Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = biotic and abiotic interrelations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1994 KB  
Review
Integration of Plant Electrophysiology and Time-Lapse Video Analysis via Artificial Intelligence for the Advancement of Precision Agriculture
by Maria Stolarz
Sustainability 2025, 17(12), 5614; https://doi.org/10.3390/su17125614 - 18 Jun 2025
Cited by 2 | Viewed by 1491
Abstract
Biological research and agriculture are increasingly benefiting from the use of artificial intelligence algorithms, which are becoming integral to various areas of human activity. Fundamental knowledge of the mechanisms of plant germination, growth/development, and reproduction is the basis for plant cultivation. Plants provide [...] Read more.
Biological research and agriculture are increasingly benefiting from the use of artificial intelligence algorithms, which are becoming integral to various areas of human activity. Fundamental knowledge of the mechanisms of plant germination, growth/development, and reproduction is the basis for plant cultivation. Plants provide food and valuable biochemicals and are an important element of a sustainable natural environment. An interdisciplinary approach involving basic science (biology and informatics), technology (artificial intelligence), and farming practice can contribute to the development of precision agriculture, which in turn increases crop and food production. Nowadays, a progressive elucidation of the mechanisms of plant growth/development involves studies of interrelations between electrical phenomena occurring inside plants and movements of plant organs. Recently, there have been increasing numbers of reports on methods for classifying plant electrograms using statistical and artificial intelligence algorithms. Artificial intelligence procedures can identify diverse electrical signals—signatures associated with specific environmental abiotic and biotic factors or stresses. At the same time, a growing body of research shows methods of precise and fast analysis of time-lapse videos via automated image analysis and artificial intelligence to study the movement and growth/development of plants. In both research fields, scientists introduce modern and promising methods of studying plant growth/development. Such basic research along with technological innovations will contribute to the development of precision agriculture and an increase in yields and production of healthier food in future. Full article
Show Figures

Figure 1

37 pages, 504 KB  
Review
Adaptation of Agriculture to Climate Change: A Scoping Review
by Elena Grigorieva, Alexandra Livenets and Elena Stelmakh
Climate 2023, 11(10), 202; https://doi.org/10.3390/cli11100202 - 6 Oct 2023
Cited by 129 | Viewed by 54926
Abstract
Since agricultural productivity is weather and climate-related and fundamentally depends on climate stability, climate change poses many diverse challenges to agricultural activities. The objective of this study is to review adaptation strategies and interventions in countries around the world proposed for implementation to [...] Read more.
Since agricultural productivity is weather and climate-related and fundamentally depends on climate stability, climate change poses many diverse challenges to agricultural activities. The objective of this study is to review adaptation strategies and interventions in countries around the world proposed for implementation to reduce the impact of climate change on agricultural development and production at various spatial scales. A literature search was conducted in June–August 2023 using electronic databases Google Scholar and Scientific Electronic Library eLibrary.RU, seeking the key words “climate”, “climate change”, and “agriculture adaptation”. Sixty-five studies were identified and selected for the review. The negative impacts of climate change are expressed in terms of reduced crop yields and crop area, impacts on biotic and abiotic factors, economic losses, increased labor, and equipment costs. Strategies and actions for agricultural adaptation that can be emphasized at local and regional levels are: crop varieties and management, including land use change and innovative breeding techniques; water and soil management, including agronomic practices; farmer training and knowledge transfer; at regional and national levels: financial schemes, insurance, migration, and culture; agricultural and meteorological services; and R&D, including the development of early warning systems. Adaptation strategies depend on the local context, region, or country; limiting the discussion of options and measures to only one type of approach—"top-down” or “bottom-up”—may lead to unsatisfactory solutions for those areas most affected by climate change but with few resources to adapt to it. Biodiversity-based, or “ecologically intensive” agriculture, and climate-smart agriculture are low-impact strategies with strong ecological modernization of agriculture, aiming to sustainably increase agricultural productivity and incomes while addressing the interrelated challenges of climate change and food security. Some adaptation measures taken in response to climate change may not be sufficient and may even increase vulnerability to climate change. Future research should focus on adaptation options to explore the readiness of farmers and society to adopt new adaptation strategies and the constraints they face, as well as the main factors affecting them, in order to detect maladaptation before it occurs. Full article
(This article belongs to the Special Issue Climate Adaptation Ways for Smallholder Farmers)
22 pages, 3469 KB  
Article
Abiotic–Biotic Interrelations in the Context of Stabilized Ecological Potential of Post-Mining Waters
by Agnieszka Napiórkowska-Krzebietke, Andrzej R. Skrzypczak and Alicja Kicińska
Water 2023, 15(19), 3328; https://doi.org/10.3390/w15193328 - 22 Sep 2023
Cited by 2 | Viewed by 1667
Abstract
The creation of man-made reservoirs has become more common globally and provides many important technical, biological, and socio-economic functions. The study focused on abiotic–biotic and trophic interrelations responsible for ecological potential and biodiversity in potentially stabilized conditions of the aquatic ecosystem. Therefore, the [...] Read more.
The creation of man-made reservoirs has become more common globally and provides many important technical, biological, and socio-economic functions. The study focused on abiotic–biotic and trophic interrelations responsible for ecological potential and biodiversity in potentially stabilized conditions of the aquatic ecosystem. Therefore, the analyses concerned 2014–2015 and 2018–2019, assuming repeatable hydrochemical conditions, in three chambers (C1–C3) of the Kamień sedimentation pond supplied through opencast mine drainage. The studies indicated eutrophic levels and at least good ecological potential. Phytoplankton were quite abundant at an average biomass of 10.0 mg L−1, while zooplankton and planktivorous fish were estimated at 0.51 mg L−1 and 74.3 g m−2, respectively The general order of the growth level in chambers was C-1 > C-2 > C-3, C-1 < C-2 < C-3, and C-1 < C-3 < C-2 for phytoplankton, zooplankton, and planktivorous fish, respectively, and indicated clear differences. Both mechanisms of the top-down and bottom-up effects were revealed in all chambers. Some significant differences between abiotic and biotic (i.e., fish density and biomass, phytoplankton density) factors were recorded on a temporal scale, whereas the density and biomass of planktivorous fish were significantly differentiated on a spatial scale. The stabilized conditions concerned relatively high biodiversity but quite abundant phytoplankton and lower zooplankton abundances, trophic efficiency, and eutrophy under the maximum ecological potential. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

37 pages, 2247 KB  
Review
Wetland Removal Mechanisms for Emerging Contaminants
by Olivia Celeste Overton, Leif Hans Olson, Sreemala Das Majumder, Hani Shwiyyat, Mary Elizabeth Foltz and Robert William Nairn
Land 2023, 12(2), 472; https://doi.org/10.3390/land12020472 - 14 Feb 2023
Cited by 22 | Viewed by 9097
Abstract
In recent decades, previously unobserved trace compounds have become more widely detected in wastewater treatment effluents and freshwater ecosystems. Emanating from various sources and presenting potential human health and ecological risks at much lesser concentrations than traditional contaminants, detection of “emerging contaminants” has [...] Read more.
In recent decades, previously unobserved trace compounds have become more widely detected in wastewater treatment effluents and freshwater ecosystems. Emanating from various sources and presenting potential human health and ecological risks at much lesser concentrations than traditional contaminants, detection of “emerging contaminants” has increased with improvements in analytical techniques. The behavior of emerging contaminants in wetlands is a topic of increasing interest, as natural wetlands are known to transform and sequester pollutants and constructed or treatment wetlands are widely utilized to address elevated concentrations of constituents of concern. Both natural and constructed wetlands are complex biogeochemical systems with interrelated abiotic and biotic mechanisms leading to the removal of emerging contaminants. A literature review was performed to assess the current state of knowledge of various wetland mechanisms involved in removing these contaminants from surface waters and effluents. The primary mechanisms discussed in the literature are sorption, photodegradation, microbial biodegradation and phytoremediation. The most influential mechanisms are dependent on the properties of the contaminants and wetland systems studied. Common trends exist for different constructed wetland designs to leverage various mechanisms based on hydrology, substrate and vegetation plantings. Much remains to be understood about the various processes occurring in wetlands as they relate to emerging contaminant removal. Improving the understanding of the potential role of wetland mechanisms can help manage this environmental challenge more effectively. Full article
(This article belongs to the Special Issue Wetland Construction and Restoration: Design and Performance)
Show Figures

Figure 1

21 pages, 2509 KB  
Review
Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture
by Aimen Razzaq Khan, Adeena Mustafa, Sajjad Hyder, Mohammad Valipour, Zarrin Fatima Rizvi, Amjad Shahzad Gondal, Zubaida Yousuf, Rashid Iqbal and Umar Daraz
Biology 2022, 11(12), 1763; https://doi.org/10.3390/biology11121763 - 5 Dec 2022
Cited by 97 | Viewed by 10166
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, [...] Read more.
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

6 pages, 227 KB  
Editorial
Plant Responses to Biotic and Abiotic Stresses: Crosstalk between Biochemistry and Ecophysiology
by Muhammad Iftikhar Hussain, Adele Muscolo and Mukhtar Ahmed
Plants 2022, 11(23), 3294; https://doi.org/10.3390/plants11233294 - 29 Nov 2022
Cited by 5 | Viewed by 2270
Abstract
Biotic and abiotic stresses, such as drought, salinity, extreme temperatures (cold and heat) and oxidative stress, are often interrelated; these conditions singularly or in combination induce cellular damage [...] Full article
13 pages, 1621 KB  
Opinion
One Health Approach to Identify Research Needs on Rhipicephalus microplus Ticks in the Americas
by Agustín Estrada-Peña, Alina Rodríguez Mallón, Sergio Bermúdez, José de la Fuente, Ana Domingos, Mario Pablo Estrada García, Marcelo B. Labruna, Octavio Merino, Juan Mosqueda, Santiago Nava, Ricardo Lleonart Cruz, Matías Szabó, Evelina Tarragona and José M. Venzal
Pathogens 2022, 11(10), 1180; https://doi.org/10.3390/pathogens11101180 - 13 Oct 2022
Cited by 22 | Viewed by 5211
Abstract
We aim to provide a harmonized view of the factors that affect the survival and promote the spread of R. microplus in the Neotropics, approaching its different facets of biology, ecology, distribution, and control. We review the interactions among environmental niche, landscape fragmentation, [...] Read more.
We aim to provide a harmonized view of the factors that affect the survival and promote the spread of R. microplus in the Neotropics, approaching its different facets of biology, ecology, distribution, and control. We review the interactions among environmental niche, landscape fragmentation, vegetal coverage (abiotic traits), and the biotic aspects of its ecology (abundance of domesticated or wild competent hosts), proposing emerging areas of research. We emphasize a holistic view integrating an economically and ecologically sustainable control of infestations and transmitted pathogens by R. microplus in the Neotropics. Examples of research link the trends of climate, the composition of the community of hosts, the landscape features, and a tailored management based on ecological grounds. Our view is that factors driving the spread of R. microplus are complex and deeply interrelated, something that has been seldom considered in control strategies. The effects of climate may affect the dynamics of wildlife or the landscape composition, promoting new patterns of seasonal activity of the tick, or its spread into currently free areas. In this paper we encourage a One Health approach highlighting the main aspects governing the components of the tick’s life cycle and its interactions with livestock and wild animals. Full article
Show Figures

Graphical abstract

17 pages, 3329 KB  
Article
Expression Profiles and Characteristics of Apple lncRNAs in Roots, Phloem, Leaves, Flowers, and Fruit
by Dajiang Wang, Yuan Gao, Simiao Sun, Lianwen Li and Kun Wang
Int. J. Mol. Sci. 2022, 23(11), 5931; https://doi.org/10.3390/ijms23115931 - 25 May 2022
Cited by 9 | Viewed by 2799
Abstract
LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs’s roles in different tissues of apple are unknown. We [...] Read more.
LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs’s roles in different tissues of apple are unknown. We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers, and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were obtained. LncRNA target prediction revealed 10,628 potential lncRNA–messenger RNA (mRNA) pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs (miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified. MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs (ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in the fruit by working with miRNAs. A further analysis showed that different tissues formed special lncRNA–miRNA–mRNA networks. MSTRG.60895.2–mdm-miR393–MD17G1009000 may participate in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential functions for lncRNAs, corresponding target genes, and related lncRNA–miRNA–mRNA networks, which will increase our knowledge of the underlying development mechanism in apple. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs in the Era of Biological Big Data)
Show Figures

Figure 1

23 pages, 2695 KB  
Review
Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies
by María Roca and Antonio Pérez-Gálvez
Antioxidants 2021, 10(10), 1622; https://doi.org/10.3390/antiox10101622 - 15 Oct 2021
Cited by 19 | Viewed by 5204
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis [...] Read more.
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms. Full article
Show Figures

Figure 1

16 pages, 1286 KB  
Article
Correlations of Soil Fungi, Soil Structure and Tree Vigour on an Apple Orchard with Replant Soil
by Ulrike Cavael, Philipp Tost, Katharina Diehl, Frederick Büks and Peter Lentzsch
Soil Syst. 2020, 4(4), 70; https://doi.org/10.3390/soilsystems4040070 - 3 Dec 2020
Cited by 8 | Viewed by 3588
Abstract
The soil-borne apple replant disease (ARD) is caused by biotic agents and affected by abiotic properties. There is evidence for the interrelation of the soil fungal population and soil aggregate structure. The aim of this study conducted between March and October 2020 on [...] Read more.
The soil-borne apple replant disease (ARD) is caused by biotic agents and affected by abiotic properties. There is evidence for the interrelation of the soil fungal population and soil aggregate structure. The aim of this study conducted between March and October 2020 on an orchard in north-east Germany was to detect the correlations of soil fungal density, soil structure and tree vigour under replant conditions in a series of time intervals. By using the replant system as the subject matter of investigation, we found that replanting had an impact on the increase of soil fungal DNA, which correlated with a mass decrease of large macro-aggregates and an increase of small macro- and large micro-aggregates in the late summer. Increased proportions of water-stable aggregates (WS) with binding forces ≤ 50 J mL−1, decreased proportions of WS > 100 J mL−1 and a decrease of the mean weight diameter of aggregates (MWD) emphasised a reduction of aggregate stability in replant soils. Correlation analyses highlighted interactions between replant-sensitive soil fungi (Alternaria-group), the loss of soil structure and suppressed tree vigour, which become obvious only at specific time intervals. Full article
Show Figures

Figure 1

19 pages, 3184 KB  
Article
Cyanobacterial Blooms and Zooplankton Structure in Lake Ecosystem under Limited Human Impact
by Agnieszka Napiórkowska-Krzebietke, Krystyna Kalinowska, Elżbieta Bogacka-Kapusta, Konrad Stawecki and Piotr Traczuk
Water 2020, 12(5), 1252; https://doi.org/10.3390/w12051252 - 28 Apr 2020
Cited by 14 | Viewed by 3659
Abstract
Cyanobacterial blooms are tightly related to increasing trophic conditions of lakes and climate warming. Abiotic and biotic parameters were studied in a shallow lake, in which the island with the largest cormorants colony in north-eastern Poland is situated. We hypothesized that the strongest [...] Read more.
Cyanobacterial blooms are tightly related to increasing trophic conditions of lakes and climate warming. Abiotic and biotic parameters were studied in a shallow lake, in which the island with the largest cormorants colony in north-eastern Poland is situated. We hypothesized that the strongest cyanobacterial blooms will persist near the cormorant’s island and will decrease with an increasing distance from it. Filamentous cyanobacteria (Pseudanabaena, Planktolyngbya, Limnothrix, Planktothrix) were the main phytoplankton components during summer and autumn. Their strongest blooms (up to 66 mg L−1) were recorded near the roosting area. The content of nutrients and chlorophyll a, and the biomass of phytoplankton (primarily cyanobacteria) and zooplankton, decreased gradually with the increasing distance from the island. The changes from hypertrophic to eutrophic conditions were confirmed by a decrease in values of the trophic state index from 72 (site 1) to 58 (site 5). This all suggests that cormorants might have a significant impact on the deterioration of water quality (at distance to 1.6 km) and can contribute to faster water eutrophication. Our results suggest that protection of breeding sites for many waterbirds, such as cormorants, becomes a real threat for the functioning of aquatic ecosystems due to a large load of nutrients. Full article
(This article belongs to the Special Issue Phytoplankton and Phytobenthos: From Freshwater to Marine Ecosystems)
Show Figures

Figure 1

18 pages, 2554 KB  
Review
The Role of Serine-Threonine Protein Phosphatase PP2A in Plant Oxidative Stress Signaling—Facts and Hypotheses
by Csaba Máthé, Tamás Garda, Csongor Freytag and Márta M-Hamvas
Int. J. Mol. Sci. 2019, 20(12), 3028; https://doi.org/10.3390/ijms20123028 - 21 Jun 2019
Cited by 60 | Viewed by 8341
Abstract
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated [...] Read more.
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement. Full article
(This article belongs to the Special Issue Oxidative Stress and Redox Regulation in Plants)
Show Figures

Graphical abstract

Back to TopTop