Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = borocarburizing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11777 KB  
Article
Increasing the Wear and Corrosion Resistance of a CP-Ti Surface by Plasma Electrolytic Borocarburizing and Polishing
by Marina A. Volosova, Sergei A. Kusmanov, Ivan V. Tambovskiy, Tatiana L. Mukhacheva, Artem P. Mitrofanov, Igor V. Suminov and Sergey N. Grigoriev
Surfaces 2024, 7(4), 824-837; https://doi.org/10.3390/surfaces7040054 - 7 Oct 2024
Viewed by 1734
Abstract
The paper examines the possibility of increasing the wear and corrosion resistance of a CP-Ti surface by duplex plasma electrolytic treatment (borocarburizing and polishing). The structure and composition of diffusion layers, their microhardness, surface morphology and roughness, wear resistance during dry friction and [...] Read more.
The paper examines the possibility of increasing the wear and corrosion resistance of a CP-Ti surface by duplex plasma electrolytic treatment (borocarburizing and polishing). The structure and composition of diffusion layers, their microhardness, surface morphology and roughness, wear resistance during dry friction and corrosion resistance in Ringer’s solution were studied. The formation of a surface-hardened layer up to 200 μm thick with a microhardness of up to 950 HV, including carbides and a solid solution of boron and carbon, is shown. Subsequent polishing makes it possible to reduce surface roughness and remove weak areas of the porous oxide layer, which are formed during high-temperature oxidation in aqueous electrolyte vapor during borocarburizing. Changing the morphology and structural-phase composition of the CP-Ti surface helps reduce weight wear by a factor of three (the mode of frictional interaction changes from microcutting to oxidative wear) and corrosion current density by a factor of four after borocarburizing in a solution of boric acid, glycerin and ammonium chloride at 950 °C for 5 min and subsequent polishing in an ammonium fluoride solution at a voltage of 250 V for 3 min. Full article
Show Figures

Figure 1

13 pages, 4210 KB  
Article
Performance Enhancement in Borocarburized Low-Carbon Steel by Double Glow Plasma Surface Alloying
by Zheng Ding, Qiang Miao, Wenping Liang, Zhengang Yang and Shiwei Zuo
Coatings 2020, 10(12), 1205; https://doi.org/10.3390/coatings10121205 - 10 Dec 2020
Cited by 2 | Viewed by 2144
Abstract
In this paper, the performance of low-carbon steel is enhanced after introducing a borocarburized diffusion layer via double glow plasma surface alloying technology. Due to the boron-carbon gradient structure of low-carbon steel, the protective coating exhibits an excellent wear and corrosion resistance. Interestingly, [...] Read more.
In this paper, the performance of low-carbon steel is enhanced after introducing a borocarburized diffusion layer via double glow plasma surface alloying technology. Due to the boron-carbon gradient structure of low-carbon steel, the protective coating exhibits an excellent wear and corrosion resistance. Interestingly, the borocarburized layer consists of a 64 μm carburized layer and a 27 μm boride layer, which plays an effective role in enhancing the microhardness of borocarburized low-carbon steel, exhibiting a 1440 Vickers hardness increase in the surface microhardness of low-carbon steel. The potentiodynamic polarization measurement and impedance measurement results indicate that the boride protective film can effectively prevent aggressive chloride ions from invading the substrate, which indicates an excellent property of corrosion resistance. This systematic study paves a promising way for the future application of hard coatings in severe environments. Full article
Show Figures

Figure 1

17 pages, 15834 KB  
Article
Gas Technique of Simultaneous Borocarburizing of Armco Iron Using Trimethyl Borate
by Natalia Makuch, Piotr Dziarski and Michał Kulka
Coatings 2020, 10(6), 564; https://doi.org/10.3390/coatings10060564 - 14 Jun 2020
Cited by 5 | Viewed by 3459
Abstract
The gas boriding process is an appropriate technique used for increasing the hardness and wear resistance of iron and steels. However, the boron halides (e.g., BCl3, BF3) are rarely used as a boron source during gas boriding in industry [...] Read more.
The gas boriding process is an appropriate technique used for increasing the hardness and wear resistance of iron and steels. However, the boron halides (e.g., BCl3, BF3) are rarely used as a boron source during gas boriding in industry due to the toxic character of these reagents. The possibility of the use of organic compounds as a boron source in plasma assisted processes was the instigation to determine the possibility of applying these agents for gas boriding. In the present work trimethyl borate was used as an organic boron source. The use of a N2–H2–B(CH3O)3 atmosphere ensured the appropriate conditions for the simultaneous gas borocarburizing of Armco iron. The process was carried out at 1223 K (950 °C) for 2 h. The produced layer consisted of two zones: an outer zone containing a diffusion of boron atoms and an inner zone containing a diffusion of carbon atoms, under the outer zone. Due to the reduction of trimethyl borate with hydrogen, free atoms of carbon were released for the gas atmosphere. Therefore, there existed favorable conditions for carburizing. Unfortunately, the formation of a carburized layer was the reason for the difficult diffusion of boron atoms. As a consequence, the boron diffusion front was hindered, and the outer boride layer was relatively thin (ca. 7.8 µm). The boride layer contained only Fe2B phase, which was characterized by high hardness in the range from 1103 HV0.01 to 1546 HV0.01. The presence of iron borides in the outer layer was also the reason for increased wear resistance in comparison with untreated Armco iron. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

Back to TopTop