Next Article in Journal
Diversity and Morphology of Planktonic Species of the Order Dinophysales (Dinoflagellata) from the Tropical Mexican Pacific and the Gulf of Mexico
Previous Article in Journal
Alkalinema pantanalense and Roholtiella edaphica (Cyanobacteria): Two New Species Records for Egypt
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies

by
Daniela R. de Figueiredo
CESAM (Centre for Environmental and Marine Studies) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Phycology 2025, 5(3), 47; https://doi.org/10.3390/phycology5030047
Submission received: 8 August 2025 / Revised: 10 September 2025 / Accepted: 11 September 2025 / Published: 15 September 2025

Abstract

HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This review gathers information on isolated cyanobacterial strains with the potential to form cyanobacterial blooms or to be toxic that have been reported over the past half-century in Portugal. Strains of Microcystis aeruginosa are the most represented ones, many of them microcystin producers. Toxic M. aeruginosa strains have been isolated from lakes (Mira, Barrinha de Mira, and Blue), river sections (Tâmega and Guadiana), and reservoirs (Torrão, Vilar, Montargil, Patudos, Caia, Monte da Barca, Corgas, and Magos). Many other strains from potentially toxic species are listed, namely from Aphanizomenon gracile, Aphanizomenon flos-aquae, Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, Dolichospermum circinalis, Chrysosporum bergii, Raphidiopsis raciborskii or Planktothrix agardhii. Many of the isolated strains were able to produce cyanotoxins such as microcystins, saxitoxins, cylindrospermopsin, or anatoxin. Most isolates belong to the Portuguese culture collections ESSACC (Estela Sousa e Silva Algal Culture Collection); LEGE-CC (Blue Biotechnology and Ecotoxicology Culture Collection); and ACOI (Coimbra Collection of Algae). Despite many strains already having associated molecular data corroborating a correct identification, a large number of strains are still lacking DNA-based information for phylogenetic affiliation. The present checklist is intended to facilitate access to information regarding strains of potentially toxic cyanobacterial species from Portugal in order to contribute to a better understanding of species-specific HCBs at both regional and global scales.

1. Introduction

The occurrence of Harmful Cyanobacterial Blooms (HCBs) in freshwaters is increasing worldwide, promoted by global warming, extended warmer periods, and the intensification of extreme drought and precipitation events [1,2,3,4], along with increasing nutrient loads in aquatic ecosystems leading to eutrophication [5,6]. However, depending on the species, cyanobacteria have various mechanisms (e.g., vertical migration in the water column and/or the ability to fix nitrogen from the atmosphere) that give them a competitive advantage under a wide range of environmental conditions, namely low nitrogen levels or even nitrogen depletion in water [7,8,9] and high temperature and light intensities [10,11]. These different abilities linked to inter- and intraspecific diversity result in very different responses and growth rates to diverse environmental conditions (namely, diverse N:P ratios), making it extremely difficult to generalize which combination of factors promotes cyanobacterial blooms. In fact, cyanobacterial blooms can also occur in oligotrophic water bodies [6,12,13].
A major issue of concern is that cyanobacterial blooms can lead to diverse impacts not only on ecosystems but also on human health due to the potential of many cyanobacterial strains to produce toxins [14,15,16,17]. Nevertheless, the formation of blooms by non-toxic cyanobacterial strains can, per se, deeply impact the water quality and ecosystems. The formation of deleterious odor and taste, high turbidity, nutrient depletion, hypoxia, or anoxia can cause mortality or other adverse effects on aquatic organisms [18,19,20,21], thus affecting the aquatic food web. The most well-known cyanotoxins include hepatotoxins (such as microcystins and nodularin), neurotoxins (such as saxitoxins, anatoxins, and β-methylamino-L-alanine), cytotoxins (cylindrospermopsin), dermatotoxins (such as lyngbyatoxin and aplysiatoxins), and irritant toxins (lipopolysaccharide endotoxins) [22,23,24,25].
Therefore, HCBs can lead to serious consequences for humans, as previously reported over the past century [15], particularly during drought periods. For instance, between 1030 and 1931, up to 10,000 people developed gastroenteritis across the USA related to contaminated drinking water, also related to dense blooms of “blue-green algae” (cyanobacteria) [26,27]. Chlorination and other treatments were conducted to kill cyanobacteria and reduce the water’s taste and odor, but efforts only reduced the coliform bacterial counts to standard safe levels [26,27]. Today, it can be inferred that cyanotoxins could have been released from cyanobacterial cells during lysis and may have been the cause of gastroenteritis symptoms in the local population. However, in the 1960s, in Zimbabwe, gastroenteritis cases were also attributed to cyanobacterial blooms, and it was first hypothesized that toxins released during lysis of blooming “algal” cells could be, in fact, the cause of the illness [28]. In 1979, a major outbreak also occurred in Palm Island (Queensland, Australia) and led to the hospitalization of 148 people [29,30]. It was later presumably related to a bloom of a cylindrospermopsin-producing Raphidiopsis raciborskii [30]. In China, the recurrent cyanobacterial blooms of Microcystis spp. since the 1970s suggested a relationship between high microcystin levels and a higher prevalence of liver damage, colorectal and liver cancers, and death [31,32,33]. More recently, in 1988, another outbreak occurred in Brazil (Itaparica reservoir, Bahia), with more than 2000 cases, from which 88 were reported as fatal [34]. In Portugal, in 1993, the death of 20 hemodialysis patients was related to the use of municipal drinking water potentially contaminated with microcystins [35], with a similar case occurring in Brazil in 1996 [36,37]. These outbreaks occurred during drought periods when cyanobacterial blooms were occurring at the source reservoirs, and the deaths were later linked to microcystin toxicity in both cases.
Over the last three decades, the exponential increase in research, technology (particularly molecular methodologies), and publications on cyanotoxins has brought light to many of these cause–effect hypotheses relating cyanotoxins to several diseases, namely cancer [14,31,38] or even neurodegenerative diseases [39,40], not only by contact with contaminated water but also from airborne cyanobacterial toxins [41]. This highlights the importance and range of potential contamination by cyanotoxins worldwide.
The present review aims to provide a compilation of strains that have been isolated from Portuguese waterbodies over the past decades, with the intent to contribute to a worldwide track on the occurrence/reoccurrence of specific harmful cyanobacteria and enhance research on HCBs dynamics. The compiled information is expected to have an impact on future monitoring and water management in target aquatic systems.

2. The Advent of Molecular Approaches for Cyanobacterial Research

Presently, molecular methodologies have reached a point where cyanobacterial research has become much more robust, considering not only a phylogenetic point of view but also regarding intraspecific variability and related physiological diversity within each cyanobacterial species. For example, several taxonomical revisions have been proposed under the light of a polyphasic approach relying on the new phylogenetic information, particularly from conserved DNA regions such as the 16S rRNA gene [42,43,44,45]. Molecular information corroborated the differentiation of new orders such as Synechococcales (originally from the order Chroococcales), and Pseudanabaenales, Geitlerinematales, and Coelofasciculales (all previously included in the order Oscillatoriales) [45,46]. On the other hand, for Nostocales cyanobacteria, research on their molecular characterization has been particularly intense over the past 2 decades, with the definition of several new genera [47,48,49,50,51,52,53,54]. In fact, the ambiguity between some species and even genera from this order resulted in significant controversy [55,56], leading to a high probability of misidentifications when exclusively observing the morphology of cells under an optical microscope, as previously reported [56,57,58,59,60,61]. Moreover, intraspecific molecular diversity has been reported for many cyanobacterial species, namely for Portuguese strains of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides [62], resulting in diverse physiological responses [7], which further highlights the importance of isolation and maintenance of bloom-forming cyanobacterial strains for further research within target species [63]. Furthermore, the co-existence of toxic and non-toxic strains of Microcystis aeruginosa within the same bloom has also been reported for Portuguese freshwaters [64]. However, in spite of the increasing number of studies using molecular approaches, there is still a high percentage of isolated strains that remain uncharacterized by DNA sequences, particularly targeting 16S rRNA gene sequences (as observed for Portuguese Cyanobacterial Culture Collections, explored ahead). Fortunately, it has become very easy and economically accessible to overcome this problem and retrieve phylogenetic information from living strains through amplification (by Polymerase Chain Reaction (PCR)) and sequencing of conserved nucleotide regions (e.g., targeting the 16S rRNA gene or the 16S rRNA-23S rRNA ITS (internal transcribed spacer) region [65,66]) to assist for a correct identification and overcome morphological ambiguity. Over the past two decades, many other molecular methodologies were used in cyanobacterial studies [66,67], from fingerprinting based on repetitive sequences to discriminate cyanobacterial strains within a same species [62,68] to real-time/quantitative PCR [69,70,71,72], or Denaturing Gradient Gel Electrophoresis (DGGE) [65,73,74,75,76] which allows obtaining cyanobacterial information directly from environmental samples. However, more recent developments of High-Throughput Sequencing (HTS) have further allowed retrieving a large amount of data from a single sample and studying the whole cyanobacterial community, distinguishing cyanobacterial taxa at the species or even strain level [77,78,79] while also detecting cyanotoxins’ synthesis genes [80]. This has major implications for the study and modeling of the ecology of recurrent strains in a water body, particularly if they are potentially toxic. However, this reoccurrence pattern and toxic potential, obtained from HTS, can only be ascertained if there is previous information from isolated strains, in order to create a historical standpoint to compare with the obtained nucleotide sequences, highlighting the need for more isolates at a regional level or on some target species [63,81].
Regarding cyanotoxins, the biosynthesis gene clusters for the most well-known cyanotoxins are available [82,83], namely for microcystins [84,85], nodularin [86], saxitoxin [87], anatoxin-a [88], and cylindrospermopsin [89]. This has allowed us to infer the toxicity potential of a bloom or a particular strain, even if the toxins are not being produced at that time [90], as the production of cyanotoxins can be affected by several factors such as temperature [91,92], nutrients [93,94,95], osmotic stress [91,96], and/or light intensity [97,98].

3. Portuguese Cyanobacterial Culture Collections and Strains of Potentially Harmful Bloom-Forming Cyanobacteria

Culture Collections of Cyanobacteria (CCCs) play a central role, not only as static repositories, but also as an open resource available to the community for the most diverse cyanobacterial studies. CCCs provide living cyanobacteria that can be studied for real-time information on molecular data/genetic diversity, but also phenotypic variation and physiological plasticity, co-occurring bacteria, toxic potential and production of toxins or other bioactive metabolites [62,99,100,101,102,103]. CCCs are also crucial for cyanobacterial phylogenetic studies and taxonomical revisions [47,52,104,105]. In Portugal, most available cyanobacterial strains belong to three main culture collections: (1) the Estela Sousa e Silva Algal Culture Collection (ESSACC) [106]; (2) the Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) (https://legeculturecollection.ciimar.up.pt/ (accessed on 8 July 2025 [107]; and (3) the Coimbra Collection of Algae (ACOI) (http://acoi.ci.uc.pt/ (accessed on 10 July 2025) [108]. The Estela Sousa e Silva Algal Culture Collection, presently located at the National Health Institute Dr. Ricardo Jorge (Lisbon), was created in 1956, and it was originally a collection of marine phytoplankton (mainly dinoflagellate strains). From 1996 on, the collection also started to include freshwater cyanobacterial strains from blooms occurring in Portuguese water bodies during monitoring campaigns from a national monitoring program, and now these represent the majority of the strains maintained at the ESSACC [106]. The Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) was created in 1991 with strains of Microcystis aeruginosa isolated from Portuguese freshwater bodies [109] and has grown in size and diversity over the following years. It is maintained at CIIMAR—(Interdisciplinary Centre for Marine and Environmental Research, University of Porto), and it has the purpose of not only preserving biodiversity but also promoting innovative research on taxonomy and biotechnology using its strains [107]. The Coimbra Collection of Algae (ACOI) was created in 1972 and it is maintained at the University of Coimbra, containing many strains from numerous cyanobacterial taxa [108]. The Bank of Algae and Cyanobacteria of the Azores (BACA) culture collection is a recent culture collection maintained at the University of Azores (https://baca.uac.pt/catalog/ (accessed on 13 July 2025), with strains isolated since 2013 [110]. An important feature of the culture collections LEGE-CC, ESSACC and BACA is that most isolated strains already have nucleotide sequences (86% for LEGE [107], 59% for ESSACC [106] and 65% for BACA [110]), at least for the 16S rRNA gene, which is a crucial basis to further study the molecular diversity between and within bloom-forming cyanobacterial species retrieved from Portuguese aquatic systems, even if the strain culture no longer available. However, the ACOI does not have any available information on nucleotide sequences for its isolated cyanobacterial strains. Therefore, an effort is still needed to increase the number of nucleotides from the remaining isolates maintained in the Portuguese Cyanobacterial Culture Collections.
Most relevant bloom-forming and potentially harmful cyanobacterial strains isolated from Portuguese freshwaters belong to these Portuguese CCCs and are compiled in Table 1 and Table 2. The main criteria used for the checklist of strains compiled in this review led to the exclusion of strains that (1) were not identified up to the species level; (2) were lacking information regarding the origin or collection date; or (3) belonged to species not being relevant as bloom-forming nor as potentially toxic. The majority of the listed strains fulfilling the above criteria belong to the Culture Collections ESSACC, LEGE-CC, and ACOI, along with some strains from BACA. However, in spite of not being part of institutional culture collections, there are also relevant strains that have been isolated and cultured in other institutions, such as the University of Aveiro (UAV) [7,62] and the University of Trás-os-Montes and Alto Douro (UTAD) [111].
An overview of the present checklist shows a general increasing trend for isolated strains between 1991 and 2005, after which it started to decrease, indicating less effort on strain isolation, particularly over the past decade. In fact, recent studies on Portuguese cyanobacteria have been exploring information retrieved from established cultured strains [77,107,109,131,132]. The Montargil reservoir (Central Portugal) was the original water body from which more strains have been isolated (<30). In fact, this reservoir has a strong background on the occurrence of toxic cyanobacteria, particularly Nostocacean species [133,134]. Since its construction in 1958, the Montargil reservoir has been mainly used for hydroelectricity, agriculture, and industry, reaching a full capacity of about 164 × 103 m3. Cyanobacterial blooms have been reported since 1996 at the Montargil reservoir, with the alternate dominance of Aphanizomenon flos-aquae and Microcystis aeruginosa from spring to autumn, with associated hepatotoxicity, from May to October 1996 [133]. In 2012, high densities of Raphidiopsis raciborskii were also reported [134]. Toxic Microcystis aeruginosa (producing microcystins) and Cuspidothrix issatschenkoi (producing PSP toxins/saxitoxins), as well as non-toxic Microcystis aeruginosa and Aph. flos-aquae, have been isolated from this reservoir (Table 1 and Table 2). On the other hand, 17 isolated strains have been isolated from Vela Lake (Central Western Portugal), a shallow freshwater body with a longtime historical occurrence of cyanobacterial blooms [9,62,70,77,135], many of which are toxic (production of microcystins) [134,136]. Many of the reported blooms are dominated by Microcystis spp. [9,134,135,136], but there are also reports of Raphidiopsis raciborskii [70,126], Aphanizomenon flos-aquae [9], Aph. Gracile, and Sphaerospermopsis aphanizomenoides being dominant [77].
From the checklist, Microcystis aeruginosa clearly exhibited the highest number of isolated strains (>70; see Table 1), followed by Aphanizomenon gracile and Aphanizomenon flos-aquae (with less than 20 strains each; see Table 2). This imbalanced distribution is attributed to the first studies in Portugal regarding cyanobacterial blooms, mainly targeting microcystins, led by Vasconcelos back in the 1990s [109,136,137,138,139,140,141,142]. Many of the available M. aeruginosa strains were isolated by him and his group members from LEGE [107]. However, after 1996, most strains are from the ESSACC, isolated during monitoring campaigns from the first national program monitoring Cyanobacteria, led by the National Health Institute Dr. Ricardo Jorge, the present owner of the ESSACC [106]. The origin of isolated M. aeruginosa strains includes reservoirs (Montargil, Torrão, Magos, Maranhão, Picote, Vilar, Bemposta, Monte da Rocha, Agolada de Baixo, Roxo, Caia, Bravura, Funcho, Monte da Barca, Corgas, Odivelas, and Patudos reservoirs) but also lakes (Barrinha de Mira, Mira, Teixoeiras, Braças, Vela, and Blue Lakes) and river sections (Guadiana and Tâmega Rivers). In fact, blooms of Microcystis spp. (predominantly M. aeruginosa) have been reported from many of these lakes and reservoirs, but also from the Aguieira, Torrão, and Carrapatelo reservoirs and WWTPs, often with the presence of microcystins [9,64,134,136,141,142,143,144]. Although the checklist includes some M. aeruginosa strains that have shown to be non-toxic (Table 1), most isolated strains have proven to be able to produce microcystins [109,110,115,143]. For Aphanizomenon gracile, most strains were from the ESSACC [106] and UA [7,62], with the contribution of a strain from the BACA [106]. These strains were collected from two lakes (Vela Lake and Santiago Lake), the Mondego River, and seven reservoirs (Peneireiro, Crato, Patudos, Tabueira, Enxoé, Odivelas, and Monte Novo reservoirs). Several blooms of Aph. gracile have been reported from Portugal in many of these and other water bodies, including the Alvito and Roxo reservoirs [7,128,134,145]. Interestingly, the recurrence of bloom-forming Aph. gracile at Vela Lake has also been reported using recent molecular approaches [77]. Strains of Aph. gracile have proven to produce saxitoxins (STX)/PSP toxins [146,147] and cylindrospermopsin [148]. In fact, the strains Aph. gracile BACA0041 and LMECYA 40 were found to be STX producers [110,147].
The present checklist of Nostocacean cyanobacteria (Table 2) also includes a considerable number of strains from invasive species such as Raphidiopsis raciborskii, Cuspidothrix issatschenkoi, and Sphaerospermopsis aphanizomenoides, which represents a major contribution to global cyanobacterial research, given the lack of worldwide available strain information for these last two species [63]. C. issatschenkoi strains have been isolated from the Maranhão, Magos, and Montargil reservoirs [58,107], but also from Vela Lake [7,62]. Moreover, C. isstaschenkoi LMECYA 31, isolated from Montargil reservoir, proved to be an STX producer [58,133,143]. The identification of this strain initially as Aph. flos-aquae highlights the problem of misidentifications of similar species to properly track their ecology and toxicity, and how DNA-based characterization can overcome this issue when dealing with strains, allowing a posterior correction [58]. Moreover, the recurrence of C. issatschenkoi UADFA1 at Vela Lake could be inferred from molecular approaches using 16S rRNA gene metabarcoding [77]. The production of anatoxin-a has also been reported for C. issatschenkoi [59,149], which may represent a further source of concern. Most Sphaerospermopsis aphanizomenoides strains were isolated from Vela Lake [7,62], but there is also a strain from the Maranhão reservoir [129]. There is no information regarding the toxicity of these strains. In fact, many strains of this species have been shown to be non-toxic [150,151,152], although the production of microcystins has been reported [153]. The recurrence of sequence-matching strains of Sphaerospermopsis aphanizomenoides forming blooms has also been observed at Vela Lake in other years through 16S rRNA gene metabarcoding [77], showing the persistence of this species to form blooms at this shallow lake and highlighting the potential of HTS approaches for assessing the recurrence of cyanobacterial strains in target water bodies. This is even more pertinent if we consider the possibility of the lack of previous non-detection being attributed to misidentifications, as previously reported for this species due to its morphological similarity to other Aphanizomenon spp. and its intraspecific phenotypic diversity and plasticity [7,62]. The listed strains of Raphidiopsis raciborskii were shown to be isolated from the Odivelas and Maranhão reservoirs, Ardila River, and the water treatment plant (WTP) from the Roxo reservoir [107,114,126,127,128]. Blooms of R. raciborskii have been reported across Portugal, including at the Roxo, Caia, and Montargil reservoirs and Vela Lake [70,101,126,128,134], but cylindrospermopsin production potential was only detected through Real-Time PCR [70]. In fact, this species is well known for its toxic potential and production of cylindrospermopsin [30] and saxitoxins [154,155], though not all strains produce these toxins [156], as observed for most Portuguese isolated strains [70,101,126,128]. Nevertheless, Saker et al. reported a lethal toxicity of strains in bioassays, despite the negative results for cylindrospermopsin, microcystins and saxitoxins production [100,126]. The presence of R. raciborskii in Portuguese waterbodies has been reported since 2003 [126], particularly in Southern and Central Portugal [157]. However, Moreira et al. (2022) have linked the rise in temperature (from climate change) to the proliferation of R. raciborskii records during warmer years and its spread to colder freshwaters from Northern Portugal [157]. Chrysosporum bergii has also been considered as an invasive cyanobacterial species [158], and it has been linked to the production of cylindrospermopsin [159] despite the several non-toxic strains that have been reported [61]. The listed C. bergii strain was isolated from a small shallow lake [106,122]. However, there are no studies on the invasive trend of C. bergii in Portugal.
More strains from the Nostocales order are listed in Table 2, including Anabaena cylindrica retrieved from the Valinhos and Maranhão reservoirs and from wetlands, namely rice paddies [107,108,111,121]. There is little available information regarding the toxic potential of this species, besides the production of microcystin-LR from two strains [160], but other strains have proven not to produce the most common cyanotoxins [161]. Although there is no available information on An. oscillarioides and An. sphaerica toxicity, these species were isolated from ponds and rice fields and are usually found in mats, similarly to An. cylindrica [162]. The isolated strains of Anabaena lapponica are from the ACOI collection and were collected from ponds at Serra da Estrela [108]. Strains of this species have been shown to have the potential to produce cylindrospermopsin [161]. Anabaenopsis circularis isolated strains were retrieved from a lake at Sintra [106], and this species has been reported to cause allergies [163]. Aphanizomenon flos-aquae isolates are from the Torrão, Montargil, Monte Novo, Divor, Funcho, Magos, and Póvoa e Meadas reservoirs [68,106,122]. Aph. flos-aquae has been reported from several Portuguese reservoirs, including the Alvito, Odivelas, and Crestuma reservoirs and Vela Lake [19,134,145,164], showing the ability to produce saxitoxins [165,166]. However, strains of Aph. flos-aquae have also been reported as cylindrospermopsin producers [167]. Dolichospermum circinale, D. flos-aquae, and D. spiroides have been reported in Portuguese reservoirs and small lakes [145]. For D. circinale, there have been documented non-toxic strains and saxitoxin-producing strains [166,168]. Strains of D. flos-aquae have shown potential to produce cyanotoxins for decades, namely microcystins [161,169] and anatoxins [170,171]. D. spiroides strains have been reported as having potential for anatoxin production [172].
Regarding non-Nostocales cyanobacteria, besides M. aeruginosa strains, there are also isolates of important potentially toxic Oscillatorialles species such as Planktothrix agardhii. P. agardhii strains were isolated from the Enxoé, São Domingos, Magos, and Patudos reservoirs [106,115,117]. Most of the isolated Portuguese strains proved to be non-toxic (Table 1), as recorded for many other P. agardhii strains [161]. However, microcystins can be produced by Planktothrix agardhii [161,173]. Besides the known toxicity in Planktothrix spp., several of the isolated P. mougeotii strains have also shown antibiotic resistance, which may pose an additional concern in the dissemination of environmental resistome during blooms, namely through transposon horizontal transfer [117]. Lyngbya major has been isolated from Vela Lake, and this species has been associated with the production of lyngbyatoxins and allergic reactions [174]. Microcoleus autumnalis and Microcoleus favosus (previously Phormidium autumnale and Phormidium favosum, respectively) have also been reported as potentially toxic, producing anatoxin-a and being linked to dog deaths [175,176,177,178]. Pseudanabaena limnetica strains were isolated from Caiado Lake in Azores, but also from the Roxo reservoir and other reservoirs [128,145]. P. limnetica has been recorded as an anatoxin-a producer [179]. Therefore, the checklist compiled in the present review contains many strains of potentially toxic cyanobacterial species with relevance to the study of HCBs at regional and global scales.

4. Concluding Remarks and Future Perspectives

The present compilation of data regarding potentially harmful cyanobacterial strains isolated from Portuguese freshwaters contributes to fostering further research on the occurrence of species-specific cyanobacterial blooms not only in Portugal but also at an international level, ultimately aiming to help mitigate and promptly take preventive measures for massive HCBs that pose risks to human health.
The high diversity of strains from the same species coexisting in a same bloom, namely toxic and non-toxic strains, highlights the importance of isolated strains to improve methodologies to detect them and better understand their ecology. The Portuguese checklist included diverse species, from the most common Microcystis aeruginosa to filamentous Nostocacean cyanobacteria such as Raphidiopsis raciborskii, Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, Aphanizomenon gracile, Aphanizomenon flos-aquae, Dolichospermum flos-aquae, and Dolichospermum circinalis. Many of the isolated strains were found to be able to produce cyanotoxins such as microcystins, saxitoxins, cylindrospermopsin, or anatoxin. An important remark is that it would be essential to retrieve phylogenetic information from all cyanobacterial strains maintained in Portuguese cyanobacterial culture collections, as most of them are still not identified to the species level and thus were not included in the present checklist. Additionally, while working with historical records, it may become confusing to match data from the same strain when different species names have been given in different papers across time due to misidentifications or taxonomical revisions. Some of the listed Portuguese isolated strains have been first identified as a species and later re-identified as another species, using molecular information (e.g., Aphanizomenon sp. LMECYA 31 [119], subsequently identified as Aphanizomenon flos-aquae LMECYA 31 [133] and definitively Aphanizomenon issatschenkoi LMECYA 31 [58], now updated to Cuspidothrix issatschenkoi LMECYA 31 in the present review). Another additional concern can be the different codes attributed to listed strains in different publications, making it even harder to merge historical ecological and toxicological information (e.g., Cuspidothrix issatschenkoi LEGE 00247 [107], also previously named Anabaena sp. J20 [114]).
This review also aims to make isolated strains from Portugal more visible and traceable in global Cyanobacteria databases. This checklist can be used to expand online databases such as AlgaeBase (https://www.algaebase.org, accessed on 14 July 2025) or CyanoDB (http://www.cyanodb.cz/, accessed on 14 July 2025), or even more general biodiversity databases such as the Global Biodiversity Information Facility (https://www.gbif.org/, accessed on 14 July 2025). Information from the many smaller Cyanobacterial Culture Collections across the world should also be centralized online, with compiled global data readily available to support further research on cyanobacterial genetic variations and the diversity of ecotypes from diverse regions. This could greatly reinforce the database for future studies, particularly on the recurrence of HCBs and for modeling purposes, which should be calibrated at a regional level using historical data from the target water bodies. Only by focusing on diversity, it will be possible to effectively model, predict, and mitigate HCB occurrences, as previously highlighted in other works [63,81,180]. DNA-based information is fundamental for every identification, allowing to preserve crucial strain information if the culture becomes unavailable. As a final remark, the results of this study may have important implications for monitoring and management strategies, taking advantage of comprehensive strain collections and molecular data to support accurate identification and risk assessment.

Funding

This research was funded by FCT (Fundação para a Ciência e Tecnologia), through national funds (OE), as a research contract for D.R.F. after the DL 57/2016, Grant number 5390EEC, ProjectReference DL57/2016/CP1482/CT0034 (https://doi.org/10.54499/DL57/2016/CP1482/CT0034, accessed on 9 September 2025).

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Paerl, H.W.; Fulton, R.S.; Moisander, P.H.; Dyble, J. Harmful Freshwater Algal Blooms, with an Emphasis on Cyanobacteria. Sci. World J. 2001, 1, 76–113. [Google Scholar] [CrossRef]
  2. Paerl, H.W.; Barnard, M.A. Mitigating the Global Expansion of Harmful Cyanobacterial Blooms: Moving Targets in a Human- and Climatically-Altered World. Harmful Algae 2020, 96, 101845. [Google Scholar] [CrossRef] [PubMed]
  3. Havens, K.E.; Paerl, H.W. Climate Change at a Crossroad for Control of Harmful Algal Blooms. Environ. Sci. Technol. 2015, 49, 12605–12606. [Google Scholar] [CrossRef] [PubMed]
  4. Scholz, S.N.; Esterhuizen-Londt, M.; Pflugmacher, S. Rise of Toxic Cyanobacterial Blooms in Temperate Freshwater Lakes: Causes, Correlations and Possible Countermeasures. Toxicol. Environ. Chem. 2017, 99, 543–577. [Google Scholar] [CrossRef]
  5. Paerl, H.W.; Paul, V.J. Climate Change: Links to Global Expansion of Harmful Cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef]
  6. O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The Rise of Harmful Cyanobacteria Blooms: The Potential Roles of Eutrophication and Climate Change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
  7. de Figueiredo, D.R.; Gonçalves, A.M.M.; Castro, B.B.; Gonçalves, F.; Pereira, M.J.; Correia, A. Differential Inter-and Intra-Specific Responses of Aphanizomenon Strains to Nutrient Limitation and Algal Growth Inhibition. J. Plankton Res. 2011, 33, 1606–1616. [Google Scholar] [CrossRef]
  8. Vis, C.; Cattaneo, A.; Hudon, C. Shift from Chlorophytes to Cyanobacteria in Benthic Macroalgae along a Gradient of Nitrate Depletion. J. Phycol. 2008, 44, 38–44. [Google Scholar] [CrossRef]
  9. de Figueiredo, D.R.; Reboleira, A.S.S.P.; Antunes, S.C.; Abrantes, N.; Azeiteiro, U.; Gonçalves, F.; Pereira, M.J. The Effect of Environmental Parameters and Cyanobacterial Blooms on Phytoplankton Dynamics of a Portuguese Temperate Lake. Hydrobiologia 2006, 568, 145–157. [Google Scholar] [CrossRef]
  10. Jöhnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J.M. Summer Heatwaves Promote Blooms of Harmful Cyanobacteria. Glob. Change Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef]
  11. Paerl, H.W.; Huisman, J. Climate: Blooms like It Hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed]
  12. Cederwall, J.; Cott, P.A. Rapidly Increasing Cyanobacteria Blooms in the Subarctic Great Slave Lake: Observations from Indigenous, Local, and Scientific Knowledge. Sci. Rep. 2025, 15, 24492. [Google Scholar] [CrossRef] [PubMed]
  13. Li, X.; Tikhonova, I.V.; Potapov, S.A.; Krasnopeev, A.Y.; Zhuchenko, N.A.; Niao, X.; Wang, L.; Sorokovikova, E.G.; Wang, W.; Belykh, O.I. World’s Largest Oligotrophic Lake Baikal: Concerns about Cyanobacterial Blooms and Potential Microcystin Producers along the Littoral Zone. Harmful Algae 2025, 144, 102841. [Google Scholar] [CrossRef] [PubMed]
  14. de Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.M.; Pereira, M.J. Microcystin-Producing Blooms—A Serious Global Public Health Issue. Ecotoxicol. Environ. Saf. 2004, 59, 151–163. [Google Scholar] [CrossRef]
  15. Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global Geographical and Historical Overview of Cyanotoxin Distribution and Cyanobacterial Poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
  16. Wood, R. Acute Animal and Human Poisonings from Cyanotoxin Exposure—A Review of the Literature. Environ. Int. 2016, 91, 276–282. [Google Scholar] [CrossRef]
  17. Stewart, I.; Webb, P.M.; Schluter, P.J.; Shaw, G.R. Recreational and Occupational Field Exposure to Freshwater Cyanobacteria—A Review of Anecdotal and Case Reports, Epidemiological Studies and the Challenges for Epidemiologic Assessment. Environ. Heal. Glob. Access Sci. Source 2006, 5, 6. [Google Scholar]
  18. Vasconcelos, V. Cyanobacteria Toxins: Diversity and Ecological Effects. Limnetica 2001, 20, 45–58. [Google Scholar] [CrossRef]
  19. de Figueiredo, D.R.; Antunes, S.C.; Pereira, M.J.; Gonçalves, F. Chronic Effects of Aphanizomenon flos-aquae on the Survival and Reproduction of Daphnids. Fresenius Environ. Bull. 2004, 13, 665–670. [Google Scholar]
  20. Moustaka-Gouni, M.; Sommer, U. Effects of Harmful Blooms of Large-Sized and Colonial Cyanobacteria on Aquatic Food Webs. Water 2020, 12, 1587. [Google Scholar] [CrossRef]
  21. Schwarzenberger, A. Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia. Toxins 2022, 14, 770. [Google Scholar] [CrossRef]
  22. Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
  23. Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
  24. Carmichael, W.W. Cyanobacteria Secondary Metabolites–the Cyanotoxins. J. Appl. Bacteriol. 1992, 72, 445–459. [Google Scholar] [CrossRef]
  25. Moreira, C.; Vasconcelos, V.; Antunes, A. Cyanobacterial Blooms: Current Knowledge and New Perspectives. Earth 2022, 3, 127–135. [Google Scholar] [CrossRef]
  26. Veldee, M.V. An Epidemiological Study of Suspected Water-Borne Gastroenteritis. Am. J. Public Health 1931, 21, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
  27. Miller, A.P.; Tisdale, E.S. Public Health Engineering: Epidemic of Intestinal Disorders in Charleston, W. Va., Occurring Simultaneously with Unprecedented Water Supply Conditions. Am. J. Public Health Nations Health 1931, 21, 198–200. [Google Scholar] [CrossRef] [PubMed]
  28. Zilberg, B. Gastroenteritis in Salisbury. European Children—A Five-Year Study. Cent. Afr. J. Med. 1966, 12, 164–168. [Google Scholar] [PubMed]
  29. Bourke, A.T.C.; Hawes, R.B.; Neilson, A.; Stallman, N.D. An Outbreak of Hepato-Enteritis (the Palm Island Mystery Disease) Possibly Caused by Algal Intoxication. Toxicon 1983, 21, 45–48. [Google Scholar] [CrossRef]
  30. Griffiths, D.J.; Saker, M.L. The Palm Island Mystery Disease 20 Years on: A Review of Research on the Cyanotoxin Cylindrospermopsin. Environ. Toxicol. 2003, 18, 78–93. [Google Scholar] [CrossRef]
  31. Zhou, L.; Yu, H.; Chen, K. Relationship Between Microcystin in Drinking Water and Colorectal Cancer. Biomed. Environ. Sci. 2002, 15, 166–171. [Google Scholar]
  32. Ueno, Y.; Nagata, S.; Tsutsumi, T.; Hasegawa, A.; Watanabe, M.F.; Park, H.-D.; Chen, G.-C.; Chen, G.; Yu, S.-Z. Detection of Microcystins, a Blue-Green Algal Hepatotoxin, in Drinking Water Sampled in Haimen and Fusui, Endemic Areas of Primary Liver Cancer in China, by Highly Sensitive Immunoassay. Carcinogenesis 1996, 17, 1317–1321. [Google Scholar] [CrossRef]
  33. Yan, L.; Ji-an, C.; Qing, Z.; Chaowen, P.; Zhiqun, Q.; Renping, Z.; Weiqun, S. A Cross-Sectional Investigation of Chronic Exposure to Microcystin in Relationship to Childhood Liver Damage in the Three Gorges Reservoir Region, China. Environ. Health Perspect. 2011, 119, 1483–1488. [Google Scholar] [CrossRef]
  34. Teixeira, M.G.L.C.; Costa, M.C.N.; Carvalho, V.L.P.D.; Pereira, M.S.; Hager, E. Gastroenteritis Epidemic in the Area of the Itaparica Dam, Bahia, Brazil. Bull. Pan Am. Health Organ. 1993, 27, 244–253. [Google Scholar] [PubMed]
  35. Araújo, F.D.O. Effects of Cyanobacteria on Drinking Water and Human Health: An Epidemiologic Study in Évora, Portugal. Assessing and Managing Health Risks from Drinking Water Contamination: Approaches and Applications; IAHS Publication: Oxford, UK, 1995; Volume 233, pp. 101–110. [Google Scholar]
  36. Pouria, S.; Andrade, A.D.; Barbosa, J.; Cavalcanti, R.L.; Barreto, V.T.S.; Ward, C.J.; Preiser, W.; Poon, G.K.; Neild, G.H.; Codd, G.A. Fatal Microcystin Intoxication in Haemodialysis Unit in Caruaru, Brazil. Lancet 1998, 352, 21–26. [Google Scholar] [CrossRef] [PubMed]
  37. Azevedo, S.M.F.O.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; Eaglesham, G.K. Human Intoxication by Microcystins during Renal Dialysis Treatment in Caruaru—Brazil. Toxicology 2002, 181–182, 441–446. [Google Scholar] [CrossRef] [PubMed]
  38. Svirčev, Z.; Drobac, D.; Tokodi, N.; Mijović, B.; Codd, G.A.; Meriluoto, J. Toxicology of Microcystins with Reference to Cases of Human Intoxications and Epidemiological Investigations of Exposures to Cyanobacteria and Cyanotoxins. Arch. Toxicol. 2017, 91, 621–650. [Google Scholar] [CrossRef]
  39. Lopicic, S.; Svirčev, Z.; Malešević, T.P.; Kopitović, A.; Ivanovska, A.; Meriluoto, J. Environmental Neurotoxin β-N-Methylamino-L-Alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022, 10, 2418. [Google Scholar] [CrossRef]
  40. Nugumanova, G.; Ponomarev, E.D.; Askarova, S.; Fasler-Kan, E.; Barteneva, N.S. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins 2023, 15, 233. [Google Scholar] [CrossRef]
  41. Morris, Z.J.; Stommel, E.W.; Metcalf, J.S. Airborne Cyanobacterial Toxins and Their Links to Neurodegenerative Diseases. Molecules 2025, 30, 2320. [Google Scholar] [CrossRef]
  42. Komárek, J. Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches. Algae 2006, 21, 349–375. [Google Scholar] [CrossRef]
  43. Palinska, K.A.; Surosz, W. Taxonomy of Cyanobacteria: A Contribution to Consensus Approach. Hydrobiologia 2014, 740, 1–11. [Google Scholar] [CrossRef]
  44. Komárek, J. A Polyphasic Approach for the Taxonomy of Cyanobacteria: Principles and Applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
  45. Komárek, J.; Kastovsky, J.; Mares, J.; Johansen, J.R. Taxonomic Classification of Cyanoprokaryotes (Cyanobacterial Genera) 2014, Using a Polyphasic Approach. Preslia 2014, 86, 295–335. [Google Scholar]
  46. Komárek, J. Taxonomic Review of Cyanobacteria 2021/2022 According to Polyphasic Evaluation. Fottea 2023, 23, 141–148. [Google Scholar] [CrossRef]
  47. Rajaniemi, P.; Komárek, J.; Willame, R.; Hrouzek, P.; Kaštovská, K.; Hoffmann, L.; Sivonen, K. Taxonomic Consequences from the Combined Molecular and Phenotype Evaluation of Selected Anabaena and Aphanizomenon Strains. Algol. Stud. Arch. Hydrobiol. 2005, 117, 371–391. [Google Scholar] [CrossRef]
  48. Rajaniemi, P.; Hrouzek, P.; Kastovska, K.; Willame, R.; Rantala, A.; Hoffmann, L.; Komarek, J.; Sivonen, K. Phylogenetic and Morphological Evaluation of the Genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 2005, 55, 11–26. [Google Scholar] [CrossRef]
  49. Komárek, J.; Komárková, J. Diversity of Aphanizomenon-like Cyanobacteria. Czech Phycol. 2006, 6, 1–32. [Google Scholar]
  50. Komárek, J.; Zapomelová, E. Planktic Morphospecies of the Cyanobacterial Genus Anabaena = subg. Dolichospermum—1. Part: Coiled Types. Fottea 2007, 7, 1–31. [Google Scholar] [CrossRef]
  51. Komárek, J.; Zapomelová, E. Planktic Morphospecies of the Cyanobacterial Genus Anabaena = subg. Dolichospermum—2. Part: Straight Types. Fottea 2008, 8, 1–14. [Google Scholar] [CrossRef]
  52. Zapomělová, E.; Jezberová, J.; Hrouzek, P.; Hisem, D.; Reháková, K.; Komárková, J. Polyphasic Characterization of Three Strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and Their Reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). J. Phycol. 2009, 45, 1363–1373. [Google Scholar] [CrossRef]
  53. Zapomělová, E.; Skácelová, O.; Pumann, P.; Kopp, R.; Janeček, E. Polyphasic Characterization of Dolichospermum spp. and Sphaerospermopsis spp. (Nostocales, Cyanobacteria): Morphology, 16S rRNA Gene Sequences and Fatty Acid and Secondary Metabolite Profiles (45:1363-73). J. Phycol. 2010, 46, 415. [Google Scholar] [CrossRef]
  54. Zapomělová, E.; Hrouzek, P.; Řezanka, T.; Jezberová, J.; Řeháková, K.; Hisem, D.; Komárková, J. Polyphasic Characterization of Dolichospermum spp. and Sphaerospermopsis spp. (Nostocales, Cyanobacteria): Morphology, 16S rRNA Gene Sequences and Fatty Acid and Secondary Metabolite Profiles. J. Phycol. 2011, 47, 1152–1163. [Google Scholar] [CrossRef]
  55. Hindák, F. Morphological Variation of Four Planktic Nostocalean Cyanophytes—Members of the Genus Aphanizomenon or Anabaena? Hydrobiologia 2000, 438, 107–116. [Google Scholar] [CrossRef]
  56. Cirés, S.; Ballot, A. A Review of the Phylogeny, Ecology and Toxin Production of Bloom-Forming Aphanizomenon spp. and Related Species within the Nostocales (Cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef] [PubMed]
  57. Li, R.; Carmichael, W.W.; Liu, Y.; Watanabe, M.M. Taxonomic Re-Evaluation of Aphanizomenon flos-aquae NH-5 Based on Morphology and 16S rRNA Gene Sequences. Hydrobiologia 2000, 438, 99–105. [Google Scholar] [CrossRef]
  58. Li, R.; Carmichael, W.W.; Pereira, P. Morphological and 16s rRNA Gene Evidence for Reclassification of the Paralytic Shellfish Toxin Producing Aphanizomenon flos-aquae LMECYA 31 as Aphanizomenon issatschenkoi (Cyanophyceae). J. Phycol. 2003, 39, 814–818. [Google Scholar] [CrossRef]
  59. Hodoki, Y.; Ohbayashi, K.; Kobayashi, Y.; Takasu, H.; Okuda, N.; Nakano, S.I. Anatoxin-a-Producing Raphidiopsis mediterranea Skuja var. grandis Hill Is One Ecotype of Non-Heterocytous Cuspidothrix issatschenkoi (Usačev) Rajaniemi et al. in Japanese Lakes. Harmful Algae 2013, 21–22, 44–53. [Google Scholar] [CrossRef]
  60. Horváth, N.; Katona, S.; Berthold, D.E.; Molnár, Z.; Bálint, P.; Ördög, V.; Pap, B.; Maróti, G.; Bánáti, F.; Szenthe, K.; et al. The Reclassification of 37 Strains from The Mosonmagyaróvár Algal Culture Collection, Hungary, Which Were Previously Identified as Anabaena (Cyanobacteria, Nostocaceae). S. Afr. J. Bot. 2019, 123, 333–340. [Google Scholar] [CrossRef]
  61. Ballot, A.; Ramm, J.; Rundberget, T.; Kaplan-Levy, R.N.; Hadas, O.; Sukenik, A.; Wiedner, C. Occurrence of Non-Cylindrospermopsin-Producing Aphanizomenon ovalisporum and Anabaena bergii in Lake Kinneret (Israel). J. Plankton Res. 2011, 33, 1736–1746. [Google Scholar] [CrossRef]
  62. de Figueiredo, D.R.; Alves, A.; Pereira, M.J.; Correia, A. Molecular Characterization of Bloom-Forming Aphanizomenon Strains Isolated from Vela Lake (Western Central Portugal). J. Plankton Res. 2010, 32, 239–252. [Google Scholar] [CrossRef]
  63. de Figueiredo, D.R. The Need to Increase Strain-Specific DNA Information from the Invasive Cyanobacteria Sphaerospermopsis aphanizomenoides and Cuspidothrix issatschenkoi. Water 2025, 17, 579. [Google Scholar] [CrossRef]
  64. Saker, M.L.; Fastner, J.; Dittmann, E.; Christiansen, G.; Vasconcelos, V.M. Variation between Strains of the Cyanobacterium Microcystis aeruginosa Isolated from a Portuguese River. J. Appl. Microbiol. 2005, 99, 749–757. [Google Scholar] [CrossRef] [PubMed]
  65. Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR Primers to Amplify 16S rRNA Genes from Cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef] [PubMed]
  66. Moreira, C.; Ramos, V.; Azevedo, J.; Vasconcelos, V. Methods to Detect Cyanobacteria and Their Toxins in the Environment. Appl. Microbiol. Biotechnol. 2014, 98, 8073–8082. [Google Scholar] [CrossRef] [PubMed]
  67. Moreira, C.; Vasconcelos, V.; Antunes, A. Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins. Mar. Drugs 2013, 11, 4350–4369. [Google Scholar] [CrossRef]
  68. Valério, E.; Chambel, L.L.; Paulino, S.S.; Faria, N.N.; Pereira, P.; Tenreiro, R.R.; Valerio, E. Molecular Identification, Typing and Traceability of Cyanobacteria from Freshwater Reservoirs. Microbiology 2009, 155, 642–656. [Google Scholar] [CrossRef]
  69. Martins, A.; Moreira, C.; Vale, M.; Freitas, M.; Regueiras, A.; Antunes, A.; Vasconcelos, V. Seasonal Dynamics of Microcystis spp. and Their Toxigenicity as Assessed by qPCR in a Temperate Reservoir. Mar. Drugs 2011, 9, 1715–1730. [Google Scholar] [CrossRef]
  70. Moreira, C.; Martins, A.; Azevedo, J.; Freitas, M.; Regueiras, A.; Vale, M.; Antunes, A.; Vasconcelos, V. Application of Real-Time PCR in the Assessment of the Toxic Cyanobacterium Cylindrospermopsis raciborskii Abundance and Toxicological Potential. Appl. Microbiol. Biotechnol. 2011, 92, 189–197. [Google Scholar] [CrossRef]
  71. Martins, A.; Vasconcelos, V. Use of qPCR for the Study of Hepatotoxic Cyanobacteria Population Dynamics. Arch. Microbiol. 2011, 193, 615–627. [Google Scholar] [CrossRef]
  72. Koskenniemi, K.; Lyra, C.; Rajaniemi-Wacklin, P.; Jokela, J.; Sivonen, K. Quantitative Real-Time PCR Detection of Toxic Nodularia Cyanobacteria in the Baltic Sea. Appl. Environ. Microbiol. 2007, 73, 2173–2179. [Google Scholar] [CrossRef] [PubMed]
  73. Kolmonen, E.; Sivonen, K.; Rapala, J.; Haukka, K. Diversity of Cyanobacteria and Heterotrophic Bacteria in Cyanobacterial Blooms in Lake Joutikas, Finland. Aquat. Microb. Ecol. 2004, 36, 201–211. [Google Scholar] [CrossRef]
  74. Touzet, N.; McCarthy, D.; Gill, A.; Fleming, G.T.A. Comparative Summer Dynamics of Surface Cyanobacterial Communities in Two Connected Lakes from the West of Ireland. Sci. Total Environ. 2016, 553, 416–428. [Google Scholar] [CrossRef] [PubMed]
  75. de Figueiredo, D.R.; Pereira, M.J.; Castro, B.B.; Correia, A. Bacterioplankton Community Composition in Portuguese Water Bodies under a Severe Summer Drought. Community Ecol. 2012, 13, 185–193. [Google Scholar] [CrossRef]
  76. Wang, X.; Sun, M.; Wang, J.; Yang, L.; Luo, L.; Li, P.; Kong, F. Microcystis Genotype Succession and Related Environmental Factors in Lake Taihu during Cyanobacterial Blooms. Microb. Ecol. 2012, 64, 986–999. [Google Scholar] [CrossRef]
  77. de Figueiredo, D.R.; Lopes, A.R.; Pereira, M.J.; Polónia, A.R.M.; Castro, B.B.; Gonçalves, F.; Gomes, N.C.M.; Cleary, D.F.R. Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake. Hydrobiology 2022, 1, 499–517. [Google Scholar] [CrossRef]
  78. Hur, M.; Lee, I.; Tak, B.-M.; Lee, H.J.; Yu, J.J.; Cheon, S.U.; Kim, B.-S. Temporal Shifts in Cyanobacterial Communities at Different Sites on the Nakdong River in Korea. Water Res. 2013, 47, 6973–6982. [Google Scholar] [CrossRef]
  79. Steffen, M.M.; Li, Z.; Effler, T.C.; Hauser, L.J.; Boyer, G.L.; Wilhelm, S.W. Comparative Metagenomics of Toxic Freshwater Cyanobacteria Bloom Communities on Two Continents. PLoS ONE 2012, 7, e44002. [Google Scholar] [CrossRef]
  80. Casero, M.C.; Velázquez, D.; Medina-Cobo, M.; Quesada, A.; Cirés, S. Unmasking the Identity of Toxigenic Cyanobacteria Driving a Multi-Toxin Bloom by High-Throughput Sequencing of Cyanotoxins Genes and 16S rRNA Metabarcoding. Sci. Total Environ. 2019, 665, 367–378. [Google Scholar] [CrossRef]
  81. de Figueiredo, D.R. Harmful Cyanobacterial Blooms: Going beyond the “Green” to Monitor and Predict HCBs. Hydrobiology 2024, 3, 11–30. [Google Scholar] [CrossRef]
  82. Bashir, F.; Bashir, A.; Bouaïcha, N.; Chen, L.; Codd, G.A.; Neilan, B.; Xu, W.L.; Ziko, L.; Rajput, V.D.; Minkina, T.; et al. Cyanotoxins, Biosynthetic Gene Clusters, and Factors Modulating Cyanotoxin Biosynthesis. World J. Microbiol. Biotechnol. 2023, 39, 241. [Google Scholar] [CrossRef]
  83. Pearson, L.; Mihali, T.; Moffitt, M.; Kellmann, R.; Neilan, B. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin. Mar. Drugs 2010, 8, 1650–1680. [Google Scholar] [CrossRef] [PubMed]
  84. Rouhiainen, L.; Vakkilainen, T.; Siemer, B.L.; Buikema, W.; Haselkorn, R.; Sivonen, K. Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90. Appl. Environ. Microbiol. 2004, 70, 686–692. [Google Scholar] [CrossRef] [PubMed]
  85. Tillett, D.; Dittmann, E.; Erhard, M.; Do, H.V.; Bo, T.; Neilan, B.A. Structural Organization of Microcystin Biosynthesis in Microcystis aeruginosa PCC7806: An Integrated Peptide-Polyketide Synthetase System. Chem. Biol. 2000, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
  86. Gehringer, M.M.; Adler, L.; Roberts, A.A.; Moffitt, M.C.; Mihali, T.K.; Mills, T.J.T.; Fieker, C.; Neilan, B.A. Nodularin, a Cyanobacterial Toxin, Is Synthesized in Planta by Symbiotic Nostoc sp. ISME J. 2012, 6, 1834–1847. [Google Scholar] [CrossRef]
  87. Mihali, T.; Kellmann, R.; Neilan, B. Characterisation of the Paralytic Shellfish Toxin Biosynthesis Gene Clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem. 2009, 10, 8. [Google Scholar] [CrossRef]
  88. Rantala-Ylinen, A.; Känä, S.; Wang, H.; Rouhiainen, L.; Wahlsten, M.; Rizzi, E.; Berg, K.; Gugger, M.; Sivonen, K. Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods to Detect Potential Producers. Appl. Environ. Microbiol. 2011, 77, 7271–7278. [Google Scholar] [CrossRef]
  89. Mihali, T.K.; Kellmann, R.; Muenchhoff, J.; Barrow, K.D.; Neilan, B.A. Characterization of the Gene Cluster Responsible for Cylindrospermopsin Biosynthesis. Appl. Environ. Microbiol. 2008, 74, 716–722. [Google Scholar] [CrossRef]
  90. Beversdorf, L.J.; Chaston, S.D.; Miller, T.R.; McMahon, K.D. Microcystin mcyA and mcyE Gene Abundances Are Not Appropriate Indicators of Microcystin Concentrations in Lakes. PLoS ONE 2015, 10, e0125353. [Google Scholar] [CrossRef]
  91. Liu, W.; Semmouri, I.; Bulckaert, S.; Janssen, C.R.; Asselman, J. Temperature and Salinity Affect Growth and Toxin Content of Cyanobacterium Microcystis aeruginosa (PCC 7806) in Estuarine Environments. Harmful Algae 2025, 146, 102871. [Google Scholar] [CrossRef]
  92. Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The Effects of Temperature and Nutrients on the Growth and Dynamics of Toxic and Non-Toxic Strains of Microcystis during Cyanobacteria Blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
  93. Konarzewska, Z.; Śliwińska-Wilczewska, S.; Felpeto, A.B.; Latała, A. Impacts of Nutrient Dynamics on Three Picocyanobacterial (Synechococcus Nägeli, 1849) Populations: Laboratory Experiments and Seasonal Surveys in the Baltic Sea Region. Estuar. Coast. Shelf Sci. 2025, 322, 109352. [Google Scholar] [CrossRef]
  94. Pineda-Mendoza, R.M.; Zúñiga, G.; Martínez-Jerónimo, F. Microcystin Production in Microcystis aeruginosa: Effect of Type of Strain, Environmental Factors, Nutrient Concentrations, and N:P Ratio on mcyA Gene Expression. Aquat. Ecol. 2016, 50, 103–119. [Google Scholar] [CrossRef]
  95. Yang, Y.; Li, Q.; Yan, S.; Zhang, P.; Zhang, H.; Kong, X.; Wang, H.; Hansson, L.-A.; Xie, S.; Xu, J.; et al. Eutrophication Promotes Resource Use Efficiency and Toxin Production of Microcystis in a Future Climate Warming Scenario. Environ. Res. 2024, 263, 120219. [Google Scholar] [CrossRef]
  96. Martín-Luna, B.; Sevilla, E.; Bes, M.T.; Fillat, M.F.; Peleato, M.L. Variation in the Synthesis of Microcystin in Response to Saline and Osmotic Stress in Microcystis aeruginosa PCC7806. Limnetica 2015, 34, 205–214. [Google Scholar] [CrossRef]
  97. Salvador, D.; Churro, C.; Valério, E. Evaluating the Influence of Light Intensity in mcyA Gene Expression and Microcystin Production in Toxic Strains of Planktothrix agardhii and Microcystis aeruginosa. J. Microbiol. Methods 2016, 123, 4–12. [Google Scholar] [CrossRef]
  98. Sevilla, E.; Martin-Luna, B.; Bes, M.T.; Fillat, M.F.; Peleato, M.L. An Active Photosynthetic Electron Transfer Chain Required for mcyD Transcription and Microcystin Synthesis in Microcystis aeruginosa PCC7806. Ecotoxicology 2012, 21, 811–819. [Google Scholar] [CrossRef]
  99. Yancey, C.E.; Kiledal, E.A.; Chaganti, S.R.; Denef, V.J.; Errera, R.M.; Evans, J.T.; Hart, L.N.; Isailovic, D.; James, W.S.; Kharbush, J.J.; et al. The Western Lake Erie Culture Collection: A Promising Resource for Evaluating the Physiological and Genetic Diversity of Microcystis and Its Associated Microbiome. Harmful Algae 2023, 126, 102440. [Google Scholar] [CrossRef]
  100. Saker, M.L.; Nogueira, I.C.G.; Vasconcelos, V.M. Distribution and Toxicity of Cylindrospermopsis raciborskii (Cyanobacteria) in Portuguese Freshwaters. Limnetica 2003, 22, 129–136. [Google Scholar] [CrossRef]
  101. Valério, E.; Pereira, P.; Saker, M.L.; Franca, S.; Tenreiro, R. Molecular Characterization of Cylindrospermopsis raciborskii Strains Isolated from Portuguese Freshwaters. Harmful Algae 2005, 4, 1044–1052. [Google Scholar] [CrossRef]
  102. Moreira, C.; Vasconcelos, V.; Antunes, A. Genetic Characterization of Microcystis aeruginosa Isolates from Portuguese Freshwater Systems. World J. Microbiol. Biotechnol. 2016, 32, 118. [Google Scholar] [CrossRef]
  103. Gugger, M.; Boullié, A.; Laurent, T. Cyanotoxins and Other Bioactive Compounds from the Pasteur Cultures of Cyanobacteria (PCC). Toxins 2023, 15, 388. [Google Scholar] [CrossRef] [PubMed]
  104. Strunecký, O.; Bohunická, M.; Johansen, J.R.; Čapková, K.; Raabová, L.; Dvořák, P.; Komárek, J. A Revision of the Genus Geitlerinema and a Description of the Genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria). Fottea 2017, 17, 114–126. [Google Scholar] [CrossRef]
  105. Strunecký, O.; Komárek, J.; Johansen, J.; Lukešová, A.; Elster, J. Molecular and Morphological Criteria for Revision of the Genus Microcoleus (Oscillatoriales, Cyanobacteria). J. Phycol. 2013, 49, 1167–1180. [Google Scholar] [CrossRef] [PubMed]
  106. Paulino, S.; Sam-Bento, F.; Churro, C.; Alverca, E.; Dias, E.; Valério, E.; Pereira, P. The Estela Sousa e Silva Algal Culture Collection: A Resource of Biological and Toxicological Interest. Hydrobiologia 2009, 636, 489–492. [Google Scholar] [CrossRef]
  107. Ramos, V.; Morais, J.; Castelo-Branco, R.; Pinheiro, Â.; Martins, J.; Regueiras, A.; Pereira, A.L.; Lopes, V.R.; Frazão, B.; Gomes, D.; et al. Cyanobacterial Diversity Held in Microbial Biological Resource Centers as a Biotechnological Asset: The Case Study of the Newly Established LEGE Culture Collection. J. Appl. Phycol. 2018, 30, 1437–1451. [Google Scholar] [CrossRef]
  108. Santos, L.M.A.; Santos, M.F. The Coimbra Culture Collection of Algae (ACOI). Nova Hedwig. 2004, 79, 39–47. [Google Scholar] [CrossRef]
  109. Vasconcelos, V.M.; Sivonen, K.; Evans, W.R.; Carmichael, W.W.; Namikoshi, M. Isolation and Characterization of Microcystins (Heptapeptide Hepatotoxins) from Portuguese Strains of Microcystis aeruginosa Kutz. Emend Elekin. Arch. Fur. Hydrobiol. 1995, 134, 295–305. [Google Scholar] [CrossRef]
  110. Cordeiro, R.; Azevedo, J.; Luz, R.; Vasconcelos, V.; Gonçalves, V.; Fonseca, A. Cyanotoxin Screening in BACA Culture Collection: Identification of New Cylindrospermopsin Producing Cyanobacteria. Toxins 2021, 13, 258. [Google Scholar] [CrossRef]
  111. Galhano, V.; de Figueiredo, D.; Alves, A.; Correia, A.; Pereira, M.J.; Gomes-Laranjo, J.; Peixoto, F. Morphological, Biochemical and Molecular Characterization of Anabaena, Aphanizomenon and Nostoc Strains (Cyanobacteria, Nostocales) Isolated from Portuguese Freshwater Habitats. Hydrobiologia 2011, 663, 187–203. [Google Scholar] [CrossRef]
  112. Cordeiro, R.; Luz, R.; Vasconcelos, V.; Gonçalves, V.; Fonseca, A. Cyanobacteria Phylogenetic Studies Reveal Evidence for Polyphyletic Genera from Thermal and Freshwater Habitats. Diversity 2020, 12, 298. [Google Scholar] [CrossRef]
  113. Saker, M.L.; Vale, M.; Kramer, D.; Vasconcelos, V.M. Molecular Techniques for the Early Warning of Toxic Cyanobacteria Blooms in Freshwater Lakes and Rivers. Appl. Microbiol. Biotechnol. 2007, 75, 441–449. [Google Scholar] [CrossRef]
  114. Leão, P.N.; Vasconcelos, M.T.S.D.; Vasconcelos, V.M. Allelopathic Activity of Cyanobacteria on Green Microalgae at Low Cell Densities. Eur. J. Phycol. 2009, 44, 347–355. [Google Scholar] [CrossRef]
  115. Valério, E. Molecular Approaches in Cyanobacteria: From Detection and Diversity to DNA-Based Biosensors. Ph.D. Thesis, Universidadede Lisboa, Lisbon, Portugal, 2008. [Google Scholar]
  116. Anagnostidis, K. Geitlerinema, a New Genus of Oscillatorialean Cyanophytes. Plant Syst. Evol. 1989, 164, 33–46. [Google Scholar] [CrossRef]
  117. Dias, E.; Oliveira, M.; Manageiro, V.; Vasconcelos, V.; Caniça, M. Deciphering the Role of Cyanobacteria in Water Resistome: Hypothesis Justifying the Antibiotic Resistance (Phenotype and Genotype) in Planktothrix Genus. Sci. Total Environ. 2019, 652, 447–454. [Google Scholar] [CrossRef]
  118. Anagnostidis, K.; Komárek, J. Modern Approach to the Classification System of Cyanophytes. 3—Oscillatoriales. Algol. Stud. Arch. Hydrobiol. Suppl. Vol. 1988, 50–53, 327–472. [Google Scholar]
  119. Dias, E.; Pereira, P.; Franca, S. Production of Paralytic Shellfish Toxins by Aphanizomenon sp. LMECYA 31 (Cyanobacteria). J. Phycol. 2002, 38, 705–712. [Google Scholar] [CrossRef]
  120. Mai, T.; Johansen, J.R.; Pietrasiak, N.; Bohunická, M.; Martin, M.P. Revision of the Synechococcales (Cyanobacteria) through Recognition of Four Families Including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and Six New Genera Containing 14 Species. Phytotaxa 2018, 365, 1–59. [Google Scholar] [CrossRef]
  121. Galhano, V.; Peixoto, F.; Gomes-Laranjo, J.; Fernández-Valiente, E. Differential Effects of Bentazon and Molinate on Anabaena cylindrica, an Autochthonous Cyanobacterium of Portuguese Rice Field Agro-Ecosystems. Water Air Soil Pollut. 2009, 197, 211–222. [Google Scholar] [CrossRef]
  122. Balata, D.; Rosado, T.; Pina-Martins, F.; Manageiro, V.; Menezes, C.; Ferreira, E.; Paulo, O.S.; Caniça, M.; Dias, E. Prediction of Antibiotic Resistance Genes in Cyanobacterial Strains by Whole Genome Sequencing. Microorganisms 2025, 13, 1252. [Google Scholar] [CrossRef]
  123. Zapomělová, E.; Skácelová, O.; Pumann, P.; Kopp, R.; Janeček, E. Biogeographically Interesting Planktonic Nostocales (Cyanobacteria) in the Czech Republic and Their Polyphasic Evaluation Resulting in Taxonomic Revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova). Hydrobiologia 2012, 698, 353–365. [Google Scholar] [CrossRef]
  124. Wacklin, P.; Hoffmann, L.; Komárek, J. Nomenclatural Validation of the Genetically Revised Cyanobacterial Genus Dolichospermum (Ralfs ex Bornet et Flahault) Comb. Nova. Fottea 2009, 9, 59–64. [Google Scholar] [CrossRef]
  125. Aguilera, A.; Gómez, E.B.; Kaštovský, J.; Echenique, R.O.; Salerno, G.L. The Polyphasic Analysis of Two Native Raphidiopsis Isolates Supports the Unification of the Genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 2018, 57, 130–146. [Google Scholar] [CrossRef]
  126. Saker, M.L.; Nogueira, I.C.G.; Vasconcelos, V.M.; Neilan, B.A.; Eaglesham, G.K.; Pereira, P. First Report and Toxicological Assessment of the Cyanobacterium Cylindrospermopsis raciborskii from Portuguese Freshwaters. Ecotoxicol. Environ. Saf. 2003, 55, 243–250. [Google Scholar] [CrossRef]
  127. Neilan, B.A.; Saker, M.L.; Fastner, J.; Törökné, A.; Burns, B.P. Phylogeography of the Invasive Cyanobacterium Cylindrospermopsis raciborskii. Mol. Ecol. 2003, 12, 133–140. [Google Scholar] [CrossRef]
  128. Menezes, C.; Valério, E.; Botelho, M.J.; Dias, E. Isolation and Characterization of Cylindrospermopsis raciborskii Strains from Finished Drinking Water. Toxins 2020, 12, 40. [Google Scholar] [CrossRef]
  129. Eusebio, N.; Rego, A.; Glasser, N.R.; Castelo-Branco, R.; Balskus, E.P.; Leão, P.N. Distribution and Diversity of Dimetal-Carboxylate Halogenases in Cyanobacteria. BMC Genom. 2021, 22, 633. [Google Scholar] [CrossRef]
  130. Komárek, J.; Anagnostidis, K. Modern Approach to the Classification System of Cyanophytes 4—Nostocales. Algol. Stud. Arch. Hydrobiol. Suppl. Vol. 1989, 56, 247–345. [Google Scholar]
  131. Guerreiro, A.; Andrade, M.A.; Menezes, C.; Vilarinho, F.; Dias, E. Antioxidant and Cytoprotective Properties of Cyanobacteria: Potential for Biotechnological Applications. Toxins 2020, 12, 548. [Google Scholar] [CrossRef]
  132. Luz, R.; Gonçalves, V.; Vasconcelos, V.; Urbatzka, R. Metabolite Profiling and Bioactivity Assessment of Cyanobacteria from the Azores Reveals Unique Producers of Cytotoxic and Lipid Reducing Compounds. Algal Res. 2024, 83, 103703. [Google Scholar] [CrossRef]
  133. Pereira, P.; Onodera, H.; Andrinolo, D.; Franca, S.; Araújo, F.; Lagos, N.; Oshima, Y. Paralytic Shellfish Toxins in the Freshwater Cyanobacterium Aphanizomenon flos-aquae, Isolated from Montargil Reservoir, Portugal. Toxicon 2000, 38, 1689–1702. [Google Scholar] [CrossRef] [PubMed]
  134. Macário, I.P.E.; Castro, B.B.; Nunes, I.M.S.; Pizarro, C.; Coelho, C.; Gonçalves, F.; de Figueiredo, D.R. Stepwise Strategy for Monitoring Toxic Cyanobacterial Blooms in Lentic Water Bodies. Environ. Monit. Assess. 2017, 189, 620. [Google Scholar] [CrossRef] [PubMed]
  135. Barros, P.; Silveira, S.; Ribeiro, R.; Gonçalves, F.; Vasconcelos, V.; Soares, A.M.V.M. Estrutura Populacional Fitoplanctónica Nas Lagoas Das Braças, Vela e Mira (Região Centro-Litoral). Resultados Preliminares. Bol. UCA Univ. Algarve UCTRA 1993, 1, 1–8. [Google Scholar]
  136. Vasconcelos, V.M.; Campos, T.; Amorim, A.; Soares, A.M.V.M. Toxicidade de Estirpes de Cianobactérias Isoladas a Partir Das Lagoas Das Braças, Vela e Mira. Bol. UCA Univ. Algarve UCTRA 1993, 1, 193–201. [Google Scholar]
  137. Vasconcelos, V. Freshwater Cyanobacteria and Their Toxins in Portugal. In Cyanotoxins—Occurrence, Causes, Consequences; Chorus, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 62–67. [Google Scholar]
  138. Vasconcelos, V.M. Toxic Cyanobacteria (Blue-Green Algae) in Portuguese Fresh Waters. Arch. Hydrobiol. 1994, 130, 439–451. [Google Scholar] [CrossRef]
  139. Vasconcelos, V.M. Cyanobacterial Toxins in Portugal: Effects on Aquatic Animals and Risk for Human Health. Braz. J. Med. Biol. Res. 1999, 32, 249–254. [Google Scholar] [CrossRef]
  140. Vasconcelos, V.; Oliveira, S.; Teles, F.O. Impact of a Toxic and a Non-Toxic Strain of Microcystis aeruginosa on the Crayfish Procambarus clarkii. Toxicon 2001, 39, 1461–1470. [Google Scholar] [CrossRef]
  141. Vasconcelos, V.M.M.; Evans, W.R.; Carmichael, W.W.W.; Namikoshi, M. Isolation of Microcystin-LR from a Microcystis (Cyanobacteria) Waterbloom Collected in the Drinking Water Reservoir for Porto, Portugal. J. Environ. Sci. Health—Part A Environ. Sci. Eng. 1993, 28, 2081–2094. [Google Scholar] [CrossRef]
  142. Vasconcelos, V.M.; Sivonen, K.; Evans, W.R.; Carmichael, W.W.; Namikoshi, M. Hepatotoxic Microcystin Diversity in Cyanobacterial Blooms Collected in Portuguese Freshwaters. Water Res. 1996, 30, 2377–2384. [Google Scholar] [CrossRef]
  143. Pereira, P.; Onodera, H.; Andrinolo, D.; Franca, S.; Araújo, F.; Lagos, N.; Oshima, Y. Co-Occurrence of PSP Toxins and Microcystins in Montargil Reservoir, Portugal. In Harmful Algal Blooms; Hallegraeff, G.M., Blackburn, S.I., Lewis, R.J., Eds.; IOC, UNESCO: Paris, France, 2001; pp. 108–111. [Google Scholar]
  144. Vasconcelos, V.M.; Pereira, E. Cyanobacteria Diversity and Toxicity in a Wastewater Treatment Plant (Portugal). Water Res. 2001, 35, 1354–1357. [Google Scholar] [CrossRef]
  145. Menezes, C.; Churro, C.; Dias, E. Risk Levels of Toxic Cyanobacteria in Portuguese Recreational Freshwaters. Toxins 2017, 9, 327. [Google Scholar] [CrossRef] [PubMed]
  146. Ballot, A.; Fastner, J.; Wiedner, C. Paralytic Shellfish Poisoning Toxin-Producing Cyanobacterium Aphanizomenon gracile in Northeast Germany. Appl. Environ. Microbiol. 2010, 76, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
  147. Casero, M.C.; Ballot, A.; Agha, R.; Quesada, A.; Cirés, S. Characterization of Saxitoxin Production and Release and Phylogeny of Sxt Genes in Paralytic Shellfish Poisoning Toxin-Producing Aphanizomenon gracile. Harmful Algae 2014, 37, 28–37. [Google Scholar] [CrossRef]
  148. Kokociński, M.; Mankiewicz-Boczek, J.; Jurczak, T.; Spoof, L.; Meriluoto, J.; Rejmonczyk, E.; Hautala, H.; Vehniäinen, M.; Pawełczyk, J.; Soininen, J. Aphanizomenon gracile (Nostocales), a Cylindrospermopsin-Producing Cyanobacterium in Polish Lakes. Environ. Sci. Pollut. Res. 2013, 20, 5243–5264. [Google Scholar] [CrossRef]
  149. Ballot, A.; Fastner, J.; Lentz, M.; Wiedner, C. First Report of Anatoxin-a-Producing Cyanobacterium Aphanizomenon issatschenkoi in Northeastern Germany. Toxicon 2010, 56, 964–971. [Google Scholar] [CrossRef]
  150. Kim, Y.J.; Park, H.K.; Kim, I.S. Invasion and Toxin Production by Exotic Nostocalean Cyanobacteria (Cuspidothrix, Cylindrospermopsis, and Sphaerospermopsis) in the Nakdong River, Korea. Harmful Algae 2020, 100, 101954. [Google Scholar] [CrossRef]
  151. Karosienė, J.; Savadova-Ratkus, K.; Toruńska-Sitarz, A.; Koreivienė, J.; Kasperovičienė, J.; Vitonytė, I.; Błaszczyk, A.; Mazur-Marzec, H. First Report of Saxitoxins and Anatoxin-a Production by Cyanobacteria from Lithuanian Lakes. Eur. J. Phycol. 2020, 55, 327–338. [Google Scholar] [CrossRef]
  152. Ballot, A.; Sandvik, M.; Rundberget, T.; Botha, C.J.; Miles, C.O. Diversity of Cyanobacteria and Cyanotoxins in Hartbeespoort Dam, South Africa. Mar. Freshw. Res. 2014, 65, 175–189. [Google Scholar] [CrossRef]
  153. Sabour, B.; Loudiki, M.; Oudra, B.; Vasconcelos, V.; Oubraim, S.; Fawzi, B. Dynamics and Toxicity of Anabaena aphanizomenoides (Cyanobacteria) Waterblooms in the Shallow Brackish Oued Mellah Lake (Morocco). Aquat. Ecosyst. Health Manag. 2005, 8, 95–104. [Google Scholar] [CrossRef]
  154. Lagos, N.; Onodera, H.; Zagatto, P.A.; Andrinolo, D.; Azevedo, S.M.F.Q.; Oshima, Y. The First Evidence of Paralytic Shellfish Toxins in the Freshwater Cyanobacterium Cylindrospermopsis raciborskii, Isolated from Brazil. Toxicon 1999, 37, 1359–1373. [Google Scholar] [CrossRef]
  155. Hoff-Risseti, C.; Dörr, F.A.; Schaker, P.D.C.; Pinto, E.; Werner, V.R.; Fiore, M.F. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater. PLoS ONE 2013, 8, e74238. [Google Scholar] [CrossRef] [PubMed]
  156. Wu, Z.; Shi, J.; Xiao, P.; Liu, Y.; Li, R. Phylogenetic Analysis of Two Cyanobacterial Genera Cylindrospermopsis and Raphidiopsis Based on Multi-Gene Sequences. Harmful Algae 2011, 10, 419–425. [Google Scholar] [CrossRef]
  157. Moreira, C.; Matos, A.; Barreiro, A.; Gomes, C.; Vasconcelos, V.; Antunes, A. Statistical Inferences Applying Non-Parametric Data on Cyanobacterial Investigations: Contributions to Water Quality and New Trends under Global Changes on Portuguese Freshwater Ecosystems. Toxins 2022, 14, 638. [Google Scholar] [CrossRef] [PubMed]
  158. Šuikaitė, I.; Vansevičiūtė, G.; Koreivienė, J. An Overview of the Distribution and Ecology of the Alien Cyanobacteria Species Raphidiopsis raciborskii, Sphaerospermopsis aphanizomenoides and Chrysosporum bergii in Europe. Oceanol. Hydrobiol. Stud. 2023, 52, 312–332. [Google Scholar] [CrossRef]
  159. Schembri, M.A.; Neilan, B.A.; Saint, C.P. Identification of Genes Implicated in Toxin Production in the Cyanobacterium Cylindrospermosis raciborskii. Environ. Toxicol. 2001, 16, 413–421. [Google Scholar] [CrossRef]
  160. Velzeboer, R.M.A.; Baker, P.D.; Rositano, J.; Heresztyn, T.; Codd, G.A.; Raggett, S.L. Geographical Patterns of Occurrence and Composition of Saxitoxins in the Cyanobacterial Genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia 2000, 39, 395–407. [Google Scholar] [CrossRef]
  161. Hautala, H.; Lamminmäki, U.; Spoof, L.; Nybom, S.; Meriluoto, J.; Vehniäinen, M. Quantitative PCR Detection and Improved Sample Preparation of Microcystin-Producing Anabaena, Microcystis and Planktothrix. Ecotoxicol. Environ. Saf. 2013, 87, 49–56. [Google Scholar] [CrossRef]
  162. Bouma-Gregson, K.; Power, M.E.; Bormans, M. Rise and Fall of Toxic Benthic Freshwater Cyanobacteria (Anabaena spp.) in the Eel River: Buoyancy and Dispersal. Harmful Algae 2017, 66, 79–87. [Google Scholar] [CrossRef]
  163. Hofbauer, W.K. Toxic or Otherwise Harmful Algae and the Built Environment. Toxins 2021, 13, 465. [Google Scholar] [CrossRef]
  164. de Figueiredo, D.R.; Azeiteiro, U.M.; Gonçalves, F.; Pereira, M.J. Aphanizomenon flos-aquae Grown under Different Nutrient Concentrations and the Effects of Its Exudates on Growth of Two Green Algae. Fresenius Environ. Bull. 2004, 13, 657–664. [Google Scholar]
  165. Ferreira, F.M.B.; Soler, J.M.F.; Fidalgo, M.L.; Fernández-Vila, P. PSP Toxins from Aphanizomenon flos-aquae (Cyanobacteria) Collected in the Crestuma-Lever Reservoir (Douro River, Northern Portugal). Toxicon 2001, 39, 757–761. [Google Scholar] [CrossRef]
  166. Li, X.; Dreher, T.W.; Li, R. An Overview of Diversity, Occurrence, Genetics and Toxin Production of Bloom-Forming Dolichospermum (Anabaena) Species. Harmful Algae 2016, 54, 54–68. [Google Scholar] [CrossRef]
  167. Preußel, K.; Stüken, A.; Wiedner, C.; Chorus, I.; Fastner, J. First Report on Cylindrospermopsin Producing Aphanizomenon flos-aquae (Cyanobacteria) Isolated from Two German Lakes. Toxicon 2006, 47, 156–162. [Google Scholar] [CrossRef] [PubMed]
  168. Al-Tebrineh, J.; Mihali, T.K.; Pomati, F.; Neilan, B.A. Detection of Saxitoxin-Producing Cyanobacteria and Anabaena circinalis in Environmental Water Blooms by Quantitative PCR. Appl. Environ. Microbiol. 2010, 76, 7836–7842. [Google Scholar] [CrossRef] [PubMed]
  169. Harada, K.; Ogawa, K.; Kimura, Y.; Murata, H.; Suzuki, M.; Thorn, P.M.; Evans, W.R.; Carmichael, W.W. Microcystins from Anabaena flos-aquae NRC 525-17. Chem. Res. Toxicol. 1991, 4, 535–540. [Google Scholar] [CrossRef] [PubMed]
  170. Matsunaga, S.; Moore, R.E.; Niemczura, W.P.; Carmichael, W.W. Anatoxin-a(s), a Potent Anticholinesterase from Anabaena flos-aquae. J. Am. Chem. Soc. 1989, 111, 8021–8023. [Google Scholar] [CrossRef]
  171. Devlin, J.P.; Edwards, O.E.; Gorham, P.R.; Hunter, N.R.; Pike, R.K.; Stavric, B. Anatoxin-a, a Toxic Alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977, 55, 1367–1371. [Google Scholar] [CrossRef]
  172. de Abreu, F.Q.; Ferrão-Filho, A. da S. Effects of an Anatoxin-a(s)-Producing Strain of Anabaena spiroides (Cyanobacteria) on the Survivorship and Somatic Growth of Two Daphnia similis Clones. J. Environ. Prot. 2013, 4, 12–18. [Google Scholar] [CrossRef]
  173. Vasconcelos, V.; Martins, A.; Vale, M.; Antunes, A.; Azevedo, J.; Welker, M.; Lopez, O.; Montejano, G. First Report on the Occurrence of Microcystins in Planktonic Cyanobacteria from Central Mexico. Toxicon 2010, 56, 425–431. [Google Scholar] [CrossRef]
  174. Mittal, A.; Agarwal, M.K.; Shivpuri, D.N. Respiratory Allergy to Algae: Clinical Aspects. Ann. Allergy 1979, 42, 253–256. [Google Scholar]
  175. Wood, S.A.; Selwood, A.I.; Rueckert, A.; Holland, P.T.; Milne, J.R.; Smith, K.F.; Smits, B.; Watts, L.F.; Cary, C.S. First Report of Homoanatoxin-a and Associated Dog Neurotoxicosis in New Zealand. Toxicon 2007, 50, 292–301. [Google Scholar] [CrossRef]
  176. Harland, F.M.J.; Wood, S.A.; Moltchanova, E.; Williamson, W.M.; Gaw, S. Phormidium autumnale Growth and Anatoxin-a Production under Iron and Copper Stress. Toxins 2013, 5, 2504–2521. [Google Scholar] [CrossRef]
  177. McAllister, T.G.; Wood, S.A.; Hawes, I. The Rise of Toxic Benthic Phormidium Proliferations: A Review of Their Taxonomy, Distribution, Toxin Content and Factors Regulating Prevalence and Increased Severity. Harmful Algae 2016, 55, 282–294. [Google Scholar] [CrossRef]
  178. Gugger, M.; Lenoir, S.; Berger, C.; Ledreux, A.; Druart, J.-C.; Humbert, J.-F.; Guette, C.; Bernard, C. First Report in a River in France of the Benthic Cyanobacterium Phormidium favosum Producing Anatoxin-a Associated with Dog Neurotoxicosis. Toxicon 2005, 45, 919–928. [Google Scholar] [CrossRef]
  179. Aubaeed, M.A.; Abdulkareem, K.F.; Kathim, A.S.; Al-Sultan, E.Y.A. Toxic Effects of Neurotoxins (Anatoxin-a) Purified from Blue-Green Algae Pseudoanabaena limnetica on Some Organs in Laboratory Mice (Mus musculus L.). Int. J. Pharm. Res. 2020, 12, 2368–2374. [Google Scholar] [CrossRef]
  180. Paerl, H.W.; Otten, T.G. Duelling “CyanoHABs”: Unravelling the Environmental Drivers Controlling Dominance and Succession among Diazotrophic and Non-N2-Fixing Harmful Cyanobacteria. Environ. Microbiol. 2016, 18, 316–324. [Google Scholar] [CrossRef]
Table 1. Cyanobacterial order, species and strain name, origin, collection date, GenBank accession number (for 16S rRNA gene sequence), culture collection, and reference for non-Nostocacean potentially bloom-forming cyanobacterial strains isolated from Portuguese freshwater bodies over the past decades (*—with toxic potential; MC—microcystin producer; non-MC—not microcystin producer; non-CYL—not cylindrospermopsin producer; non-STX—not saxitoxin producer; ACOI—Coimbra Collection of Algae; LEGE-CC—Blue Biotechnology and Ecotoxicology Culture Collection; ESSACC—Estela Sousa e Silva Algal Culture Collection; BACA—Bank of Algae and Cyanobacteria of the Azores; WWTP—wastewater treatment plant; n.d.—not determined).
Table 1. Cyanobacterial order, species and strain name, origin, collection date, GenBank accession number (for 16S rRNA gene sequence), culture collection, and reference for non-Nostocacean potentially bloom-forming cyanobacterial strains isolated from Portuguese freshwater bodies over the past decades (*—with toxic potential; MC—microcystin producer; non-MC—not microcystin producer; non-CYL—not cylindrospermopsin producer; non-STX—not saxitoxin producer; ACOI—Coimbra Collection of Algae; LEGE-CC—Blue Biotechnology and Ecotoxicology Culture Collection; ESSACC—Estela Sousa e Silva Algal Culture Collection; BACA—Bank of Algae and Cyanobacteria of the Azores; WWTP—wastewater treatment plant; n.d.—not determined).
Order, Species, and Strain NameOriginCollection DateGenBank
Accession nr *
Culture CollectionReferences
Chroococcales
Microcystis aeruginosa (Kützing) Kützing 1846
Microcystis aeruginosa ACOI 707Vela Lake 1994n.d.ACOI[108]
Microcystis aeruginosa BACA0148 (*MC)Blue Lake (S. Miguel)n.d.MT176750BACA[110,112]
Microcystis aeruginosa LEGE 00063 (*MC)Mira Lake 2000/05/16KU951737LEGE-CC[107,113]
Microcystis aeruginosa LEGE 00239 Maranhão reservoir2000/07/07KU951738LEGE-CC[107]
Microcystis aeruginosa LEGE 05195 (*MC)Tâmega River2005/10/01KU951739LEGE-CC[107,114]
Microcystis aeruginosa LEGE 08354 Tâmega River2008/10/15KU951741LEGE-CC[107]
Microcystis aeruginosa LEGE 91093 (*MC)Barrinha de Mira Lake1991/04/13n.d.LEGE-CC[107]
Microcystis aeruginosa LEGE 91094 (*MC)Mira Lake1991/04/13KU950712LEGE-CC[107]
Microcystis aeruginosa LEGE 91095 (*MC)Torrão reservoir1991/09n.d.LEGE-CC[107]
Microcystis aeruginosa LEGE 91096 (*MC)Picote reservoir1991/09n.d.LEGE-CC[107]
Microcystis aeruginosa LEGE 91338 (*MC)Barrinha de Mira Lake1991/04/13n.d.LEGE-CC[107]
Microcystis aeruginosa LEGE 91339 (*MC)Mira Lake1991/06/01KC311962LEGE-CC[107,113]
Microcystis aeruginosa LEGE 91341 (non-MC)Braças Lake1991/07/28KC311963LEGE-CC[107]
Microcystis aeruginosa LEGE 91342 (non-MC)Vilar reservoir1991KC311959LEGE-CC[107]
Microcystis aeruginosa LEGE 91344 (non-MC)Teixoeiras Lake1991/09/26KC311964LEGE-CC[107]
Microcystis aeruginosa LEGE 91347Bemposta reservoir1991/09KC311961LEGE-CC[107]
Microcystis aeruginosa LEGE 91350 (non-MC)Mira Lake1991/10/03n.d.LEGE-CC[107]
Microcystis aeruginosa LEGE 91351 (non-MC)Braças Lake1991/11/15KC311966LEGE-CC[107]
Microcystis aeruginosa LEGE 91352 (non-MC)Braças Lake1991/11/30n.d.LEGE-CC[107]
Microcystis aeruginosa LEGE 91353 (non-MC)Braças Lake1991/11/30n.d.LEGE-CC[107]
Microcystis aeruginosa LMECYA 1 (non-MC)Montargil reservoir1996/06/10EU078482ESSACC[106,115]
Microcystis aeruginosa LMECYA 2 (*MC; non-CYL)Torrão reservoir1996/06/05EU078483ESSACC[106,115]
Microcystis aeruginosa LMECYA 3 (*MC)Montargil reservoir1996/05/10EU078484ESSACC[106,115]
Microcystis aeruginosa LMECYA 7 (*MC)Montargil reservoir1996/06/27EU078485ESSACC[106,115]
Microcystis aeruginosa LMECYA 8 (non-MC)Monte da Rocha reservoir1996/09/25EU078486ESSACC[106,115]
Microcystis aeruginosa LMECYA 12 (non-MC; non-CYL)Monte da Rocha reservoir1996/09/25EU078487ESSACC[106,115]
Microcystis aeruginosa LMECYA 13 (non-MC)Montargil reservoir1996/07/11EU078488ESSACC[106,115]
Microcystis aeruginosa LMECYA 23 (non-MC)Magos reservoir1996/10/22n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 29 (non-MC)Monte da Rocha reservoir1996/09/25EU078489ESSACC[106,115]
Microcystis aeruginosa LMECYA 47Roxo reservoir1997/07/03n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 50 (non-MC)Roxo reservoir1997/07/03EU078490ESSACC[106,115]
Microcystis aeruginosa LMECYA 53 (*MC)Patudos reservoir1997/08/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 55 (*MC)Patudos reservoir1997/08/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 56 (*MC)Patudos reservoir1997/08/13EU078491ESSACC[106,115]
Microcystis aeruginosa LMECYA 57 (*MC)Patudos reservoir1997/08/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 59 (*MC)Patudos reservoir1997/08/13EU078492ESSACC[106,115]
Microcystis aeruginosa LMECYA 81 (non-MC)Magos reservoir1998/06/24EU078493ESSACC[106,115]
Microcystis aeruginosa LMECYA 82 (non-MC)Agolada de Baixo reservoir1998/07/09EU078494ESSACC[106,115]
Microcystis aeruginosa LMECYA 84AAgolada de Baixo reservoir1998/07/15n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 84BAgolada de Baixo reservoir1998/07/15n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 85 (non-MC)Agolada de Baixo reservoir1998/07/15EU078495ESSACC[106,115]
Microcystis aeruginosa LMECYA 87 (non-MC)Magos reservoir1998/07/16EU078496ESSACC[106,115]
Microcystis aeruginosa LMECYA 91AMontargil reservoir1999/11/13n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 91B (non-MC)Montargil reservoir1999/11/13EU078497ESSACC[106,115]
Microcystis aeruginosa LMECYA 92A (*MC)Montargil reservoir1999/11/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 92B (*MC)Montargil reservoir1999/11/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 92C (*MC)Montargil reservoir1999/11/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 93 (*MC)Montargil reservoir1999/11/13n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 97 (non-MC)Montargil reservoir1999/11/28n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 103 (*MC)Montargil reservoir1999/11/18n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 106 (*MC)Patudos reservoir1999/12/15EU078498ESSACC[106,115]
Microcystis aeruginosa LMECYA 107 (*MC)Caia reservoir1999/11/12n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 108 (*MC)Caia reservoir1999/11/12n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 110 (*MC)Montargil reservoir2000/03/11EU078499ESSACC[106,115]
Microcystis aeruginosa LMECYA 113 (*MC)Montargil reservoir2000/10/28n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 127 (non-MC)Montargil reservoir2000/11/27n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 128 (non-MC)Montargil reservoir2000/11/27n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 136 (non-MC; non-CYL)Bravura reservoir2000/11/11EU078500ESSACC[106,115]
Microcystis aeruginosa LMECYA 137 (non-MC)Bravura reservoir2000/11/11n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 142 (non-MC)Montargil reservoir2001/07/23EU078501ESSACC[106,115]
Microcystis aeruginosa LMECYA 144 (non-MC)Montargil reservoir2001/07/23n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 147 (non-MC)Funcho reservoir2002/01/30n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 151 (*MC)Monte da Barca reservoir2002/09/10EU078502ESSACC[106,115]
Microcystis aeruginosa LMECYA 159 (*MC)Magos reservoir2003/07/08EU078504ESSACC[106,115]
Microcystis aeruginosa LMECYA 160 (*MC)Montargil reservoir2001n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 167 (*MC)Corgas reservoir2003/10/20n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 170 (*MC)Magos reservoir2003/07/05EU078505ESSACC[106,115]
Microcystis aeruginosa LMECYA 171 (non-MC)Guadiana River (Mértola)2003/07/31n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 179 (*MC)Guadiana River (Mértola)2003/07/31n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 192 (non-MC)Campo Grande Lake2005/04/19n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 193 (non-MC)Campo Grande Lake2005/04/19n.d.ESSACC[106,115]
Microcystis aeruginosa LMECYA 201Odivelas reservoir2005/05/19n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 209Lake (Nafarros, Sintra)2005/07/15n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 252Magos reservoir2009/04/01n.d.ESSACC[106]
Microcystis aeruginosa LMECYA 254Magos reservoir2009/04/29n.d.ESSACC[106]
Coleofasciculales
Anagnostidinema acutissimum (Kufferath) Strunecký, Bohunická, J.R.Johansen & J.Komárek 2017
(previously Oscillatoria acutissima Kufferath 1914)
[104]
Anagnostidinema acutissimum ACOI 40Rice field (Tentúgal)1975n.d.ACOI[108]
Anagnostidinema acutissimum ACOI 675Mira Lake (Quinta da Lagoa)1987n.d.ACOI[108]
Anagnostidinema acutissimum ACOI 668River (Montemor-o-Velho)1985n.d.ACOI[108]
Anagnostidinema pseudacutissimum (Geitler) Strunecký, Bohunická, J.R.Johansen & J.Komárek 2017
(previously Oscillatoria pseudacutissima Kufferath 1914)
[104]
Anagnostidinema pseudacutissimum ACOI 767Covão do Curral reservoir1994n.d.ACOI[108]
Anagnostidinema pseudacutissimum ACOI 3103Pond (Lagoa Comprida, Serra da Estrela)1987n.d.ACOI[108]
Anagnostidinema pseudacutissimum ACOI 676Covão do Curral reservoir1986n.d.ACOI[108]
Anagnostidinema pseudacutissimum ACOI 2578Serra Serrada reservoir1995n.d.ACOI[108]
Anagnostidinema pseudacutissimum ACOI 2738Channel (Parque de Sta. Cruz, Coimbra)2002n.d.ACOI[108]
Geitlerinematales
Geitlerinema splendidum (Gomont) Anagnostidis 1989
(previously Oscillatoria splendida Greville ex Gomont 1892)
[116]
Geitlerinema splendidum ACOI 1449Paul da Tornada2002n.d.ACOI[108]
Geitlerinema splendidum ACOI 2224Paul da Tornada2000n.d.ACOI[108]
Geitlerinema splendidum ACOI 778Vela Lake1994n.d.ACOI[108]
Geitlerinema splendidum ACOI 264Stream (Vidoeiro, Serra do Gerês)1987n.d.ACOI[108]
Geitlerinema splendidum ACOI 263Quinta das Lágrimas (Coimbra)1987n.d.ACOI[108]
Oscillatoriales
Lyngbya major Vaucher ex Forti 1907
Lyngbya major ACOI 2159Vela Lake 2002n.d.ACOI[108]
Oscillatoria margaritifera Kützing ex Gomont 1892
Oscillatoria margaritifera ACOI 158Channel (Mira)1984n.d.ACOI[108]
Oscillatoria princeps Vaucher ex Gomont 1892
Oscillatoria princeps ACOI 265Mira Lake (Quinta da Lagoa)1987n.d.ACOI[108]
Phormidium ambiguum Gomont 1892
Phormidium ambiguum ACOI 2266Channel (Parque de Sta. Cruz, Coimbra)2002n.d.ACOI[108]
Phormidium ambiguum ACOI 29Rice field (Tentúgal)1975n.d.ACOI[108]
Microcoleus autumnalis (Gomont) Strunecky, Komárek & J.R.Johansen 2013
(previously Phormidium autumnale Gomont 1892)
[105]
Microcoleus autumnalis ACOI 2227Pond (Choupal, Coimbra) 1979n.d.ACOI[108]
Microcoleus autumnalis ACOI 728Bica do Carmo (Madeira) 1994n.d.ACOI[108]
Microcoleus autumnalis ACOI 671 Almofada de Baixo (Figueiró dos Vinhos)1994n.d.ACOI[108]
Microcoleus autumnalis ACOI 119Sabugueiro (Serra da Estrela)1981n.d.ACOI[108]
Microcoleus favosus (Gomont) Strunecky, Komárek & J.R.Johansen 2013
(previously Phormidium favosum Gomont 1892)
[105]
Microcoleus favosus ACOI 763Covão do Curral reservoir1994n.d.ACOI[108]
Phormidium subfuscum Kützing ex Gomont 1892
Phormidium subfuscum ACOI 190Pateira de Fermentelos1985n.d.ACOI[108]
Planktothrix agardhii (Gomont) Anagnostidis & Komárek 1988
Planktothrix agardhii LMECYA 152 (non-MC; non-STX)Magos reservoir2003/02/07EU078513ESSACC[106,115]
Planktothrix agardhii LMECYA 153 (non-MC; non-STX)Enxoé reservoir2003/02/12EU078514ESSACC[106,115]
Planktothrix agardhii LMECYA 153A (non-MC; non-STX)Enxoé reservoir2003/02/12n.d.ESSACC[106,115]
Planktothrix agardhii LMECYA 153B (non-MC; non-STX)Enxoé reservoir2003/02/12n.d.ESSACC[106,115]
Planktothrix agardhii LMECYA 153C (non-MC; non-STX)Enxoé reservoir2003/02/12n.d.ESSACC[106,115]
Planktothrix agardhii LMECYA 153E (non-MC; non-STX)Enxoé reservoir2003/02/12EU078515ESSACC[106,115]
Planktothrix agardhii LMECYA 153F (non-MC)Enxoé reservoir2003/02/12EU078516ESSACC[106,115]
Planktothrix agardhii LMECYA 155Enxoé reservoir2003/02/25n.d.ESSACC[106]
Planktothrix agardhii LMECYA 198 (non-MC; non-STX)Enxoé reservoir2005/05/19n.d.ESSACC[106,115]
Planktothrix agardhii LMECYA 199 (non-MC; non-STX)Enxoé reservoir2005/05/19n.d.ESSACC[106,115]
Planktothrix agardhii LMECYA 230São Domingos reservoir2007/03/21n.d.ESSACC[106,117]
Planktothrix agardhii LMECYA 257São Domingos reservoir2009n.d.ESSACC[117]
Planktothrix agardhii LMECYA 269Magos reservoir2009n.d.ESSACC[117]
Planktothrix agardhii LMECYA 280São Domingos reservoir2012n.d.ESSACC[117]
Planktothrix agardhii LMECYA 283Patudos reservoir2012n.d.ESSACC[117]
Planktothrix agardhii LMECYA 292São Domingos reservoir2013n.d.ESSACC[117]
Planktothrix agardhii LMECYA 303São Domingos reservoir2013n.d.ESSACC[117]
Planktothrix mougeotii Anagnostidis & Komárek 1988
(previously Oscillatoria mougeotii Kützing ex Forti 1907)
[118]
Planktothrix mougeotii ACOI 1420Paul da Tornada2002n.d.ACOI[108]
Planktothrix mougeotii ACOI 2225Paul da Tornada2000n.d.ACOI[108]
Planktothrix mougeotii ACOI 2338 Paul da Tornada2000n.d.ACOI[108]
Planktothrix mougeotii LEGE 06222 WWTP at Febros River2006/10/27KU951791LEGE-CC[107]
Planktothrix mougeotii LEGE 06223 WWTP at Febros River2006/11/24KU951792LEGE-CC[107]
Planktothrix mougeotii LEGE 06225 WWTP at Febros River2006/10/27KU951793LEGE-CC[107]
Planktothrix mougeotii LEGE 06226 WWTP at Febros River2006/10KU951794LEGE-CC[107]
Planktothrix mougeotii LEGE 06229 WWTP at Febros River2007/07n.d.LEGE-CC[107,117]
Planktothrix mougeotii LEGE 06230 WWTP at Febros River2007/07n.d.LEGE-CC[107,117]
Planktothrix mougeotii LEGE 06231 WWTP at Febros River2007/06n.d.LEGE-CC[107,117]
Planktothrix pseudoagardhii S.Suda & M.Watanabe 2002
Planktothrix pseudoagardhii LMECYA 162 (non-MC; non-STX)Guadiana River (Mértola)2003/07/31EU078517ESSACC[106,115]
Planktothrix rubescens (De Candolle ex Gomont) Anagnostidis & Komárek 1988
Planktothrix rubescens LMECYA 203 (*MC)Beliche reservoir2005/06/30DQ497635ESSACC[106,115,119]
Pseudanabaenales
Limnothrix redekei (Goor) Meffert 1987
Limnothrix redekei LMECYA 145 (non-MC; non-STX)Magos reservoir2001/09/11EU078512ESSACC[106,115]
Pseudanabaena galeata Böcher 1949
Pseudanabaena galeata ACOI 1752Vale Caniveta (Mortágua) 2004n.d.ACOI[108]
Pseudanabaena galeata ACOI 3056Mondego River2008n.d.ACOI[108]
Pseudanabaena minima (G.S.An) Anagnostidis 2001
Pseudanabaena minima BACA0014Serra Devassa shallow Lake (S. Miguel)2015/01/17n.d.BACA[110]
Pseudanabaena limnetica (Lemmermann) Komárek 1974
Pseudanabaena limnetica BACA0016Caiado Lake (Pico)2015/10/19n.d.BACA[110]
Pseudanabaena mucicola (Naumann & Huber-Pestalozzi) Schwabe 1964
Pseudanabaena mucicola LMECYA 234 Campo Grande Lake2007/05/28n.d.ESSACC[106]
Leptolyngbyales
Leptolyngbya fragilis (Gomont) Anagnostidis & Komárek 1988
(previously Phormidium fragile Gomont 1893)
[118]
Leptolyngbya fragilis ACOI 2961Rice field (Mondego River)2005n.d.ACOI[108]
Leptolyngbya fragilis ACOI 2577Channel (Barrô, Luso)1988n.d.ACOI[108]
Leptolyngbya fragilis ACOI 2578Channel (Barrô, Luso)1988n.d.ACOI[108]
Oculatellales
Drouetiella lurida (Gomont) Mai, J.R.Johansen & Pietrasiak 2018
(previously Phormidium luridum Gomont 1892)
[120]
Drouetiella lurida ACOI 2442Pond (S. Silvestre)1975n.d.ACOI[108]
Drouetiella lurida ACOI 3242Ribeira de Algibre (Loulé)2009n.d.ACOI[108]
Synechococcales
Cyanobium gracile Rippka & Cohen-Bazire 1983
Cyanobium gracile LEGE 09399Vela Lake2009KU951680LEGE-CC[107]
Synechococcus nidulans (Pringsheim) Komárek 1970
Synechococcus nidulans LMECYA 156 (non-MC)Serralves Park Lake2001EU078507ESSACC[106,115]
Synechococcus nidulans LMECYA 236Vela Lake2005n.d.ESSACC[106]
Table 2. Nostocales species and strain name, origin, collection date, GenBank accession number (for 16S rRNA gene sequence), culture collection, and reference for potentially bloom-forming Nostocales strains isolated from Portuguese freshwater bodies over the past decades (*—with toxic potential; ATX—anatoxin-a producer; STX—saxitoxin producer; non-MC— not microcystin producer; non-CYL—not cylindrospermopsin producer; non-STX—not saxitoxin producer; NT—non-toxic for CYL, MC and STX; ACOI—Coimbra Collection of Algae; LEGE-CC—Blue Biotechnology and Ecotoxicology Culture Collection; ESSACC—Estela Sousa e Silva Algal Culture Collection; UA—University of Aveiro; UTAD—University of Trás-os-Montes and Alto Douro; BACA—Bank of Algae and Cyanobacteria of the Azores; WTP—water treatment plant); n.d.—not determined).
Table 2. Nostocales species and strain name, origin, collection date, GenBank accession number (for 16S rRNA gene sequence), culture collection, and reference for potentially bloom-forming Nostocales strains isolated from Portuguese freshwater bodies over the past decades (*—with toxic potential; ATX—anatoxin-a producer; STX—saxitoxin producer; non-MC— not microcystin producer; non-CYL—not cylindrospermopsin producer; non-STX—not saxitoxin producer; NT—non-toxic for CYL, MC and STX; ACOI—Coimbra Collection of Algae; LEGE-CC—Blue Biotechnology and Ecotoxicology Culture Collection; ESSACC—Estela Sousa e Silva Algal Culture Collection; UA—University of Aveiro; UTAD—University of Trás-os-Montes and Alto Douro; BACA—Bank of Algae and Cyanobacteria of the Azores; WTP—water treatment plant); n.d.—not determined).
Nostocales Species
and Strain Name
OriginCollection DateGenBank
Accession nr.
Culture
Collection
References
Anabaena cylindrica Lemmermann 1896
Anabaena cylindrica ACOI 1011Valinhos reservoir 1996n.d.ACOI[108]
Anabaena cylindrica ACOI 2075Rice field (Sta Olaia, Montemor-o-Velho) 2008n.d.ACOI[108]
Anabaena cylindrica ACOI 2712Paul do Taipal 2008n.d.ACOI[108]
Anabaena cf. cylindrica LEGE 00235Maranhão reservoir2000/07/07n.d.LEGE[107]
Anabaena cylindrica UTAD A212Rice field (Mondego River) 2006GQ443447UTAD[111,121]
Anabaena lapponica Borge 1913
Anabaena lapponica ACOI 734Pond (Fonte dos Perús, Serra da Estrela) 1994n.d.ACOI[108]
Anabaena lapponica ACOI 772Pond (Lagoa Comprida, Serra da Estrela) 1990n.d.ACOI[108]
Anabaena oscillarioides Bory ex Bornet & Flahault 1886
Anabaena oscillarioides ACOI 991Pond (Mogadouro)1996n.d.ACOI[108]
Anabaena sphaerica Bornet & Flahault 1886
Anabaena sphaerica ACOI 2074Jardim Botânico (Coimbra)2008n.d.ACOI[108]
Anabaena sphaerica ACOI 2100Rice field channel, Mondego River 2005n.d.ACOI[108]
Anabaena sphaerica ACOI 2088Rice field channel, Mondego River 2005n.d.ACOI[108]
Anabaena sphaerica ACOI 2413Casal Novo do Rio 2006n.d.ACOI[108]
Anabaenopsis circularis (G.S.West) V.V.Miller 1923
Anabaenopsis circularis LMECYA 205 10 (non-MC; non-STX)Lagoa (Nafarros, Sintra) 2005/07/14EU078528ESSACC[106,115]
Anabaenopsis circularis LMECYA 20610 (non-STX)Lagoa (Nafarros, Sintra) 2005/07/14EU078529ESSACC[106,115]
Anabaenopsis circularis LMECYA 207 10 (non-MC)Lagoa (Nafarros, Sintra) 2005/07/15n.d.ESSACC[106,115]
Anabaenopsis circularis LMECYA 208Lagoa (Nafarros, Sintra) 2005/07/15n.d.ESSACC[106]
Aphanizomenon flos-aquae Ralfs ex Bornet & Flahault 1886
Aphanizomenon flos-aquae LMECYA 10 (non-MC; non-STX)Torrão reservoir 1996/06/05EU078537ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 77A (non-MC; non-STX)Montargil reservoir 1999/11/18EU078538ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 77B (non-MC; non-STX)Montargil reservoir 1999/11/18EU078539ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 88 (non-MC; non-STX)Montargil reservoir 1999/11/18EU078540ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 89 (non-MC; non-STX)Montargil reservoir 1999/11/18n.d.ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 99 (non-MC; non-STX)Montargil reservoir 1999/11/18EU078541ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 125 (non-MC)Monte Novo reservoir 2000/10/23EU078542ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 129 (non-MC; non-STX)Montargil reservoir 2000/11/27EU078543ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 140 (non-MC; non-STX)Divor reservoir 2001/07/17n.d.ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 141 (non-MC; non-STX)Monte Novo reservoir 2001/07/17EU078544ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 143A (non-MC; non-STX)Montargil reservoir 2001/07/23n.d.ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 143B (non-MC; non-STX)Montargil reservoir 2001/07/23n.d.ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 146 (non-MC; non-STX)Funcho reservoir 2002/01/14n.d.ESSACC[106,115]
Aphanizomenon flos-aquae LMECYA 253Póvoa e Meadas reservoir 2009/04/09n.d.ESSACC[106]
Aphanizomenon flos-aquae LMECYA 255Magos reservoir 2009/06/04n.d.ESSACC[106]
Aphanizomenon flos-aquae LMECYA 328Magos reservoir 2015SAMN34233954ESSACC[122]
Aphanizomenon gracile Lemmermann 1907
Aphanizomenon gracile BACA0041 (*STX)Santiago Lake (S. Miguel)2016/08/31MT176711BACA[110,112]
Aphanizomenon gracile LMECYA 9 10 (non-MC; non-STX)Peneireiro reservoir 1996/03/15EU078530ESSACC[106,115]
Aphanizomenon gracile LMECYA 33 10 (non-MC; non-STX)Peneireiro reservoir 1996/03/15EU078531ESSACC[106,115]
Aphanizomenon gracile LMECYA 40 (*STX)Crato reservoir 1996/08/02AY354194ESSACC[106,115]
Aphanizomenon gracile LMECYA 64 10 (non-MC; non-STX)Patudos reservoir 1997/08/13EU078532ESSACC[106,115]
Aphanizomenon gracile LMECYA 148 (*STX)Patudos reservoir 2002/05/21EU078533ESSACC[106,115]
Aphanizomenon gracile LMECYA 191 Tabueira reservoir 2001/05/08n.d.ESSACC[106]
Aphanizomenon gracile LMECYA 196 (non-MC; non-STX)Enxoé reservoir 2005/05/20n.d.ESSACC[106,115]
Aphanizomenon gracile LMECYA 197 (non-MC; non-STX)Enxoé reservoir 2005/05/20n.d.ESSACC[106,115]
Aphanizomenon gracile LMECYA 211 (*STX)Enxoé reservoir 2005/07/23n.d.ESSACC[106,115]
Aphanizomenon gracile LMECYA 226Odivelas reservoir 2005/10/27n.d.ESSACC[106]
Aphanizomenon gracile LMECYA 235Vela Lake 2006n.d.ESSACC[106]
Aphanizomenon gracile LMECYA 237Mondego River 2007n.d.ESSACC[106]
Aphanizomenon gracile UADFA2Vela Lake 2001/05FJ895124UA[7,62]
Aphanizomenon gracile UADFA10Vela Lake 2005/08FJ895125UA[7,62]
Aphanizomenon gracile UADFA11Monte Novo reservoir 2005/07FJ895126UA[7,62]
Aphanizomenon gracile UADFA12Vela Lake 2006/07FJ895127UA[7,62]
Aphanizomenon gracile UADFA16Vela Lake 2007/06FJ895128UA[7,62]
Chrysosporum bergii (Ostenfeld) E.Zapomelová, O.Skácelová, P.Pumann, R.Kopp & E.Janecek 2012
(previously Anabaena bergii Ostenfeld 1908)
[123]
Chrysosporum bergii LMECYA 246Jamor pound2007/08/16SAMN34233944ESSACC[106,122]
Cuspidothrix issatschenkoi (Usačev) Rajaniemi, Komárek, Willame, Hrouzek, Kastovská, Hoffmann and Sivonen 2005
(previously Aphanizomenon issatschenkoi (Usačev) Proškina-Lavrenko 1968)
[47]
Cuspidothrix issatschenkoi LEGE 00247 (*ATX)Maranhão reservoir2000/07/07KU951674LEGE-CC[107]
Cuspidothrix issatschenkoi LEGE 03282Maranhão reservoir2003/10/01KU951675LEGE-CC[107]
Cuspidothrix issatschenkoi LEGE 03284Maranhão reservoir2003/10/03KC989703LEGE-CC[107]
Cuspidothrix issatschenkoi LEGE 03285Maranhão reservoir2003/10/04KU951676LEGE-CC[107]
Cuspidothrix issatschenkoi LMECYA 31 (*STX)Montargil reservoir1996/06/10AY196088ESSACC[58,106]
Cuspidothrix issatschenkoi LMECYA 163 (non-MC; non-STX)Magos reservoir2003/09/05EU078534ESSACC[106,115]
Cuspidothrix issatschenkoi LMECYA 164 (non-MC; non-STX)Magos reservoir2003/09/05n.d.ESSACC[106,115]
Cuspidothrix issatschenkoi LMECYA 166 (non-MC; non-STX)Vale Michões reservoir2003/10/29EU078535ESSACC[106,115]
Cuspidothrix issatschenkoi LMECYA 190 (non-MC; non-STX)Maranhão reservoir2004/09/10EU078536ESSACC[106,115]
Cuspidothrix issatschenkoi UADFA1Vela Lake2004/08EF685373UA[7,62]
Cylindrospermum stagnale Bornet & Flahault 1886
Cylindrospermum stagnale ACOI 1644Porco Lake (Abrantes)2003n.d.ACOI[108]
Dolichospermum circinale (Rabenhorst ex Bornet & Flahault) Wacklin, Hoffmann & Komárek 2009
(previously Anabaena circinalis Rabenhorst ex Bornet & Flahault 1886)
[124]
Dolichospermum circinale LMECYA 17 (non-MC; non-STX)Montargil reservoir 1996/05/10EU078518ESSACC[106,115]
Dolichospermum circinale LMECYA 123 (non-MC)Montargil reservoir 2000/09/10EU078519ESSACC[106,115]
Dolichospermum circinale LMECYA 123A (non-MC; non-STX)Montargil reservoir 2000/09/10EU078520ESSACC[106,115]
Dolichospermum circinale LMECYA 123C (non-MC)Montargil reservoir 2000/09/10SAMN34233937ESSACC[106,115,122]
Dolichospermum circinale LMECYA 126 (non-MC; non-STX)Montargil reservoir 2000/11/27EU078521ESSACC[106,115]
Dolichospermum circinale LMECYA 174Magos reservoir 2004/05/20n.d.ESSACC[106]
Dolichospermum circinale LMECYA 175 (non-MC; non-STX)Magos reservoir 2004/05/21n.d.ESSACC[106,115]
Dolichospermum circinale LMECYA 195 Monte Novo reservoir 2005/05/20n.d.ESSACC[106]
Dolichospermum circinale LMECYA 213 (non-MC; non-STX)Alvito reservoir 2005/07/22EU078526ESSACC[106,115]
Dolichospermum circinale LMECYA 251Magos reservoir 2009/04/02n.d.ESSACC[106]
Dolichospermum delicatulum (Lemmermann) Wacklin, Hoffmann & Komárek 2009
(previously Anabaena delicatula Lemmermann 1898)
[124]
Dolichospermum delicatulum BACA0044Fogo Lake (S. Miguel) 2016/11/07n.d.BACA[110]
Dolichospermum flos-aquae (Bornet & Flahault) P.Wacklin, L.Hoffmann & Komárek 2009
(previously Anabaena flos-aquae Brébisson ex Bornet & Flauhault 1886)
[124]
Dolichospermum flos-aquae ACOI 995Sta Maria de Aguiar reservoir 1996n.d.ACOI[108]
Dolichospermum flos-aquae ACOI 1168Pond (Sta Olaia, Montemor-o-Velho) 1997n.d.ACOI[108]
Dolichospermum flos-aquae ACOI 1163Pond (Sta Olaia, Montemor-o-Velho) 1997n.d.ACOI[108]
Dolichospermum flos-aquae LEGE 02268Montargil reservoir 2002KU951713LEGE-CC[107]
Dolichospermum flos-aquae LEGE 04289 (*ATX)Marco de Canaveses 2004KU951714LEGE-CC[107]
Dolichospermum flos-aquae LMECYA 165 (non-MC; non-STX)Magos reservoir 2003/09/05EU078523ESSACC[106,115]
Dolichospermum planctonicum (Brunnthaler) Wacklin, L.Hoffmann & Komárek 2009
(previously Anabaena planctonica Brunnthaler 1903)
[124]
Dolichospermum planctonicum LMECYA 177 (non-MC; non-STX)Toulica reservoir 2004/07/30EU078522ESSACC[106]
Dolichospermum solitarium (Klebahn) Wacklin, L.Hoffmann & Komárek 2009
(previously Anabaena solitaria Klebahn 1895)
[124]
Dolichospermum solitarium ACOI 1106Toulica reservoir1997n.d.ACOI[108]
Dolichospermum spiroides (Klebahn) Wacklin, L.Hoffmann & Komárek 2009
(previously Anabaena spiroides Klebahn 1895)
[124]
Dolichospermum spiroides LMECYA 161 (non-MC; non-STX)Agolada de Baixo2003/07/11EU078524ESSACC[106,115]
Raphidiopsis raciborskii (Wołoszyńska) Aguilera & al. 2018
(previously Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya & Subba Raju 1972)
[125]
Raphidiopsis raciborskii LEGE 99043 (* non-CYN)Odivelas reservoir 1999AF516741LEGE-CC[107,126]
Raphidiopsis raciborskii LEGE 99044 (* non-CYN)Ardila River 1999HQ407322LEGE-CC[107,126]
Raphidiopsis raciborskii LEGE 99045 (* non-CYN)Maranhão reservoir 1999AF516739LEGE-CC[107,127]
Raphidiopsis raciborskii LEGE 99048Ardila River 1999KU951711LEGE-CC[107,114]
Raphidiopsis raciborskii LMECYA 130 (non-MC; non-CYL)Odivelas reservoir 2000/07/24n.d.ESSACC[106,115]
Raphidiopsis raciborskii LMECYA 132 (NT)Odivelas reservoir 2000/07/24EU078547ESSACC[101,106,115]
Raphidiopsis raciborskii LMECYA 134 (NT)Odivelas reservoir 2000/07/24AY699989ESSACC[101,106,115]
Raphidiopsis raciborskii LMECYA 135 (NT)Odivelas reservoir 2000/07/24EU078548ESSACC[101,106,115]
Raphidiopsis raciborskii LMECYA 168 (NT)Odivelas reservoir 2000/07/24n.d.ESSACC[101,106,115]
Raphidiopsis raciborskii LMECYA 324 (NT)WTP of Roxo reservoir 2015n.d.ESSACC[128]
Raphidiopsis raciborskii LMECYA 325 (NT)WTP of Roxo reservoir 2015n.d.ESSACC[128]
Raphidiopsis raciborskii LMECYA 326 (NT)WTP of Roxo reservoir 2015n.d.ESSACC[128]
Sphaerospermopsis aphanizomenoides (Forti) Zapomelová & al. 2010
(previously Aphanizomenon aphanizomenoides (Forti) Horecká & Komárek 1979 or Anabaena aphanizomenoides Forti 1911)
[52,53]
Sphaerospermopsis aphanizomenoides UADFA3 Vela Lake2004/08FJ895118UA[7,62]
Sphaerospermopsis aphanizomenoides UADFA5Vela Lake2004/08FJ895119UA[7,62]
Sphaerospermopsis aphanizomenoides UADFA6Vela Lake2004/08FJ895120UA[7,62]
Sphaerospermopsis aphanizomenoides UADFA7Vela Lake2004/08FJ895121UA[7,62]
Sphaerospermopsis aphanizomenoides UADFA8Vela Lake2004/08FJ895122UA[7,62]
Sphaerospermopsis aphanizomenoides UADFA13Vela Lake2006/07FJ895123UA[7,62]
Sphaerospermopsis aphanizomenoides LEGE 00250Maranhão reservoir2000/07/07n.d.LEGE-CC[129]
Trichormus variabilis (Kützing ex Bornet & Flahault) Komárek & Anagnostidis 1989
(previously Anabaena variabilis Kützing ex Bornet & Flahault 1886)
[130]
Trichormus variabilis ACOI 2073Pond (near the river, S. João do Campo) 1975n.d.ACOI[108]
Trichormus variabilis ACOI 2081Reservoir (Castelo Branco)1998n.d.ACOI[108]
Trichormus variabilis ACOI 2083Channel (Parque de Sta. Cruz, Coimbra)1998n.d.ACOI[108]
Trichormus variabilis ACOI 85Pond (near Arazede, Amieiro)1979n.d.ACOI[108]
Trichormus variabilis ACOI 773Sabugueiro (Serra da Estrela)1981n.d.ACOI[108]
Trichormus variabilis ACOI 334Almofada de Baixo (Figueiró dos Vinhos)1988n.d.ACOI[108]
Trichormus variabilis ACOI 20Barrinha de Mira Lake 1975n.d.ACOI[108]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

de Figueiredo, D.R. Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies. Phycology 2025, 5, 47. https://doi.org/10.3390/phycology5030047

AMA Style

de Figueiredo DR. Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies. Phycology. 2025; 5(3):47. https://doi.org/10.3390/phycology5030047

Chicago/Turabian Style

de Figueiredo, Daniela R. 2025. "Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies" Phycology 5, no. 3: 47. https://doi.org/10.3390/phycology5030047

APA Style

de Figueiredo, D. R. (2025). Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies. Phycology, 5(3), 47. https://doi.org/10.3390/phycology5030047

Article Metrics

Back to TopTop