Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = blue biotechnology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
63 pages, 828 KB  
Review
Extraction of Marine Bioactive Compounds from Seaweed: Coupling Environmental Concerns and High Yields
by Carlos Cardoso, Joana Matos and Cláudia Afonso
Mar. Drugs 2025, 23(9), 366; https://doi.org/10.3390/md23090366 - 19 Sep 2025
Viewed by 1085
Abstract
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds [...] Read more.
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds and biological activities) and in terms of economic impact. Conventional extraction techniques largely fail to address this challenge, even if optimized. This has led to the development and testing of innovative technologies as solutions for a ‘green’ and effective extraction of components from seaweed biomass and to biorefinery processes. There are large differences in outcomes between alternative processes, depending on the matrix, operational parameters, and targeted compounds and activities. Despite the positive results of some techniques, such as those based on physical mechanisms, namely Microwave-Assisted Extraction (MAE) and Ultrasound-Assisted Extraction (UAE), and on enzymatic selectivity, i.e., Enzyme-Assisted Extraction (EAE), there is no universally effective technique and approach, thus justifying integrated approaches combining different techniques. The application of ‘green’ solvents was also assessed and proven to harbor a large potential, just as the wet route. Although technical difficulties, outcome variability, and economic viability problems are relevant, recent progress in seaweed processing paves the way for a future blue economy. Full article
Show Figures

Figure 1

22 pages, 3102 KB  
Article
Unveiling Biocompatibility: Comprehensive Study on Epoxy–Polyetheramine-Based Polymeric Nanogels in CHO-K1 Cell Line
by Natalia Nascimento Silveira, Heber Eduardo Andrada, Julia Mirian Paulino, Naiara Cristina da Silva Boaretto, Eduardo Ferreira Molina and Raquel Alves dos Santos
Future Pharmacol. 2025, 5(3), 54; https://doi.org/10.3390/futurepharmacol5030054 - 18 Sep 2025
Viewed by 373
Abstract
Backgorund/Objectives: Advances in nanotechnology have enabled conventional compounds with low bioavailability to achieve their full therapeutic potential by ensuring targeted tissue delivery. In this context, polymeric nanogels have emerged as a promising option for drug delivery due to their high loading capacity and [...] Read more.
Backgorund/Objectives: Advances in nanotechnology have enabled conventional compounds with low bioavailability to achieve their full therapeutic potential by ensuring targeted tissue delivery. In this context, polymeric nanogels have emerged as a promising option for drug delivery due to their high loading capacity and excellent in vivo stability. Objectives: Given the growing potential of nanogels in drug delivery, their cytotoxicity and genotoxicity must be evaluated to ensure safety in biotechnological applications. This study assessed the genotoxic safety of nanogels synthesized via the reaction of Jeffamine® T-5000 polyoxypropylene triamine (PPO) monomers (Huntsman Chemical, The Woodlands, TX, USA) and poly (ethylene glycol) diglycidyl ether (DPEG) in varying proportions: 1:1 (Nano11), 1:3 (Nano13), and 2:3 (Nano23) PPO/DPEG. Additionally, we determined which of the two components exhibited lower toxicity against the CHO-K1 cell line (Chinese hamster ovary). Methods: To achieve this, short- and long-term cytotoxicity experiments were conducted using the XTT colorimetric assay and clonogenic survival assay, alongside the micronucleus test and comet assay for genotoxicity analysis. Results: The cytotoxicity assays (XTT, clonogenic, and trypan blue) indicated that the nanogels did not exhibit cytotoxic effects at concentrations up to 100 μg/mL, while the genotoxicity assays revealed no evidence of DNA or chromosomal damage at these levels. Conclusions: These findings underscore the safety profile of Jeffamine® T-5000 as an effective carrier, demonstrating its compatibility with DPEG and positioning it as a highly promising and innovative solution for advanced drug delivery systems. Full article
Show Figures

Graphical abstract

19 pages, 1246 KB  
Article
Influence of LED Light Spectra on Morphogenesis, Secondary Metabolite Production and Antioxidant Potential in Eucomis autumnalis Cultured In Vitro
by Monika Cioć, Agnieszka Szopa, Barbara Prokopiuk, Bożena Pawłowska and Łukasz Łopusiewicz
Agronomy 2025, 15(9), 2197; https://doi.org/10.3390/agronomy15092197 - 15 Sep 2025
Cited by 1 | Viewed by 519
Abstract
Eucomis autumnalis is a bulbous ornamental species with ethnobotanical relevance. In vitro cultures offer a sustainable tool for biomass propagation and metabolite production. This study investigates the effects of nine LED light spectra: red (R), blue (B), red–blue (RB), RB with green (RBG), [...] Read more.
Eucomis autumnalis is a bulbous ornamental species with ethnobotanical relevance. In vitro cultures offer a sustainable tool for biomass propagation and metabolite production. This study investigates the effects of nine LED light spectra: red (R), blue (B), red–blue (RB), RB with green (RBG), yellow (RBY), far-red (RBfR), ultraviolet (RBUV), white (WLED), and fluorescent light (Fl, control), on the morphogenesis, polyphenol production, and antioxidant potential of E. autumnalis shoot cultures. Cultures were maintained on MS medium with 5 µM BA and 0.5 µM NAA. HPLC-DAD analysis identified 11 phenolic acids and 4 flavonoids, including eucomic acid, characteristic of the genus. Light quality impacted compound-specific accumulation and antioxidant activity, with responses varying among compounds and treatments. R and B light increased catechin, gentisic acid and hesperidin (289, 195, 245 mg/100 g DW), while UV suppressed flavonoids by ca. 2-fold for catechin and flavanones compared to other lights. RBG and RBfR induced the highest eucomic acid accumulation (424 mg/100 g DW), ferulic acid and epicatechin, correlating strongly with ABTS•+ activity (18–19% higher than other lights; r > 0.6–0.8). These findings highlight LED spectral modulation as a tool to enhance the phytochemical quality of E. autumnalis in vitro and provide a foundation for future biotechnological applications. Full article
(This article belongs to the Special Issue Light Environment Regulation of Crop Growth)
Show Figures

Figure 1

20 pages, 490 KB  
Review
Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies
by Daniela R. de Figueiredo
Phycology 2025, 5(3), 47; https://doi.org/10.3390/phycology5030047 - 15 Sep 2025
Viewed by 445
Abstract
HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This [...] Read more.
HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This review gathers information on isolated cyanobacterial strains with the potential to form cyanobacterial blooms or to be toxic that have been reported over the past half-century in Portugal. Strains of Microcystis aeruginosa are the most represented ones, many of them microcystin producers. Toxic M. aeruginosa strains have been isolated from lakes (Mira, Barrinha de Mira, and Blue), river sections (Tâmega and Guadiana), and reservoirs (Torrão, Vilar, Montargil, Patudos, Caia, Monte da Barca, Corgas, and Magos). Many other strains from potentially toxic species are listed, namely from Aphanizomenon gracile, Aphanizomenon flos-aquae, Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, Dolichospermum circinalis, Chrysosporum bergii, Raphidiopsis raciborskii or Planktothrix agardhii. Many of the isolated strains were able to produce cyanotoxins such as microcystins, saxitoxins, cylindrospermopsin, or anatoxin. Most isolates belong to the Portuguese culture collections ESSACC (Estela Sousa e Silva Algal Culture Collection); LEGE-CC (Blue Biotechnology and Ecotoxicology Culture Collection); and ACOI (Coimbra Collection of Algae). Despite many strains already having associated molecular data corroborating a correct identification, a large number of strains are still lacking DNA-based information for phylogenetic affiliation. The present checklist is intended to facilitate access to information regarding strains of potentially toxic cyanobacterial species from Portugal in order to contribute to a better understanding of species-specific HCBs at both regional and global scales. Full article
24 pages, 1966 KB  
Review
From Form to Function: The Anatomy, Ecology, and Biotechnological Promise of the False-Kelp Saccorhiza polyschides
by Clélia Afonso and Teresa Mouga
J. Mar. Sci. Eng. 2025, 13(9), 1694; https://doi.org/10.3390/jmse13091694 - 2 Sep 2025
Viewed by 552
Abstract
Saccorhiza polyschides is a fast-growing pioneer and opportunistic canopy-forming false-kelp belonging to the order Phyllariaceae (Ochrophyta, Phaeophyceae). The species plays a pivotal ecological role in temperate marine ecosystems and exhibits promising potential for diverse biotechnological applications. The species, however, is under growing pressure [...] Read more.
Saccorhiza polyschides is a fast-growing pioneer and opportunistic canopy-forming false-kelp belonging to the order Phyllariaceae (Ochrophyta, Phaeophyceae). The species plays a pivotal ecological role in temperate marine ecosystems and exhibits promising potential for diverse biotechnological applications. The species, however, is under growing pressure from anthropogenic disturbance. This review synthesises current knowledge regarding the biology and geographic distribution of the species, with particular emphasis on its distinctive morphology and ultrastructural features. The species’ complex life cycle and marked seasonal productivity are examined concerning environmental variables. Furthermore, we explore the ecological interactions of the species, including its role as a habitat-forming species and its responses to anthropogenic stressors such as climate change and habitat degradation. Special attention is given to the state of knowledge regarding the bioactive compounds and associated bioactivities of S. polyschides. This includes a detailed examination of the species’ phytochemical constituents, extraction and fractionation strategies, as well as in vitro and in vivo bioactivities, and potential biotechnological applications. By integrating findings from recent literature and identifying methodological and knowledge gaps, this paper seeks to provide a comprehensive understanding of S. polyschides as an emergent marine bioresource and to propose directions for future research and sustainable valorisation. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

34 pages, 865 KB  
Review
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
by Igor Carvalho Fontes Sampaio, Isabela Viana Lopes de Moura, Josilene Borges Torres Lima Matos, Cleveland Maximino Jones and Paulo Fernando de Almeida
Fermentation 2025, 11(9), 490; https://doi.org/10.3390/fermentation11090490 - 23 Aug 2025
Viewed by 890
Abstract
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) [...] Read more.
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) and native H2 producing microbiota, can be repurposed as bioreactors for hydrogen production. This process, often referred to as “Gold Hydrogen”, involves the in situ microbial conversion of RH into H2, typically via dark fermentation, and is distinct from green, blue, or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium, Petrotoga, Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits, such as integrated CO2 sequestration and minimized surface disturbance, it also presents risks, namely the production of CO2 and H2S, and fracturing, which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures, achieving economic viability depends on overcoming significant technical, operational, and biotechnological challenges. If widely applied, this model could help decarbonize the energy sector, repurpose legacy infrastructure, and support the global transition toward low-carbon technologies. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Figure 1

19 pages, 3238 KB  
Article
Effects of Seawater Polyphenols from Gongolaria usneoides on Photosynthesis and Biochemical Compounds of the Invasive Alien Species Rugulopteryx okamurae (Phaeophyceae, Heterokontophyta)
by Débora Tomazi Pereira, Fernando García Alarcón, Manolo García Alarcón, Paula S. M. Celis-Plá and Félix L. Figueroa
Plants 2025, 14(16), 2594; https://doi.org/10.3390/plants14162594 - 20 Aug 2025
Viewed by 639
Abstract
Gongolaria usneoides is a native brown alga in Europa, known for its high release of phenolics into the water. Rugulopteryx okamurae is a native brown macroalga from Asia but invasive in Europe, causing significant environmental and socioeconomic impacts. It has been observed that [...] Read more.
Gongolaria usneoides is a native brown alga in Europa, known for its high release of phenolics into the water. Rugulopteryx okamurae is a native brown macroalga from Asia but invasive in Europe, causing significant environmental and socioeconomic impacts. It has been observed that in some regions where Gongolaria is present, there is less biomass of Rugulopteryx, and they are often epiphytized by red filamentous algae. The present study aimed to analyze whether phenolics released in the seawater by G. usneoides affect the photosynthetic and biochemical responses in R. okamurae. To analyze the resilience of R. okamurae, algae were cultivated for 5 days in water with different percentages of phenolics released by G. usneoides (exposure phase) (0, 75, 150, 225 and 300 µg mL−1) in laboratory (20 °C, a 12:12 photoperiod, and PAR 190 µmol photons m−2 s−1 for a period of 115 h) and a period in the sun (4 h), followed 2 days cultured under phenolic-free water (recovery phase). Photosynthetic characteristics (Fv/Fm and ETR) and biochemical composition (phenolic, antioxidant activity, C, N and S) were measured (R. okamurae showed considerable photosynthetic declines without recovery when exposed to high concentrations of phenolics (225 and 300 µg mL−1). It can be inferred that the presence of G. usneoides in nature and the release of phenolic compounds by this alga may be affecting the invasive alga R. okamurae, potentially serving as a natural means to decrease or weaken the invasive species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

31 pages, 4259 KB  
Article
Neuronal Count, Brain Injury, and Sustained Cognitive Function in 5×FAD Alzheimer’s Disease Mice Fed DHA-Enriched Diets
by Cristina de Mello-Sampayo, Mafalda Soares Pádua, Maria Rosário Silva, Maria Lourenço, Rui M. A. Pinto, Sandra Carvalho, Jorge Correia, Cátia F. Martins, Romina Gomes, Ana Gomes-Bispo, Cláudia Afonso, Carlos Cardoso, Narcisa Bandarra and Paula A. Lopes
Biomolecules 2025, 15(8), 1164; https://doi.org/10.3390/biom15081164 - 14 Aug 2025
Viewed by 1478
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting over 50 million people globally. Since 1906, efforts to understand this neurodegenerative disease and to develop effective treatments have continued to this day. Recognizing docosahexaenoic acid (DHA, 22:6n-3) as a safe, inexpensive [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia, affecting over 50 million people globally. Since 1906, efforts to understand this neurodegenerative disease and to develop effective treatments have continued to this day. Recognizing docosahexaenoic acid (DHA, 22:6n-3) as a safe, inexpensive and vital nutrient for brain health and cognitive protection due to its key role in brain development and function, this study explores novel, sustainable non-fish sources as potential dietary supplements to prevent or mitigate AD, within a blue biotechnology framework. Forty 5×FAD male mice, five weeks old, were allocated to five body weight-matched dietary groups (n = 8) and fed isocaloric diets based on AIN-93M standard chow for 6 months. Each diet, except the control feed (non-supplemented group), enclosed a modified lipid fraction supplemented with 2% of the following: (1) linseed oil (LSO, rich in alpha-linolenic acid (ALA,18:3n-3)); (2) cod liver oil (fish oil, FO, rich in both DHA and eicosapentaenoic acid (EPA, 20:5n-3)); (3) Schizochytrium sp. microalga oil (Schizo) with 40% of DHA; and (4) commercial DHASCO oil (DHASCO) with 70% of DHA. The different diets did not affect (p > 0.05) growth performance criteria (e.g., final body weight, daily feed intake, and body weight gain) suggesting no effect on the overall caloric balance or mice growth, but n-3 long-chain polyunsaturated-fatty acid (n-3 LCPUFA) supplementation significantly reduced total cholesterol (p < 0.001) and total lipids (p < 0.001). No systemic inflammation was detected in 5×FAD mice. In parallel, a beneficial modulation of lipid metabolism by DHA-enriched diets was observed, with polyunsaturated fatty acid incorporation, particularly DHA, across key metabolic tissues, such as the liver (p < 0.001) and the brain (p < 0.001). No behavioural variations were detected using an open-field test after 6 months of diet (p > 0.05). While mice fed a standard diet or LSO diet showed cognitive deficit, the incorporation of FO, Schizo or DHASCO oils into dietary routine showed promising protective effects on the working memory (p < 0.05) and the last two diets also on the recognition memory (p < 0.05) Increased neuronal count (p < 0.05), reflecting neuronal survival, was clearly observed with the fish oil diet. In turn, the number of TAU-positive cells (p < 0.05) was reduced in the Schizo diet, while β-amyloid deposition (p < 0.01) and the neuroinflammatory marker, IBA1 (p < 0.05), were decreased across all DHA-enriched diets. These promising findings open new avenues for further studies focused on the protective effects of DHA derived from sustainable and underexploited Schizochytrium sp. microalga in the prevention of AD. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

23 pages, 3283 KB  
Article
Light-Driven Optimization of Exopolysaccharide and Indole-3-Acetic Acid Production in Thermotolerant Cyanobacteria
by Antonio Zuorro, Roberto Lavecchia, Karen A. Moncada-Jacome, Janet B. García-Martínez and Andrés F. Barajas-Solano
Sci 2025, 7(3), 108; https://doi.org/10.3390/sci7030108 - 3 Aug 2025
Viewed by 785
Abstract
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic [...] Read more.
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic acid (IAA). Six strains from hot-spring environments were screened under varying blue:red (B:R) LED ratios and full-spectrum illumination. Hapalosiphon sp. UFPS_002 outperformed all others, reaching ~290 mg L−1 EPS and 28 µg mL−1 IAA in the initial screen. Response-surface methodology was then used to optimize light intensity and photoperiod. EPS peaked at 281.4 mg L−1 under a B:R ratio of 1:5 LED, 85 µmol m−2 s−1, and a 14.5 h light cycle, whereas IAA was maximized at 34.4 µg mL−1 under cool-white LEDs at a similar irradiance. The quadratic models exhibited excellent predictive power (R2 > 0.98) and a non-significant lack of fit, confirming the light regime as the dominant driver of metabolite yield. These results demonstrate that precise photonic tuning can selectively steer carbon flux toward either EPS or IAA, providing an energy-efficient strategy to upscale thermotolerant cyanobacteria for climate-resilient biofertilizers, bioplastics precursors, and other high-value bioproducts. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

22 pages, 2795 KB  
Article
Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata
by Macarena Troncoso, Zoë L. Fleming, Félix L. Figueroa, Nathalie Korbee, Ronald Durán, Camilo Navarrete, Cecilia Rivera and Paula S. M. Celis-Plá
Plants 2025, 14(15), 2341; https://doi.org/10.3390/plants14152341 - 29 Jul 2025
Viewed by 531
Abstract
Carbon dioxide (CO2) emissions due to human activities are responsible for approximately 80% of the drivers of global warming, resulting in a 1.1 °C increase above pre-industrial temperatures. This study quantified the CO2 assimilation and productivity of the brown macroalgae [...] Read more.
Carbon dioxide (CO2) emissions due to human activities are responsible for approximately 80% of the drivers of global warming, resulting in a 1.1 °C increase above pre-industrial temperatures. This study quantified the CO2 assimilation and productivity of the brown macroalgae Lessonia spicata in the central Pacific coast of Chile, across seasonal and daily cycles, under different environmental stressors, such as temperature and solar irradiance. Measurements were performed using an infra-red gas analysis (IRGA) instrument which had a chamber allowing for precise quantification of CO2 concentrations; additional photophysiological and biochemical responses were also measured. CO2 assimilation, along with the productivity and biosynthesis of proteins and lipids, increased during the spring, coinciding with moderate temperatures (~14 °C) and high photosynthetically active radiation (PAR). Furthermore, the increased production of photoprotective and antioxidant compounds, including phenolic compounds, and carotenoids, along with the enhancement of non-photochemical quenching (NPQ), contribute to the effective photoacclimation strategies of L. spicata. Principal component analysis (PCA) revealed seasonal associations between productivity, reactive oxygen species (ROSs), and biochemical indicators, particularly during the spring and summer. These associations, further supported by Pearson correlation analyses, suggest a high but seasonally constrained photoacclimation capacity. In contrast, the reduced productivity and photoprotection observed in the summer suggest increased physiological vulnerability to heat and light stress. Overall, our findings position L. spicata as a promising nature-based solution for climate change mitigation. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

14 pages, 4700 KB  
Article
Pilot-Scale Phycocyanin Extraction by the Green Two-Step Ultrasound-Based UltraBlu Process
by Rosaria Lauceri, Melissa Pignataro, Antonio Giorgi, Antonio Idà and Lyudmila Kamburska
Separations 2025, 12(8), 194; https://doi.org/10.3390/separations12080194 - 25 Jul 2025
Viewed by 557
Abstract
Phycocyanin is a natural, non-toxic, blue pigment-protein with many commercial applications. Its exploitation in various biotechnological sectors strongly depends on its purity grade (P). Phycocyanin is largely used in food industry where a low purity grade is required, while its widespread use in [...] Read more.
Phycocyanin is a natural, non-toxic, blue pigment-protein with many commercial applications. Its exploitation in various biotechnological sectors strongly depends on its purity grade (P). Phycocyanin is largely used in food industry where a low purity grade is required, while its widespread use in sectors requiring a higher purity is hampered by the cost of large-scale industrial production. Industry, in fact, needs simple, easily scalable and cost-effective procedures to ensure sustainable production of high-quality pigment. In this work we applied the innovative two-step ultrasound-based process UltraBlu to the pilot-scale production of phycocyanin. A total of 50 L of biomass suspension of commercial Spirulina were processed in batch mode. The pigment extract was obtained in one day, including the biomass harvesting. Food/cosmetic grade (P = 1.41–1.76) and a good yield (Y = 59.2–76.1%) were achieved. The initial results obtained suggest that UltraBlu can be an effective scalable process suitable to produce phycocyanin also on an industrial scale. Full article
(This article belongs to the Special Issue Application of Sustainable Separation Techniques in Food Processing)
Show Figures

Graphical abstract

12 pages, 6938 KB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Viewed by 1417
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Graphical abstract

33 pages, 2265 KB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Cited by 2 | Viewed by 1709
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

15 pages, 3505 KB  
Article
Far-Red Component Enhances Paramylon Production in Photoautotrophic Euglena gracilis
by Zhaida I. Aguilar-Gonzalez, Anaiza Rico-Luna, Tóshiko Takahashi-Íñiguez and Héctor V. Miranda-Astudillo
Bioengineering 2025, 12(7), 763; https://doi.org/10.3390/bioengineering12070763 - 15 Jul 2025
Viewed by 878
Abstract
In recent years, microalgae have gained significant biotechnological importance as a sustainable source of various metabolites of industrial interest. Among these, paramylon, a polysaccharide produced by the microalga Euglena gracilis, stands out for its diverse applications in biomedicine and pharmaceuticals. E. gracilis [...] Read more.
In recent years, microalgae have gained significant biotechnological importance as a sustainable source of various metabolites of industrial interest. Among these, paramylon, a polysaccharide produced by the microalga Euglena gracilis, stands out for its diverse applications in biomedicine and pharmaceuticals. E. gracilis is an adaptable secondary eukaryote capable of growing photoautotrophically, heterotrophically and mixotrophically. During photoautotrophic growth, varying light conditions impact biomass and paramylon production. To investigate the effects of varying illumination more thoroughly, we designed and built a modular photobioreactor that allowed us to simultaneously evaluate the photoautotrophic growth of E. gracilis under twelve different light conditions: seven single-spectrum lights (ultraviolet, royal blue, blue, green, red, far-red, and infrared) and five composite-spectrum lights (3000 K, 10,000 K, and 30,000 K white lights, amber light, and “Full-spectrum” light). The 24-day growing kinetics were recorded, and the growth parameters were calculated for each light regime. Both growth curves and pigment composition present differences attributable to the light regime used for cell culture. Additionally, photosynthetic and respiratory machinery functionality were proven by oximetry. Finally, our results strongly suggest that the far-red component enhances paramylon production during the stationary phase. Full article
(This article belongs to the Special Issue Microalgae Biotechnology and Microbiology: Prospects and Applications)
Show Figures

Graphical abstract

18 pages, 1684 KB  
Article
Harnessing Light Wavelengths to Enrich Health-Promoting Molecules in Tomato Fruits
by Bruno Hay Mele, Ermenegilda Vitale, Violeta Velikova, Tsonko Tsonev, Carolina Fontanarosa, Michele Spinelli, Angela Amoresano and Carmen Arena
Int. J. Mol. Sci. 2025, 26(12), 5712; https://doi.org/10.3390/ijms26125712 - 14 Jun 2025
Cited by 1 | Viewed by 894
Abstract
The tomato (Solanum lycopersicum L.) is one of the most consumed crops worldwide and a source of antioxidants. Given the role the latter play against oxidative stress and free radical-related diseases, enhancing tomato bioactive compound production would be appealing for a wide [...] Read more.
The tomato (Solanum lycopersicum L.) is one of the most consumed crops worldwide and a source of antioxidants. Given the role the latter play against oxidative stress and free radical-related diseases, enhancing tomato bioactive compound production would be appealing for a wide range of applications in the fields of nutrition, pharmacy, and biotechnology. This study explores a sustainable and innovative approach: the modulation of specific light spectra to boost the production of bioactive compounds in tomatoes (cultivar ‘Microtom’). We investigated how three light regimes—white fluorescent (FL), full-spectrum (FS), and red-blue (RB)—influence the accumulation of polyphenols and other key nutraceuticals during plant growth. Our findings reveal that full-spectrum (FS) light significantly enhances the levels of polyphenols, flavonoids, tannins, ascorbic acid, and lycopene in tomato fruits, compared to those grown under RB or FL light. Interestingly, fruits from RB light-grown plants showed the highest carotenoid concentrations and antioxidant capacity. These results suggest that light quality actively modulates the expression of key enzymes in the phenylpropanoid and flavonoid biosynthetic pathways, shaping each fruit’s unique metabolic fingerprint. Cluster analysis confirmed that RB, FL, and FS conditions lead to distinct polyphenolic profiles, each with notable health-promoting potential. Our results highlight a promising avenue: tailoring light environments to enhance the functional value of crops, bridging agriculture, nutrition, and biomedicine in a sustainable way. Full article
Show Figures

Figure 1

Back to TopTop