Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,021)

Search Parameters:
Keywords = bottom structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1200 KB  
Article
Wave Load Reduction and Tranquility Zone Formation Using an Elastic Plate and Double Porous Structures for Seawall Protection
by Gagan Sahoo, Harekrushna Behera and Tai-Wen Hsu
Mathematics 2025, 13(17), 2733; https://doi.org/10.3390/math13172733 (registering DOI) - 25 Aug 2025
Abstract
This study presents an analytical model to reduce the impact of wave-induced forces on a vertical seawall by introducing a floating elastic plate (EP) located at a specific distance from two bottom-standing porous structures (BSPs). The hydrodynamic interaction with the EP is described [...] Read more.
This study presents an analytical model to reduce the impact of wave-induced forces on a vertical seawall by introducing a floating elastic plate (EP) located at a specific distance from two bottom-standing porous structures (BSPs). The hydrodynamic interaction with the EP is described using thin plate theory, while the fluid flow through the porous medium is described by the model developed by Sollit and Cross. The resulting boundary value problem is addressed through linear potential theory combined with the eigenfunction expansion method (EEM), and model validation is achieved through consistency checks with recognized results from the literature. A comprehensive parametric analysis is performed to evaluate the influence of key system parameters such as the porosity and frictional coefficient of the BSPs, their height and width, the flexural rigidity of the EP, and the spacing between the EP and BSPs on vital hydrodynamic coefficients, including the wave force on the seawall, free surface elevation, wave reflection coefficient, and energy dissipation coefficient. The results indicate that higher frictional coefficients and higher BSP heights significantly enhance wave energy dissipation and reduce reflection, in accordance with the principle of energy conservation. Oscillatory trends observed with respect to wavenumbers in the reflection and dissipation coefficients highlight resonant interactions between the structures. Moreover, compared with a single BSP, the double BSP arrangement is more effective in minimizing the wave force on the seawall and free surface elevation in the region between the EP and the wall, even when the total volume of porous material remains unchanged. The inter-structural gap is found to play a crucial role in optimizing resonance conditions and supporting the formation of a tranquility zone. Overall, the proposed configuration demonstrates significant potential for coastal protection, offering a practical and effective solution for reducing wave loads on marine infrastructure. Full article
Show Figures

Figure 1

23 pages, 1632 KB  
Review
Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications
by Eric Fernando Vázquez-Vázquez, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria and Oscar Eduardo Cigarroa-Mayorga
Crystals 2025, 15(9), 753; https://doi.org/10.3390/cryst15090753 (registering DOI) - 25 Aug 2025
Abstract
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for [...] Read more.
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for advanced nanotechnological applications. This review presents a comprehensive summary of recent progress in borophene synthesis methods, highlighting both bottom–up strategies such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE), and top–down approaches, including liquid-phase exfoliation and sonochemical techniques. A key challenge discussed is the stabilization of borophene’s polymorphs, as bulk boron’s non-layered structure complicates exfoliation. The influence of substrates and doping strategies on structural stability and phase control is also explored. Moreover, the intrinsic physicochemical properties of borophene, including its high flexibility, oxidation resistance, and anisotropic charge transport, were examined in relation to their implications for electronic, catalytic, and sensing devices. Particular attention was given to borophene’s performance in hydrogen storage and hydrogen evolution reactions (HERs), where functionalization with alkali and transition metals significantly enhances H2 adsorption energy and storage capacity. Studies demonstrate that certain borophene–metal composites, such as Ti- or Li-decorated borophene, can achieve hydrogen storage capacities exceeding 10 wt.%, surpassing the U.S. Department of Energy targets for hydrogen storage materials. Despite these promising characteristics, large-scale synthesis, long-term stability, and integration into practical systems remain open challenges. This review identifies current research gaps and proposes future directions to facilitate the development of borophene-based energy solutions. The findings support borophene’s strong potential as a next-generation material for clean energy applications, particularly in hydrogen production and storage systems. Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

11 pages, 6105 KB  
Article
Mechanical Performance of Prefabricated Assembly Air Ducts Subject to Assembly and Grouting Defects
by Shufeng Bao, Jinwen Zhang and Yongxing Zhang
Buildings 2025, 15(17), 3019; https://doi.org/10.3390/buildings15173019 (registering DOI) - 25 Aug 2025
Abstract
This paper presents an investigation into the mechanical performance of a subway station prefabricated assembly air duct (PAAD), constructed by assembling the prefabricated reinforced concrete segments. The study is implemented through numerical analysis, focusing on the impact from the grouting defects in the [...] Read more.
This paper presents an investigation into the mechanical performance of a subway station prefabricated assembly air duct (PAAD), constructed by assembling the prefabricated reinforced concrete segments. The study is implemented through numerical analysis, focusing on the impact from the grouting defects in the sleeve grouting connection and assembly error defects along the assembly direction. The results demonstrate that the assembly error defect has almost no impact on the mechanical performance of the PAAD, satisfying the safety requirements for use. However, the grouting defects in the sleeve grouting connection can influence the mechanical performance of the PAAD, in which the maximum tensile stress of concrete in the sleeve grouting connection with a 20 mm-long bottom grouting defect is greater than the tensile strength of that concrete, and strengthening treatment is thus required for ensuring the structure’s safety and reliability. This study provides the basis for applying a PAAD in subway station construction. Full article
Show Figures

Figure 1

27 pages, 16089 KB  
Article
Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation
by Chun Gong, Faisal Rafique and Fengpeng Yang
Appl. Sci. 2025, 15(17), 9279; https://doi.org/10.3390/app15179279 - 23 Aug 2025
Viewed by 54
Abstract
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. [...] Read more.
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. The enclosed air cavity significantly improves the sound insulation capability of the acoustic membrane. Parametric studies were conducted to investigate key factors affecting the sound transmission loss (STL) of the proposed acoustic membrane. The analysis examined the influence of foil thickness, substrate thickness, and back cavity depth on acoustic performance. Results demonstrate that the membrane structure enriches vibration modes in the 500–6000 Hz frequency range, exhibiting multiple acoustic attenuation peaks and broader noise reduction bandwidth (average STL of 40–55 dB across the researched frequency range) compared to conventional resonant cavities and membrane-type acoustic metamaterials. The STL characteristics can be tuned across different frequency bands by adjusting the back cavity depth, foil thickness, and substrate thickness. Experimental validation was performed through noise reduction tests on an air compressor pump. Comparative acoustic measurements confirmed the superior noise attenuation performance and practical applicability of the proposed membrane over conventional acoustic treatments. Compared to uniform foil resonators, the combination of plastic and steel materials with single-layer and double-layer membranes reduced the overall sound level (OA) by an additional 2–3 dB, thereby offering exceptional STL performance in the low- to medium-frequency range. These lightweight, easy-to-manufacture membranes exhibit considerable potential for noise control applications in household appliances and industrial settings. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

20 pages, 2743 KB  
Article
Extraction of Ficus carica Polysaccharide by Ultrasound-Assisted Deep Eutectic Solvent-Based Three-Phase Partitioning System: Process Optimization, Partial Structure Characterization, and Antioxidant Properties
by Qisen Sun, Zhubin Song, Fanghao Li, Xinyu Zhu, Xinyu Zhang and Hao Chen
Molecules 2025, 30(17), 3469; https://doi.org/10.3390/molecules30173469 - 23 Aug 2025
Viewed by 65
Abstract
An innovative ultrasound-assisted deep eutectic solvent-based three-phase partitioning (UA-DES-TPP) system was developed for the sustainable extraction of Ficus carica polysaccharide (FCP). Using a hydrophobic DES composed of dodecanoic acid and octanoic acid (1:1 molar ratio), a phase behavior-driven separation mechanism was established. The [...] Read more.
An innovative ultrasound-assisted deep eutectic solvent-based three-phase partitioning (UA-DES-TPP) system was developed for the sustainable extraction of Ficus carica polysaccharide (FCP). Using a hydrophobic DES composed of dodecanoic acid and octanoic acid (1:1 molar ratio), a phase behavior-driven separation mechanism was established. The system was systematically optimized through single-factor experiments and response surface methodology (RSM), achieving a maximum FCP yield of 9.22 ± 0.20% under optimal conditions (liquid–solid ratio 1:24.2 g/mL, top/bottom phase volume ratio 1:1.05 v/v, ammonium sulfate concentration 25.8%). Structural characterization revealed that FCP was a heteropolysaccharide primarily composed of glucose and mannose with α/β-glycosidic linkages and a loose fibrous network. Remarkably, the DESs demonstrated excellent recyclability over five cycles. Furthermore, FCP exhibited significant concentration-dependent antioxidant activities: 82.3 ± 3.8% DPPH radical scavenging at 8 mg/mL, 76.8 ± 0.8% ABTS+ scavenging, and ferric ion reducing power of 45.53 ± 1.07 μmol TE/g. This study provides a new path for the efficient and sustainable extraction of bioactive macromolecules. Full article
(This article belongs to the Special Issue Natural Antioxidants in Functional Food)
Show Figures

Figure 1

20 pages, 3964 KB  
Article
Study on Morphology, Age and Growth of River Perca fluviatilis in Kalasuke Reservoir, Xinjiang, China
by Wenjun Li, Guanping Xing, Zhengwei Wang, Shuangshuang Liang, Huale Lu, Yunhong Tan, Jie Wei and Zhulan Nie
Animals 2025, 15(17), 2469; https://doi.org/10.3390/ani15172469 - 22 Aug 2025
Viewed by 162
Abstract
In late August and mid-November 2024, and late February and mid-May 2025, four surveys were conducted in the Kalasuke Reservoir section of the Irtysh River, resulting in the collection of 296 samples of P. fluviatilis. Sampling tools included drift gillnets with a [...] Read more.
In late August and mid-November 2024, and late February and mid-May 2025, four surveys were conducted in the Kalasuke Reservoir section of the Irtysh River, resulting in the collection of 296 samples of P. fluviatilis. Sampling tools included drift gillnets with a mesh size of 5 cm and an outer mesh size of 10 cm, bottom cages with a mesh size of 1 cm, and fishing rods (4.5 m and 5.4 m). The age structure and growth characteristics of P. fluviatilis in the reservoir were analyzed. Results showed that the body length of the sampled fish ranged from 100.53 to 305.30 mm, with the dominant length group being 100.53–150.00 mm, accounting for 90.09% of the total. Body mass ranged from 24.20 to 490.20 g, with the dominant mass group below 66.5 g, accounting for 89.86%. The age composition of the population consisted of age classes 1–5, with ages 1–2 years old being dominant, accounting for 96.2% of the total samples. Among these, 1-year-old individuals were the most abundant, accounting for 78.3%, while older fish were relatively scarce. The relationship between body length (Lt) and body mass (Wt) was modeled as Wt = 4.298 × 10−5 Lt2.85 (R2 = 0.998, n = 296). The von Bertalanffy growth equations were Lt = 652.866 [1 − e0.108(t+0.778)] and Wt = 4990.21 [1 − e0.108(t+0.778)]2.85, with a growth coefficient K = 0.108. The inflection point of growth was determined to be 1.9 years by fitting growth rate and acceleration equations. The b < 3 indicates allometric growth, where body length increases faster than body mass, suggesting that P. fluviatilis prioritizes elongating its body to enhance swimming ability and expand its range, while accumulating muscle and fat at a slower pace. Principal component analysis (PCA) revealed that the cumulative contribution rate of the first three principal components was 55.45%, reflecting the morphological characteristics of the species. The accuracy of discriminant analysis for sex determination based on external morphology was 67.20%, indicating limited reliability in gender identification using only morphological traits. Full article
Show Figures

Figure 1

16 pages, 4428 KB  
Article
Toward Coarse and Fine Bimodal Structures for Improving the Plasma Resistance of Al2O3
by Jeong Hyeon Kwon, I Putu Widiantara, Siti Fatimah, Warda Bahanan, Jee-Hyun Kang and Young Gun Ko
Lubricants 2025, 13(9), 374; https://doi.org/10.3390/lubricants13090374 - 22 Aug 2025
Viewed by 123
Abstract
In the quest to produce high-purity alumina, bottom-up engineering via architecting the interior of ceramic with bimodal structures of alumina powders in the absence of any additives has gained considerable attention owing to the simplicity offered. The present work investigated the influence of [...] Read more.
In the quest to produce high-purity alumina, bottom-up engineering via architecting the interior of ceramic with bimodal structures of alumina powders in the absence of any additives has gained considerable attention owing to the simplicity offered. The present work investigated the influence of bimodal structures containing micron (~35 μm) and submicron (~600 nm) Al2O3 powders on the formation of dense Al2O3 ceramic. To this end, ball-milling was conducted to prepare the desired sizes of powders, followed by two-step sintering in a vacuum at 1450 °C and 1650 °C with 6 h and 4 h holding times, consecutively. The bimodal structures induced the formation of Al2O3 ceramic with nearly full densification (>99%; ρ 3.95 g/cm3). Both the coarse and fine-grained moieties synergistically balanced the densification kinetics whilst suppressing abnormal grain growth. The uniform and homogeneous grain size minimized the plasma porosity down to <6.0%, limiting the penetration of plasma during the etching process. Full article
(This article belongs to the Special Issue Tribology in Ball Milling: Theory and Applications)
Show Figures

Figure 1

14 pages, 1100 KB  
Article
Algorithmic Bias Under the EU AI Act: Compliance Risk, Capital Strain, and Pricing Distortions in Life and Health Insurance Underwriting
by Siddharth Mahajan, Rohan Agarwal and Mihir Gupta
Risks 2025, 13(9), 160; https://doi.org/10.3390/risks13090160 - 22 Aug 2025
Viewed by 307
Abstract
The EU Artificial Intelligence Act (Regulation (EU) 2024/1689) designates AI systems used in life and health insurance underwriting as high-risk systems, imposing rigorous requirements for bias testing, technical documentation, and post-deployment monitoring. Leveraging 12.4 million quote–bind–claim observations from four pan-European insurers (2019 Q1–2024 [...] Read more.
The EU Artificial Intelligence Act (Regulation (EU) 2024/1689) designates AI systems used in life and health insurance underwriting as high-risk systems, imposing rigorous requirements for bias testing, technical documentation, and post-deployment monitoring. Leveraging 12.4 million quote–bind–claim observations from four pan-European insurers (2019 Q1–2024 Q4), we evaluate how compliance affects premium schedules, loss ratios, and solvency positions. We estimate gradient-boosted decision tree (Extreme Gradient Boosting (XGBoost)) models alongside benchmark GLMs for mortality, morbidity, and lapse risk, using Shapley Additive Explanations (SHAP) values for explainability. Protected attributes (gender, ethnicity proxy, disability, and postcode deprivation) are excluded from training but retained for audit. We measure bias via statistical parity difference, disparate impact ratio, and equalized odds gap against the 10 percent tolerance in regulatory guidance, and then apply counterfactual mitigation strategies—re-weighing, reject option classification, and adversarial debiasing. We simulate impacts on expected loss ratios, the Solvency II Standard Formula Solvency Capital Requirement (SCR), and internal model economic capital. To translate fairness breaches into compliance risk, we compute expected penalties under the Act’s two-tier fine structure and supervisory detection probabilities inferred from GDPR enforcement. Under stress scenarios—full retraining, feature excision, and proxy disclosure—preliminary results show that bottom-income quintile premiums exceed fair benchmarks by 5.8 percent (life) and 7.2 percent (health). Mitigation closes 65–82 percent of these gaps but raises capital requirements by up to 4.1 percent of own funds; expected fines exceed rectification costs once detection probability surpasses 9 percent. We conclude that proactive adversarial debiasing offers insurers a capital-efficient compliance pathway and outline implications for enterprise risk management and future monitoring. Full article
Show Figures

Figure 1

32 pages, 986 KB  
Review
Comprehensive Review of Graphene Synthesis Techniques: Advancements, Challenges, and Future Directions
by Joys Alisa Angelina Hutapea, Yosia Gopas Oetama Manik, Sun Theo Constan Lotebulu Ndruru, Jingfeng Huang, Ronn Goei, Alfred Iing Yoong Tok and Rikson Siburian
Micro 2025, 5(3), 40; https://doi.org/10.3390/micro5030040 - 21 Aug 2025
Viewed by 429
Abstract
Graphene, a two-dimensional material with remarkable electrical, thermal, and mechanical properties, has revolutionized the fields of electronics, energy storage, and nanotechnology. This review presents a comprehensive analysis of graphene synthesis techniques, which can be classified into two primary approaches: top-down and bottom-up. Top-down [...] Read more.
Graphene, a two-dimensional material with remarkable electrical, thermal, and mechanical properties, has revolutionized the fields of electronics, energy storage, and nanotechnology. This review presents a comprehensive analysis of graphene synthesis techniques, which can be classified into two primary approaches: top-down and bottom-up. Top-down methods, such as mechanical exfoliation, oxidation-reduction, unzipping carbon nanotubes, and liquid-phase exfoliation, are highlighted for their scalability and cost-effectiveness, albeit with challenges in controlling defects and uniformity. In contrast, bottom-up methods, including chemical vapor deposition (CVD), arc discharge, and epitaxial growth on silicon carbide, offer superior structural control and quality but are often constrained by high costs and limited scalability. The interplay between synthesis parameters, material properties, and application requirements is critically examined to provide insights into optimizing graphene production. This review also emphasizes the growing demand for sustainable and environmentally friendly approaches, aligning with the global push for green nanotechnology. By synthesizing current advancements and identifying critical research gaps, this work offers a roadmap for selecting the most suitable synthesis techniques and fostering innovations in scalable and high-quality graphene production. The findings serve as a valuable resource for researchers and industries aiming to harness graphene’s full potential in diverse technological applications. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

14 pages, 1801 KB  
Article
Constructive Neuroengineering of Axon Polarization Control Using Modifiable Agarose Gel Platforms for Neuronal Circuit Construction
by Soya Hagiwara, Kazuhiro Tsuneishi, Naoya Takada and Kenji Yasuda
Gels 2025, 11(8), 668; https://doi.org/10.3390/gels11080668 - 21 Aug 2025
Viewed by 150
Abstract
Axon polarization is a fundamental process in neuronal development, providing the structural basis for directional signaling in neural circuits. Precise control of axon specification is, thus, essential for the bottom-up construction of neuronal networks with defined architecture and connectivity. Although neurite length and [...] Read more.
Axon polarization is a fundamental process in neuronal development, providing the structural basis for directional signaling in neural circuits. Precise control of axon specification is, thus, essential for the bottom-up construction of neuronal networks with defined architecture and connectivity. Although neurite length and elongation timing have both been implicated as determinants of axonal fate, their relative contributions have remained unresolved due to technical limitations in manipulating these factors independently in conventional culture systems. Here, we developed a constructive neuroengineering platform based on modifiable agarose gel microstructures that enables dynamic, in situ control of neurite outgrowth length and timing during neuronal cultivation. This approach allowed us to directly address whether axon polarization depends primarily on neurite length or the order of neurite extension. Using a single-neurite elongation paradigm, we quantitatively defined two length thresholds for axon specification: a critical length of 43.3 μm, corresponding to a 50% probability of axonal differentiation, and a definitive length of 95.4 μm, beyond which axonal fate was reliably established. In experiments involving simultaneous or sequential elongation of two neurites, we observed that neurite length—not elongation order—consistently predicted axonal identity, even when a second neurite was introduced after the first had already begun to grow. The presence of a competing neurite modestly elevated the effective critical length, suggesting inhibitory interactions that modulate length thresholds. These findings provide the first direct experimental confirmation that neurite length is the primary determinant of axon polarization and demonstrate the utility of constructive microfabrication approaches for dissecting fundamental principles of neuronal polarity. Our platform establishes a powerful experimental foundation for future efforts to achieve complete control over axon and dendrite orientation during the engineered construction of functional neuronal circuits. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

17 pages, 3868 KB  
Article
Differential Metabolomics and Cardiac Function in Trained vs. Untrained Yili Performance Horses
by Tongliang Wang, Jun Meng, Xixi Yang, Yaqi Zeng, Xinkui Yao and Wanlu Ren
Animals 2025, 15(16), 2444; https://doi.org/10.3390/ani15162444 - 20 Aug 2025
Viewed by 112
Abstract
This study aimed to investigate the effects of training on cardiac structure and function, as well as plasma metabolite profiles in horses, in order to uncover the molecular regulatory mechanisms and cardiac remodeling under long-term exercise. We hypothesize that long-term standardized training induces [...] Read more.
This study aimed to investigate the effects of training on cardiac structure and function, as well as plasma metabolite profiles in horses, in order to uncover the molecular regulatory mechanisms and cardiac remodeling under long-term exercise. We hypothesize that long-term standardized training induces physiological cardiac remodeling and differential metabolomic changes in Yili horses, which correlate with improved athletic performance. The study focuses on physiological exercise-induced cardiac remodeling, characterized by increased left ventricular wall thickness and chamber size. A total of 18 Yili horses, a unique Chinese equine breed, were included in the study of equine exercise physiology. Twelve horses underwent six months of standardized training followed by three 1000 m performance tests. Based on final rankings, they were divided into an advanced group (AG, top six horses) and a habitual group (HG, bottom six horses). The remaining six untrained horses served as the untrained group (UG), with only free-range activity. Echocardiographic results revealed significant differences (p < 0.05) between the trained and untrained groups in cardiac parameters such as LVID, LVFW, LVM, AODd, IVSs, HR, EDV, ESV, LADs, LVLD, MVD, PADs, and SV. Further comparison between AG and HG showed significant differences in AODd, EESV, HR, IVSd, LVIDs, LVM, RVDd, and RVDs (p < 0.05). Metabolomic analysis identified 465 differential metabolites between AG and HG, 456 between AG and UG, and 379 between HG and UG, with 106 overlapping metabolites among all three groups. Plasma metabolomics revealed significant negative correlations between specific long-chain lysophosphatidylcholines (LPCs) and cardiac structural parameters (LVIDd, LVFWD, LVIDs, LVLD, MVD, and LADs), whereas LPC (O-18:2) showed an opposite trend. Key metabolites such as 3-hydroxybutanoic acid, carnitine C4:0, carnitine isoC4:0, hippuric acid, and uric acid were significantly lower in AG compared to HG and UG, with uric acid levels negatively correlated with LVID and LVM. Glycerophospholipid metabolism emerged as the core pathway differentiating exercise capacity among all groups. Notably, efferocytosis (vs. HG and UG) and tryptophan metabolism/aromatic amino acid biosynthesis (vs. HG) were specifically enriched in AG. These findings provide a novel theoretical basis and research perspective for optimizing racehorse training strategies and exploring the metabolic regulation of the athletic heart. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

22 pages, 4008 KB  
Article
Dissolved Oxygen Decline in Northern Beibu Gulf Summer Bottom Waters: Reserve Management Insights from Microbiome Analysis
by Chunyan Peng, Ying Liu, Yuyue Qin, Dan Sun, Jixin Jia, Zongsheng Xie and Bin Gong
Microorganisms 2025, 13(8), 1945; https://doi.org/10.3390/microorganisms13081945 - 20 Aug 2025
Viewed by 152
Abstract
The Sanniang Bay (SNB) and Dafeng River Estuary (DFR) in the Northern Beibu Gulf, China, are critical habitats for the Indo-Pacific humpback dolphin (Sousa chinensis). However, whether and how the decreased dissolved oxygen (DO) has happened in bottom seawater remains poorly [...] Read more.
The Sanniang Bay (SNB) and Dafeng River Estuary (DFR) in the Northern Beibu Gulf, China, are critical habitats for the Indo-Pacific humpback dolphin (Sousa chinensis). However, whether and how the decreased dissolved oxygen (DO) has happened in bottom seawater remains poorly understood. This study investigated DO depletion and microbial community responses using a multidisciplinary approach. High-resolution spatiotemporal sampling (16 stations across four seasons) was combined with functional annotation of prokaryotic taxa (FAPROTAX) to characterize anaerobic metabolic pathways and quantitative PCR (qPCR) targeting dsrA and dsrB genes to quantify sulfate-reducing bacteria. Partial least-squares path modeling (PLS-PM) was employed to statistically link environmental variables (seawater properties and nutrients) to microbial community structure. Results revealed pronounced bottom DO declining to 5.44 and 7.09 mg L−1, a level approaching sub-optimal state (4.0–4.8 mg L−1) in September. Elevated chlorophyll-a (Chl-a) near the SDH coincided with anaerobic microbial enrichment, including sulfate reducers (dsrA/dsrB abundance: SNB > DFR). PLS-PM identified seawater properties (turbidity, DO, pH) and nitrogen as key drivers of anaerobic taxa distribution. Co-occurrence network analysis further demonstrated distinct microbial modules in SNB (phytoplankton-associated denitrifiers) and DFR (autotrophic sulfur oxidizers, nitrogen fixation, and denitrification). These findings highlight how environmental factors drive decreased DO, reshaping microbial networks and threatening coastal ecosystems. This work underscores the need for regulating aquaculture/agricultural runoff to limit eutrophication-driven hypoxia and temporarily restrict human activities in SNB during peak hypoxia (September–October). Full article
Show Figures

Figure 1

18 pages, 6030 KB  
Article
Impact of Rapid Thermal Annealing and Oxygen Concentration on Symmetry Bipolar Switching Characteristics of Tin Oxide-Based Memory Devices
by Kai-Huang Chen, Chien-Min Cheng, Ming-Cheng Kao, Hsin-Chin Chen, Yao-Chin Wang and Yu-Han Tsai
Micromachines 2025, 16(8), 956; https://doi.org/10.3390/mi16080956 - 19 Aug 2025
Viewed by 171
Abstract
In this study, tin oxide (SnO2) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal–insulator–metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO [...] Read more.
In this study, tin oxide (SnO2) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal–insulator–metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO2) layer onto a silicon (Si) substrate, followed by the deposition of a titanium nitride (TiN) layer to serve as the bottom electrode. Subsequently, the tin oxide (SnO2) layer was deposited as the resistive switching insulator. Two types of top electrodes were developed to investigate the influence of different oxygen concentrations on the bipolar switching, electrical characteristics, and performance of memory devices. An aluminum (Al) top electrode was deposited using thermal evaporation, while a platinum (Pt) top electrode was deposited via dc sputtering. As a result, two distinct metal–insulator–metal (MIM) memory RRAM device structures were formed, i.e., Al/SnO2/TiN/SiO2/Si and Pt/SnO2/TiN/SiO2/Si. In addition, the symmetry bipolar switching characteristics, electrical conduction mechanism, and oxygen concentration factor of the tin oxide-based memory devices using rapid thermal annealing and different top electrodes were determined and investigated by ohmic, space-charge-limit-current, Schottky, and Poole–Frenkel conduction equations in this study. Full article
Show Figures

Figure 1

18 pages, 6274 KB  
Article
Seismic Performance of Multi-Floor Grain Warehouse Under Various Storage Conditions
by Huifen Wang, Yonggang Ding, Guiling Wang, Qikeng Xu and Yanan Zhang
Appl. Sci. 2025, 15(16), 9128; https://doi.org/10.3390/app15169128 - 19 Aug 2025
Viewed by 141
Abstract
The storage conditions of multi-floor grain warehouses change frequently during grain circulation. This paper investigates the effects of various storage conditions on the seismic performance of multi-floor grain warehouses. The numerical results indicate that the higher the storage material distribution position, the greater [...] Read more.
The storage conditions of multi-floor grain warehouses change frequently during grain circulation. This paper investigates the effects of various storage conditions on the seismic performance of multi-floor grain warehouses. The numerical results indicate that the higher the storage material distribution position, the greater the damping ratio of the structural model and the more obvious the contribution of storage material movement to the damping of the structure. The intensity of earthquake action and the spatial height of the floor where the storage material is located are negatively correlated with the acceleration response of the structure. Under full-silo conditions, when the peak ground acceleration (PGA) is 0.4 g, the acceleration amplification factor at the top of the structure is 69.7% of the corresponding parameter at 0.1 g. The discontinuity in the storage space of the structure results in a torsional effect on the structure. When PGA = 0.22 g, the peak inter-story displacement angle of the first floor differs by nearly 1.7 times under different operating conditions, and the peak inter-story displacement angle of the second floor during an earthquake with PGA = 0.40 g differs by about 1.5 times under different operating conditions. The lateral pressure of the silo wall at different burial depths under earthquake action shows a highly nonlinear distribution trend, and the overpressure coefficient at the same burial depth of the warehouse wall is proportional to the PGA of the earthquake action. During 0.1 g, 0.22 g, and 0.40 g earthquakes, the maximum overpressure coefficients at the bottom of the warehouse wall on different floors are 1.13, 1.21, and 1.66, respectively. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 12191 KB  
Article
AI-Powered Structural Health Monitoring Using Multi-Type and Multi-Position PZT Networks
by Hasti Gharavi, Farshid Taban, Soroush Korivand and Nader Jalili
Sensors 2025, 25(16), 5148; https://doi.org/10.3390/s25165148 - 19 Aug 2025
Viewed by 306
Abstract
Concrete compressive strength is a critical property for structural performance and construction scheduling. Traditional non-destructive testing (NDT) methods, such as rebound hammer and ultrasonic pulse velocity, offer limited reliability and resolution, particularly at early ages. This study presents an AI-powered structural health monitoring [...] Read more.
Concrete compressive strength is a critical property for structural performance and construction scheduling. Traditional non-destructive testing (NDT) methods, such as rebound hammer and ultrasonic pulse velocity, offer limited reliability and resolution, particularly at early ages. This study presents an AI-powered structural health monitoring (SHM) framework that integrates multi-type and multi-position piezoelectric (PZT) sensor networks with machine learning for in situ prediction of concrete compressive strength. Signals were collected from various PZT types positioned on the top, middle, bottom, and surface sides of concrete cubes during curing. A series of machine learning models were trained and evaluated using both the full and selected feature sets. Results showed that combining multiple PZT types and locations significantly improved prediction accuracy, with the best models achieving up to 95% classification accuracy using only the top 200 features. Feature importance and PCA analyses confirmed the added value of sensor heterogeneity. This study demonstrates that multi-sensor AI-enhanced SHM systems can offer a practical, non-destructive solution for real-time strength estimation, enabling earlier and more reliable construction decisions in line with industry standards. Full article
Show Figures

Figure 1

Back to TopTop