Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,322)

Search Parameters:
Keywords = blue LED

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6039 KB  
Article
Blue Light Receptor WC-2 Regulates Ganoderic Acid Biosynthesis in Ganoderma lingzhi
by Yan Xu, Xiong-Min Huang, Zi-Xu Wang, Ying-Jie Zhao, Dong-Mei Lv and Jun-Wei Xu
J. Fungi 2025, 11(9), 646; https://doi.org/10.3390/jof11090646 (registering DOI) - 1 Sep 2025
Abstract
Ganoderic acid (GA) is a key bioactive component with pharmacological properties that is found in Ganoderma lingzhi, a renowned medicinal mushroom. Currently, the regulatory mechanisms underlying GA biosynthesis in G. lingzhi remain to be further elucidated. In this study, blue light induction [...] Read more.
Ganoderic acid (GA) is a key bioactive component with pharmacological properties that is found in Ganoderma lingzhi, a renowned medicinal mushroom. Currently, the regulatory mechanisms underlying GA biosynthesis in G. lingzhi remain to be further elucidated. In this study, blue light induction was found to significantly enhance the GA content in G. lingzhi. To explore the regulatory mechanism of GA biosynthesis in response to blue light, the blue light receptor WC-2 was identified, and its regulatory role was characterized. The deletion of wc-2 resulted in a significant reduction in both GA content and the accumulation of intermediates compared to the wild-type control strain, largely due to the strong downregulation of key GA biosynthetic genes. Additionally, decreased asexual spore production and reduced expression of sporulation-specific genes were observed with the deletion of wc-2. The overexpression of wc-2 led to greatly enhanced GA accumulation. Under blue light induction, the maximum contents of GA-Mk, GA-T, GA-S, and GA-Me were 2.27-, 2.51-, 2.49-, and 2.08-fold higher, respectively, compared to the control kept in darkness. These results demonstrate that the blue light receptor WC-2 functions as a positive regulator of GA biosynthesis in G. lingzhi, influencing the expression of genes involved in GA biosynthesis and asexual spore production, thereby advancing our understanding of the intricate regulatory network of GA biosynthesis. Full article
Show Figures

Figure 1

25 pages, 7796 KB  
Article
Time-Dependent Optothermal Performance Analysis of a Flexible RGB-W LED Light Engine
by Md Shafiqul Islam and Mehmet Arik
Micromachines 2025, 16(9), 1007; https://doi.org/10.3390/mi16091007 - 31 Aug 2025
Abstract
The wide application of light emitting diodes (LEDs) in lighting systems has necessitated the inclusion of spectral tunability by using multi-color LED chips. Since the lighting requirement depends on the specific application, it is very important to have flexibility in terms of the [...] Read more.
The wide application of light emitting diodes (LEDs) in lighting systems has necessitated the inclusion of spectral tunability by using multi-color LED chips. Since the lighting requirement depends on the specific application, it is very important to have flexibility in terms of the driving conditions. While many applications use single or rather white color, some recent applications require multi-spectral lighting systems especially for agricultural or human-medical treatment applications. These systems are underexplored and pose specific challenges. In this paper, a mixture of red, green, blue, white (RGB-W) LED chips was used to develop a compact light engine specifically for agricultural applications. A computational study was performed to understand the optical distribution. Later, attention was turned into development of prototype light engines followed by experimental validation for both the thermal and optical characteristics. Each LED string was driven separately at different current levels enabling an option for obtaining an infinite number of colors for numerous applications. Each LED string on the developed light engine was driven at 300 mA, 500 mA, 700 mA, and 900 mA current levels, and the optical and thermal parameters were recorded simultaneously. A set of computational models and an experimental study were performed to understand the optical and thermal characteristics simultaneously. Full article
Show Figures

Figure 1

18 pages, 7418 KB  
Article
The Social Light Field in Eco-Centric Outdoor Lighting
by Helga Iselin Wåseth, Veronika Zaikina and Sylvia Pont
Buildings 2025, 15(17), 3052; https://doi.org/10.3390/buildings15173052 - 26 Aug 2025
Viewed by 628
Abstract
This study examined how different lighting characteristics of conventional and eco-friendly lighting and environmental conditions, particularly snow cover, influenced the luminous environment and, in relation to that, pedestrian perception of faces on footpaths. The analysis was based on a dataset comprising both subjective [...] Read more.
This study examined how different lighting characteristics of conventional and eco-friendly lighting and environmental conditions, particularly snow cover, influenced the luminous environment and, in relation to that, pedestrian perception of faces on footpaths. The analysis was based on a dataset comprising both subjective evaluations and objective measurements. The spatial and directional light field above a footpath was measured for the two types of road lighting, of which the “eco-centric” luminaire had a lumen output of 4820 lm and reduced blue-light component (correlated color temperature (CCT) of 2200 K) compared to the conventional luminaire with 14,000 lm and 4000 K. The luminaires were analyzed under snowy and non-snowy conditions. Snow cover significantly increased light diffuseness and density (directionally averaged illuminance at a point), resulting in more uniform light and higher subjective ratings. Also, face visibility ratings were generally higher and more uniform, while non-snowy conditions led to more pronounced differences between positions and luminaire types. Regression analysis revealed that vertical illuminance at eye height was the strongest predictor of perceived facial friendliness and well-lighted-ness and contributed to more favorable ratings for the environment lighting too. The eco-centric luminaire was found to positively influence face lighting ratings but received lower ratings for environmental visibility. Increased horizontal illuminance did not consistently result in enhanced subjective evaluations, which points to limitations of traditional illuminance-based lighting standards, often considering horizontal illuminance at ground level as one of the main metrics. The “social light field” concept emphasizes a holistic approach to urban lighting design that integrates social perception and environmental sustainability by considering the distribution of the actual, resulting light throughout the urban space, especially vertical illuminance at the face and its effects on visual appearance, as well as contributing interactions with the environment and materials in it. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

23 pages, 2150 KB  
Article
Visible-Light-Driven Ferrioxalate Activation for Dye Degradation in a Recirculating Photoreactor: LED vs. Fluorescent Light Sources
by Slimane Merouani, Amina Kadri and Halima Chouib
Processes 2025, 13(9), 2716; https://doi.org/10.3390/pr13092716 - 26 Aug 2025
Viewed by 292
Abstract
This study explores the visible-light-driven photolysis of Ferrioxalate complexes for the degradation of Toluidine Blue (TB), a persistent phenothiazine dye, using a 1 L recirculating batch-loop photoreactor. The reactor system incorporated two tubular photochemical units (35 cm × 3 cm each) in series: [...] Read more.
This study explores the visible-light-driven photolysis of Ferrioxalate complexes for the degradation of Toluidine Blue (TB), a persistent phenothiazine dye, using a 1 L recirculating batch-loop photoreactor. The reactor system incorporated two tubular photochemical units (35 cm × 3 cm each) in series: the first equipped with an immersed blue fluorescent lamp (12 W, 30 cm-tube), and the second with dual external blue LED lamps (18 W total, 30 cm) encasing a double-walled glass cell. Continuous flow between the units was maintained via a peristaltic pump. Experimental investigations were used to evaluate the effects of key parameters such as Fe(III) and oxalate concentrations, initial TB load, pH, light source, flow rate, ligand type, dissolved gas type, external H2O2 addition, and the presence of various inorganic ions. The results demonstrate efficient dye degradation, with ~75% TB removal within 1 h under combined fluorescent and LED irradiation, where each reactor contributing comparably. The optimal performance was achieved at pH 4, with a 10 oxalate-to-Fe(III) molar ratio (1 mM:0.1 mM) and a flow rate of 25 mL s−1. Among various ligands tested (oxalate, acetate, citrate, EDTA), oxalate proved to be the most effective. The presence and type of anions significantly influenced degradation efficiency due to their potential scavenging effects. Although the process achieved high dye removal, TOC analysis indicated only moderate mineralization, suggesting the accumulation of non-colored intermediates. External H2O2 addition moderately improved TOC removal, likely due to enhanced hydroxyl radical generation via the Fenton mechanism. These findings highlight the promise of Ferrioxalate-based photochemical systems under visible light for dye removal, while also emphasizing the need for further research into by-product identification, mineralization enhancement, and toxicity reduction to ensure safe effluent discharge. Full article
Show Figures

Figure 1

18 pages, 2561 KB  
Article
Preharvest Far-Red Light Affects Respiration Rate and Carbohydrate Status in Lettuce Grown in a Vertical Farm and Stored Under Modified Atmosphere Conditions
by Ellen Van de Velde, Lauriane Van Wilder, Marie-Christine Van Labeke, Bruno De Meulenaer, Kathy Steppe, Frank Devlieghere and Emmy Dhooghe
Agronomy 2025, 15(8), 1957; https://doi.org/10.3390/agronomy15081957 - 13 Aug 2025
Viewed by 364
Abstract
Vertical farming allows for precise control of environmental conditions, including light quality, enabling the optimization of plant growth and the synthesis of specific phytochemicals. However, the effects of such conditions on postharvest quality remain underexplored. In this study, butterhead lettuce (Lactuca sativa [...] Read more.
Vertical farming allows for precise control of environmental conditions, including light quality, enabling the optimization of plant growth and the synthesis of specific phytochemicals. However, the effects of such conditions on postharvest quality remain underexplored. In this study, butterhead lettuce (Lactuca sativa cv. ‘Alyssa’) was grown for three weeks under light-emitting diode (LED) lighting (190 µmol m−2 s−1; 89% red, 11% blue), with or without supplemental far-red light (ca. 50 µmol m−2 s−1). Growth and quality parameters were assessed at harvest, followed by postharvest evaluation of fresh-cut lettuce stored under equilibrium modified atmosphere packaging (EMAP: 3% O2, balance N2) at 7 °C in darkness for 13 days. The respiration rate of the produce was also determined. Far-red light supplementation increased dry weight (+17%) and elevated glucose (+57%) and fructose (+64%) levels at harvest, without affecting fresh weight, pigment content, vitamin C, or sucrose levels. Although respiration rates during storage were about 54% higher for lettuce grown under far-red light, visual quality seemed slightly better preserved. Total aerobic psychrotrophic counts showed no significant differences between treatments at harvest or during storage. These findings suggest that far-red light can enhance certain quality traits of lettuce, particularly carbohydrate accumulation and dry weight, but the associated rise in respiration may limit these benefits postharvest. Further research is needed to clarify its long-term impact in vertical farming systems. Full article
(This article belongs to the Special Issue Light Environment Regulation of Crop Growth)
Show Figures

Figure 1

23 pages, 8560 KB  
Article
Methylene Blue Alleviates Inflammatory and Oxidative Lung Injury in a Rat Model of Feces-Induced Peritonitis
by Cengiz Dibekoğlu, Kubilay Kemertaş, Hatice Aygun and Oytun Erbas
Medicina 2025, 61(8), 1456; https://doi.org/10.3390/medicina61081456 - 13 Aug 2025
Viewed by 453
Abstract
Background and Objectives: Feces-induced peritonitis (FIP), a clinically relevant model of polymicrobial sepsis, induces systemic inflammation and acute lung injury (ALI). Methylene blue (MB), a phenothiazine-based compound, exhibits vasoregulatory, antioxidant, and anti-inflammatory properties in the context of sepsis. This study aimed to evaluate [...] Read more.
Background and Objectives: Feces-induced peritonitis (FIP), a clinically relevant model of polymicrobial sepsis, induces systemic inflammation and acute lung injury (ALI). Methylene blue (MB), a phenothiazine-based compound, exhibits vasoregulatory, antioxidant, and anti-inflammatory properties in the context of sepsis. This study aimed to evaluate the protective effects of MB on pulmonary injury in a rat model of FIP-induced sepsis. Materials and Methods: Forty male Wistar rats were randomly assigned to four groups: control, FIP, FIP + Saline, and FIP + MB. MB was administered intraperitoneally at a dose of 20 mg/kg, 1 h after FIP induction. At 24 h post-induction, plasma levels of inflammatory markers [interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP)], oxidative stress marker [malondialdehyde (MDA)], metabolic indicator [lactic acid], and vascular signaling marker [cyclic guanosine monophosphate (cGMP)] were measured. Lung injury was evaluated through histopathological analysis and thoracic computed tomography (CT)-based Hounsfield unit (HU) quantification, while pulmonary function was assessed via arterial blood gas analysis, including arterial oxygen pressure (PaO2) and carbon dioxide pressure (PaCO2). Results: FIP induction led to significant increases in plasma levels of IL-6, IL-1β, TNF-α, CRP, MDA, cGMP, and lactic acid, accompanied by elevated CT attenuation (HU) values and a marked reduction in arterial PaO2 and PaCO2. MB treatment significantly decreased the levels of IL-6, IL-1β, TNF-α, CRP, MDA, lactic acid, and cGMP, improved PaO2, and attenuated both histopathological lung injury and CT-assessed parenchymal density. No significant differences were observed in PaCO2 among the groups. Conclusions: MB mitigates inflammation, oxidative damage, and pulmonary dysfunction in FIP-induced sepsis. Further studies are warranted to optimize dosing and timing and to evaluate long-term outcomes. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

37 pages, 1662 KB  
Article
Beyond the Shoreline: Rethinking Coastal Futures of Fisheries-Based Communities Through Blue Εntrepreneurial Ecosystems in Greece
by Dimitrios G. Ierapetritis
Sustainability 2025, 17(16), 7289; https://doi.org/10.3390/su17167289 - 12 Aug 2025
Viewed by 466
Abstract
In the preceding two decades, blue entrepreneurship has emerged as a pivotal proposition for Europe’s coastal fishing communities, as these communities have sought to diversify and reinvigorate their local economies. The present paper seeks to shed light on the driving forces and obstacles [...] Read more.
In the preceding two decades, blue entrepreneurship has emerged as a pivotal proposition for Europe’s coastal fishing communities, as these communities have sought to diversify and reinvigorate their local economies. The present paper seeks to shed light on the driving forces and obstacles to the development of blue entrepreneurship in fishing communities through an innovative entrepreneurial ecosystem approach. The results of a qualitative survey, conducted through a questionnaire addressed to representatives of 80 stakeholders (private companies, local authorities, development companies, Local Action Groups for Fisheries (FLAGs), organizations, NGOs, academic and research institutions) based in and around coastal fishing communities, are explored in order to identify the driving forces and barriers to the development of blue entrepreneurship. The research was conducted by selecting stakeholders from five distinct coastal regions of Greece. These regions are dependent on fishing and have local Community-Led Local Development (CLLD)/LEADER programs that were funded by the Operational Program Fisheries and Maritime Affairs 2014–2020 during the 2014–2020 programming period. Subsequently, adopting existing models through an entrepreneurial ecosystem approach, the driving forces and obstacles highlight the weaknesses of Greek blue entrepreneurial ecosystems in coastal fishing communities, focusing on the existing blue framework conditions and the existing blue systemic conditions. Finally, the primary conclusions of the research are emphasized, and policy proposals are advanced to encourage the establishment of blue entrepreneurial ecosystems in Greek coastal fishing areas. Full article
Show Figures

Figure 1

18 pages, 4583 KB  
Article
Bright Blue Light Emission of ZnCl2-Doped CsPbCl1Br2 Perovskite Nanocrystals with High Photoluminescence Quantum Yield
by Bo Feng, Youbin Fang, Jin Wang, Xi Yuan, Jihui Lang, Jian Cao, Jie Hua and Xiaotian Yang
Micromachines 2025, 16(8), 920; https://doi.org/10.3390/mi16080920 - 9 Aug 2025
Viewed by 448
Abstract
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals [...] Read more.
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals (NCs) was modulated to precisely control their blue emission in the 428–512 nm spectral region. Then, the undoped CsPbCl1Br2 and the ZnCl2-doped CsPbCl1Br2 perovskite NCs were synthesized via the hot-injection method and investigated using variable-temperature photoluminescence (PL) spectroscopy. The PL emission peak of the ZnCl2-doped CsPbCl1Br2 perovskite NCs exhibits a blue shift from 475 nm to 460 nm with increasing ZnCl2 doping concentration. Additionally, the ZnCl2-doped CsPbCl1Br2 perovskite NCs show a high photoluminescence quantum yield (PLQY). The variable-temperature PL spectroscopy results show that the ZnCl2-doped CsPbCl1Br2 perovskite NCs have a larger exciton binding energy than the CsPbCl1Br2 perovskite NCs, which is indicative of a potentially higher PL intensity. To assess the stability of the perovskite NCs, high-temperature experiments and ultraviolet-irradiation experiments were conducted. The results indicate that zinc doping is beneficial for improving the stability of the perovskite NCs. The ZnCl2-doped CsPbCl1Br2 perovskite NCs were post-treated using didodecylammonium bromide, and after the post-treatment, the PLQY increased to 83%. This is a high PLQY value for perovskite NC-LEDs in the blue spectral range, and it satisfies the requirements of practical display applications. This work thus provides a simple preparation method for pure blue light-emitting materials. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

16 pages, 2848 KB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Viewed by 556
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

17 pages, 4522 KB  
Article
A Blue LED Spectral Simulation Method Using Exponentially Modified Gaussian Functions with Superimposed Asymmetric Pseudo-Voigt Corrections
by Hongru Zhuang, Yanfei Wang, Caihong Dai, Ling Li, Zhifeng Wu and Jiang Pan
Photonics 2025, 12(8), 788; https://doi.org/10.3390/photonics12080788 - 4 Aug 2025
Viewed by 313
Abstract
Accurately simulating the asymmetric spectral profiles of blue LEDs is crucial for photobiological research, yet it remains a challenge for traditional symmetric models. This study proposes a novel spectral simulation model that effectively captures these asymmetries. The proposed model structure is partly motivated [...] Read more.
Accurately simulating the asymmetric spectral profiles of blue LEDs is crucial for photobiological research, yet it remains a challenge for traditional symmetric models. This study proposes a novel spectral simulation model that effectively captures these asymmetries. The proposed model structure is partly motivated by known broadening and dispersion mechanisms observed in real LED spectra; it employs a ‘base model + correction’ framework, where an Exponentially Modified Gaussian (EMG) function captures the primary spectral shape and falling edge and an Asymmetric Pseudo-Voigt (APV) function corrects the deviations on the rising edge. Requiring only the central wavelength and bandwidth as user inputs, the simulation results exhibit a high degree of agreement with the experimental data spectra. The model provides a rapid and robust tool for pre-evaluating light sources against regulatory criteria (e.g., >99% of the spectral intensity is in the 400–500 nm band), thereby enhancing the efficiency of experimental design in blue light protection studies. Full article
Show Figures

Figure 1

19 pages, 2441 KB  
Article
Simulation and Statistical Validation Method for Evaluating Daylighting Performance in Hot Climates
by Nivin Sherif, Ahmed Yehia and Walaa S. E. Ismaeel
Urban Sci. 2025, 9(8), 303; https://doi.org/10.3390/urbansci9080303 - 4 Aug 2025
Viewed by 457
Abstract
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three [...] Read more.
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three critical variables: glazing type (clear, blue, and dark), Window-to-Wall Ratio (WWR) of 15%, 50%, 75%, and indoor wall finish (light, moderate, dark) colors. These were compared to the Leadership in Energy and Environmental Design (LEED) daylighting quality thresholds. The results revealed that clear glazing paired with high WWR (75%) achieved the highest Spatial Daylight Autonomy (sDA), reaching up to 92% in living spaces. However, this also led to elevated Annual Sunlight Exposure (ASE), with peak values of 53%, exceeding the LEED discomfort threshold of 10%. Blue and dark glazing types successfully reduced ASE to as low as 0–13%, yet often resulted in underlit spaces, especially in private rooms such as bedrooms and bathrooms, with sDA values falling below 20%. A 50% WWR emerged as the optimal balance, providing consistent daylight distribution while maintaining ASE within acceptable limits (≤33%). Similarly, moderate color wall finishes delivered the most balanced lighting performance, enhancing sDA by up to 30% while controlling reflective glare. Statistical analysis using Pearson correlation revealed a strong positive relationship between sDA and ASE (r = 0.84) in highly glazed, clear glass scenarios. Sensitivity analysis further indicated that low WWR configurations of 15% were highly influenced by glazing and finishing types, leading to variability in daylight metrics reaching ±40%. The study concludes that moderate glazing (blue), medium WWR (50%), and moderate color indoor finishes provide the most robust daylighting performance across diverse room types. These findings support an evidence-based approach to façade design, promoting visual comfort, daylight quality, and sustainable building practices. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

16 pages, 5537 KB  
Article
Different Light Wavelengths Differentially Influence the Progression of the Hypersensitive Response Induced by Pathogen Infection in Tobacco
by Bao Quoc Tran, Anh Trung Nguyen and Sunyo Jung
Antioxidants 2025, 14(8), 954; https://doi.org/10.3390/antiox14080954 - 3 Aug 2025
Viewed by 386
Abstract
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red [...] Read more.
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red light, as indicated by reduced HR-associated programmed cell death, lower H2O2 production, and up to 64% reduction in membrane damage. During the late stage of HR, catalase and ascorbate peroxidase activities peaked under green and blue LEDs, with 5- and 10-fold increases, respectively, while superoxide dismutase activity was higher under white and red LEDs. Defense-related genes CHS1, PALa, PR1, and PR2 were more strongly induced by white and red light. The plants treated with green or blue LEDs during Pst infection prompted faster degradation of phototoxic Mg-porphyrins and exhibited smaller declines in Fv/Fm, electron transport rate, chlorophyll content, and LHCB expression compared to those treated with white or red LEDs. By contrast, the induction of the chlorophyll catabolic gene SGR was 54% and 77% lower in green and blue LEDs, respectively, compared to white LEDs. This study demonstrates that light quality differentially affects Pst-mediated HR, with green and blue light more effectively suppressing HR progression, mainly by reducing oxidative stress through enhanced antioxidative capacity and mitigation of photosynthetic impairments. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

23 pages, 3283 KB  
Article
Light-Driven Optimization of Exopolysaccharide and Indole-3-Acetic Acid Production in Thermotolerant Cyanobacteria
by Antonio Zuorro, Roberto Lavecchia, Karen A. Moncada-Jacome, Janet B. García-Martínez and Andrés F. Barajas-Solano
Sci 2025, 7(3), 108; https://doi.org/10.3390/sci7030108 - 3 Aug 2025
Viewed by 437
Abstract
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic [...] Read more.
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic acid (IAA). Six strains from hot-spring environments were screened under varying blue:red (B:R) LED ratios and full-spectrum illumination. Hapalosiphon sp. UFPS_002 outperformed all others, reaching ~290 mg L−1 EPS and 28 µg mL−1 IAA in the initial screen. Response-surface methodology was then used to optimize light intensity and photoperiod. EPS peaked at 281.4 mg L−1 under a B:R ratio of 1:5 LED, 85 µmol m−2 s−1, and a 14.5 h light cycle, whereas IAA was maximized at 34.4 µg mL−1 under cool-white LEDs at a similar irradiance. The quadratic models exhibited excellent predictive power (R2 > 0.98) and a non-significant lack of fit, confirming the light regime as the dominant driver of metabolite yield. These results demonstrate that precise photonic tuning can selectively steer carbon flux toward either EPS or IAA, providing an energy-efficient strategy to upscale thermotolerant cyanobacteria for climate-resilient biofertilizers, bioplastics precursors, and other high-value bioproducts. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

8 pages, 222 KB  
Perspective
Exploring the Potential of European Brown Shrimp (Crangon crangon) in Integrated Multi-Trophic Aquaculture: Towards Achieving Sustainable and Diversified Coastal Systems
by Ángel Urzúa and Marina Gebert
Oceans 2025, 6(3), 47; https://doi.org/10.3390/oceans6030047 - 31 Jul 2025
Viewed by 377
Abstract
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native [...] Read more.
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native species, such as the European brown shrimp (Crangon crangon), presents an opportunity to develop a sustainable blue bioeconomy in Europe. C. crangon holds significant commercial value, yet overexploitation has led to population declines. Integrated Multi-Trophic Aquaculture (IMTA) offers a viable solution by utilizing fish farm wastewater as a nutrient source, reducing both costs and environmental impact. Research efforts in Germany and other European nations are exploring IMTA’s potential by co-culturing shrimp with species like sea bream, sea bass, and salmon. The physiological adaptability and omnivorous diet of C. crangon further support its viability in aquaculture. However, critical knowledge gaps remain regarding its lipid metabolism, early ontogeny, and reproductive biology—factors essential for optimizing captive breeding. Future interdisciplinary research should refine larval culture techniques and develop sustainable co-culture models. Expanding C. crangon aquaculture aligns with the UN’s Sustainable Development Goals by enhancing food security, ecosystem resilience, and economic stability while reducing Europe’s reliance on seafood imports. Full article
21 pages, 1538 KB  
Article
Navigating the Blue Economy: Indonesia’s Regional Efforts in ASEAN to Support Sustainable Practices in Fisheries Sector
by Olivia Sabrina and Rhevy Adriade Putra
Sustainability 2025, 17(15), 6906; https://doi.org/10.3390/su17156906 - 30 Jul 2025
Viewed by 1026
Abstract
In the 2021 summit, ASEAN leaders acknowledged the ocean as an essential driver of economic recovery post pandemic, leading to the ASEAN Declaration on the Blue Economy for the responsible management of marine resources. As an ASEAN nation with a long history in [...] Read more.
In the 2021 summit, ASEAN leaders acknowledged the ocean as an essential driver of economic recovery post pandemic, leading to the ASEAN Declaration on the Blue Economy for the responsible management of marine resources. As an ASEAN nation with a long history in the fishing sector, Indonesia then actively spread this concept across the region. The hegemony theory of Gramsci, which considers the interaction of a nation’s material resources, ideational influence, and institutional strategy, is further used to assess Indonesia’s leadership dynamics in the ASEAN to obtain consensus-based power. In this study, Joko Widodo’s speeches from 2023 are taken out and coded to determine the narrative that Indonesia constantly reinforces. With thematic analysis, speech data is processed to generate keywords such as unity, cooperation, and shared responsibilities, which Indonesia often uses to advance its regional agenda. By aligning member states’ interests with regional goals, Indonesian governance creates common ground for a blue economy and emphasizes how the sea is an integral source of opportunity for the region’s position as the Epicentrum Of Growth. Instead of pushing countries to agree with directives, Indonesia effectively advocates for regional agreements and ASEAN-led structures through the blue economy framework, with the ABEF emerging at its 2023 ASEAN chairmanship deliberations. Full article
Show Figures

Figure 1

Back to TopTop