terpenes and phenolic compounds, particularly nepetalactone, an iridoid monoterpenoid from Nepeta species, and phloretin, a dihydrochalcone predominantly found [...] Read more.
Many specialized metabolites found in plants have significant potential for developing environmentally friendly weed management solutions. This review focuses on the phytotoxic effects of volatile terpenes and phenolic compounds, particularly nepetalactone, an iridoid monoterpenoid from Nepeta species, and phloretin, a dihydrochalcone predominantly found in the genus Malus. We highlight current findings on their herbicidal effects, including morphological, physiological, and biochemical responses in target plants. These results underscore their potential for developing sustainable herbicides that could control weeds with minimal environmental impact. We also discuss their soil persistence and methods to enhance their solubility, chemical stability, and bioavailability. Additionally, the possible effects on non-target organisms, such as pollinators, non-pollinating insects, and soil microbiota, are considered. However, further research and a deeper understanding of their long-term ecological impact, along with a resistance development risk assessment, is essential for the potential development of bioherbicides that could be applied in sustainable weed management practices. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

Back to TopTop