Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,733)

Search Parameters:
Keywords = breeding system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7205 KB  
Article
Optimized Auxin and Cytokinin Interactions Enable Direct Somatic Embryogenesis in the Peach Rootstock ‘Guardian®’ from Immature Cotyledons
by Sonika Kumar, Rabia El-Hawaz, Zhigang Li, John Lawson, Stephen Parris, Foster Kangben, Lauren Carneal, Jeff Hopkins, Jacqueline Naylor-Adelberg, Jeffrey Adelberg, Gregory Reighard, Ksenija Gasic, Chalmers Carr and Christopher A. Saski
Int. J. Mol. Sci. 2025, 26(17), 8698; https://doi.org/10.3390/ijms26178698 (registering DOI) - 6 Sep 2025
Abstract
Fruit tree rootstock breeding is prolonged by extended juvenile phases, high heterozygosity, limited germplasm diversity, and hybrid incompatibilities, often requiring four decades to release new cultivars. Direct somatic embryogenesis (DSE) in established peach rootstocks presents a promising avenue for rapid genetic transformation and [...] Read more.
Fruit tree rootstock breeding is prolonged by extended juvenile phases, high heterozygosity, limited germplasm diversity, and hybrid incompatibilities, often requiring four decades to release new cultivars. Direct somatic embryogenesis (DSE) in established peach rootstocks presents a promising avenue for rapid genetic transformation and breeding. However, peach is highly recalcitrant to in vitro regeneration, posing major challenges for organogenesis and somatic embryogenesis (SE). This study evaluated the effects of 2,4-dichlorophenoxyacetic acid (2,4-D) and Kinetin (KIN) on SE %, SE productivity, and callus % rate in the widely used Guardian® peach rootstock. A 5 × 3 full factorial completely randomized design was used to test 15 different combinations of 2,4-D and KIN on immature cotyledons, classified as upper or lower based on their position on the preculture medium. Media formulation containing a higher concentration (3.2 µM) of 2,4-D and KIN induced SE in ~50% of lower and ~85% of upper cotyledons. Optimal SE productivity occurred with higher KIN (3.2 µM) and reduced 2,4-D (2.6 µM). Callus formation peaked with 1.8 µM 2,4-D and 3.2 µM KIN. This highly reproducible research establishes a robust whole plant regeneration system via DSE in Guardian® peach rootstock using immature cotyledons, providing a foundation for expedited trait manipulation through biotechnological approaches. Full article
Show Figures

Figure 1

20 pages, 6273 KB  
Article
A Study on the Endangerment of Luminitzera littorea (Jack) Voigt in China Based on Its Global Potential Suitable Areas
by Lin Sun, Zerui Li and Liejian Huang
Plants 2025, 14(17), 2792; https://doi.org/10.3390/plants14172792 (registering DOI) - 5 Sep 2025
Abstract
The survival status of Lumnitzera littorea is near threatened globally and critically endangered in China. Clarifying its global distribution pattern and its changing trends under different future climate models is of great significance for the protection and restoration of its endangered status. To [...] Read more.
The survival status of Lumnitzera littorea is near threatened globally and critically endangered in China. Clarifying its global distribution pattern and its changing trends under different future climate models is of great significance for the protection and restoration of its endangered status. To build a model for this purpose, this study selected 73 actual distribution points of Lumnitzera littorea worldwide, combined with 12 environmental factors, and simulated its potential suitable habitats in six periods: the Last Interglacial (130,000–115,000 years ago), the Last Glacial Maximum (27,000–19,000 years ago), the Mid-Holocene (6000 years ago), the present (1970–2000), and the future 2050s (2041–2060) and 2070s (2061–2080). The results show that the optimal model parameter combination is the regularization multiplier RM = 4.0 and the feature combination FC (Feature class) = L (Linear) + Q (Quadratic) + P (Product). The MaxEnt model has a low omission rate and a more concise model structure. The AUC values in each period are between 0.981 and 0.985, indicating relatively high prediction accuracy. Min temperature of the coldest month, mean diurnal range, clay content, precipitation of the warmest quarter, and elevation are the dominant environmental factors affecting its distribution. The environmental conditions for min temperature of the coldest month at ≥19.6 °C, mean diurnal range at <7.66 °C, clay content at 34.14%, precipitation of the warmest quarter at ≥570.04 mm, and elevation at >1.39 m are conducive to Lumnitzera littorea’s survival and distribution. The global potential distribution areas are located along coasts. Starting from the paleoclimate, the plant’s distribution has gradually expanded, and its adaptability has gradually improved. In China, the range of potential highly suitable habitats is relatively narrow. Hainan Island is the core potential habitat, but there are fragmented areas in regions such as Guangdong, Guangxi, and Taiwan. The modern centroid of Lumnitzera littorea is located at (109.81° E, 2.56° N), and it will shift to (108.44° E, 3.22° N) in the later stage of the high-emission scenario (2070s (SSP585)). Under global warming trends, it has a tendency to migrate to higher latitudes. The development of the aquaculture industry and human deforestation has damaged the habitats of Lumnitzera littorea, and its population size has been sharply and continuously decreasing. The breeding and renewal system has collapsed, seed abortion and seedling establishment failure are common, and genetic variation is too scarce. This may indicate why Lumnitzera littorea is near threatened globally and critically endangered in China. Therefore, the protection and restoration strategies we propose are as follows: strengthen the legislative guarantee and law enforcement supervision of the native distribution areas of Lumnitzera littorea, expanding its population size outside the native environment, and explore measures to improve its seed germination rate, systematically collecting and introducing foreign germplasm resources to increase its genetic diversity. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 4508 KB  
Article
Large-Scale Screening and Identification of S-RNase Alleles in Chinese and European Apricot Accessions Reveal Their Diversity and Geographic Distribution Patterns
by Junhuan Zhang, Meiling Zhang, Wenjian Yu, Fengchao Jiang, Li Yang, Juanjuan Ling and Haoyuan Sun
Int. J. Mol. Sci. 2025, 26(17), 8667; https://doi.org/10.3390/ijms26178667 - 5 Sep 2025
Abstract
Apricot (Prunus armeniaca L.) exhibits a gametophytic self-incompatibility (GSI) system. To identify the S-genotypes of the main apricot cultivars, including 133 native Chinese cultivars and 35 foreign accessions, PCR was performed using a combination of five primers based on the conserved [...] Read more.
Apricot (Prunus armeniaca L.) exhibits a gametophytic self-incompatibility (GSI) system. To identify the S-genotypes of the main apricot cultivars, including 133 native Chinese cultivars and 35 foreign accessions, PCR was performed using a combination of five primers based on the conserved regions of Prunus S-RNase genes. After cloning and sequencing the PCR products, the S-genotypes of all 168 apricot cultivars were determined. A total of 46 different S-RNase alleles, with 15 new alleles, were identified. For all 168 accessions, the top five most frequent S-alleles were S8, S11, S9, S16, and S53. S11, S8, and S16 were the most frequent in Chinese cultivars, and S9, S8, and S2 were mostly found in European accessions. For Chinese apricot cultivars, the distribution of S-alleles among five geographic regions was also investigated. In Northwest China, S16 was the most frequent S-allele. In the Xinjiang region, S66, S49, and S14 were the top three most frequent S-alleles. In North China, S8, S11, and S53 were the top three most frequent S-alleles. In addition, the self-compatible type, SC, was not detected in these 133 Chinese accessions. Finally, the phylogenetic tree of apricot S-alleles indicated that there are four groups of S-RNase genes (S97/S106, S14/S14a/S66, S9/S17/S44, and S23/S53) presenting a very close relation. These results provide more data on the S-genotypes of apricot accessions, which can support future breeding programs by aiding in the selection of the appropriate parents and contributing to efficient orchard design by combining cultivars with suitable pollinizers. Full article
(This article belongs to the Special Issue Advances in Fruit Tree Physiology, Breeding and Genetic Research)
20 pages, 1914 KB  
Article
The Transcriptional and Translational Landscape of Plant Adaptation to Low Temperatures
by Aleksandra V. Suhorukova, Olga S. Pavlenko, Denis S. Sobolev, Ilya S. Demyanchuk, Valery N. Popov and Alexander A. Tyurin
Int. J. Mol. Sci. 2025, 26(17), 8604; https://doi.org/10.3390/ijms26178604 - 4 Sep 2025
Viewed by 101
Abstract
One of the unresolved questions in stress-response biology is how plants coordinate expression levels between the response and adaptation. In this work, we proposed a two-level analysis that examines both transcriptional and translational profiles of Solanum lycopersicum under conditions of short-term cold stress, [...] Read more.
One of the unresolved questions in stress-response biology is how plants coordinate expression levels between the response and adaptation. In this work, we proposed a two-level analysis that examines both transcriptional and translational profiles of Solanum lycopersicum under conditions of short-term cold stress, hardening, and their combination. By combining polysome profiling and total transcriptome analysis, we revealed that expression under cold stress is not a simple linear process but a structurally distinct system with two coordinated regulation centres. Hardening triggers a strong transcriptional program focused on biogenesis, light signalling, and structural adaptations. In contrast, acute stress prompts selective translation of metabolic and defence proteins without prior transcriptional increase. Modular analysis (WGCNA) showed little overlap between transcriptional and translational networks, indicating functional differences between regulation levels. This work demonstrates that the cold response involves a strategic reallocation of resources between transcription and translation based on the type of signal. It bridges basic biology and applied breeding, providing targets promising for improving plant stress tolerance and advancing bioengineering of adaptive agriculture. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses: 2nd Edition)
Show Figures

Figure 1

15 pages, 1378 KB  
Review
Integrating Traditional Breeding and Modern Biotechnology for Advanced Forest Tree Improvement
by Zhongzheng Ma, Jingru Ren, Qianqian Liu, Jingjing Li, Haoqin Zhao, Dativa Gosbert Tibesigwa, Sophia Hydarry Matola, Tabeer Gulfam, Jingli Yang and Fude Wang
Int. J. Mol. Sci. 2025, 26(17), 8591; https://doi.org/10.3390/ijms26178591 - 4 Sep 2025
Viewed by 213
Abstract
In the context of global climate change and efforts toward “carbon peak and carbon neutrality,” forest resource protection and restoration have become fundamental to ecological civilization. The genetic improvement of trees, as the primary component of forest ecosystems, holds strategic importance for ecological [...] Read more.
In the context of global climate change and efforts toward “carbon peak and carbon neutrality,” forest resource protection and restoration have become fundamental to ecological civilization. The genetic improvement of trees, as the primary component of forest ecosystems, holds strategic importance for ecological security, resource supply, and carbon neutrality. Traditional tree breeding techniques, including selective and hybrid breeding, have established robust technical systems through extensive practice. However, these methods face limitations such as extended cycles, reduced efficiency, and constrained genetic gains in meeting contemporary requirements. Modern biotechnologies, including genomic selection (GS), gene editing (CRISPR/Cas9), and marker-assisted selection (MAS), substantially enhance the precision and efficiency of genetic improvement. Nevertheless, exclusive reliance on either traditional or modern methods proves insufficient for addressing complex environmental adaptation and rapid breeding requirements. Consequently, the integration of traditional breeding with modern biotechnology to develop intelligent, sustainable, and efficient breeding strategies has emerged as a central focus in tree genetics and breeding. An integrated “step-by-step” approach warrants promotion, supported by a multi-source data sharing platform, an optimized core germplasm repository, and a “climate-soil-genotype” matching model to facilitate the region-specific deployment of improved varieties. Full article
Show Figures

Figure 1

20 pages, 3083 KB  
Article
Tracing the Evolutionary and Migration Pathways of Economically Important Turkish Vicia L. Species: A Molecular and Biogeographic Perspective on Sustainable Agro-Biodiversity
by Zeynep Özdokur and Mevlüde Alev Ateş
Sustainability 2025, 17(17), 7914; https://doi.org/10.3390/su17177914 - 3 Sep 2025
Viewed by 230
Abstract
Understanding the evolutionary and geographic trajectories of crop wild relatives is vital for enhancing agro-biodiversity and advancing climate-resilient agriculture. This study focuses on ten Vicia L. taxa—comprising five species, four varieties, and one subspecies—of significant agricultural importance in Türkiye. An integrative molecular framework [...] Read more.
Understanding the evolutionary and geographic trajectories of crop wild relatives is vital for enhancing agro-biodiversity and advancing climate-resilient agriculture. This study focuses on ten Vicia L. taxa—comprising five species, four varieties, and one subspecies—of significant agricultural importance in Türkiye. An integrative molecular framework was applied, incorporating nuclear ITS sequence data, ITS2 secondary structure modeling, phylogenetic network analysis, and time-calibrated biogeographic reconstruction. This approach revealed well-supported clades, conserved secondary structural elements, and signatures of reticulate evolution, particularly within the Vicia sativa L. and V. villosa Roth. complexes, where high genetic similarity suggests recent divergence and possible hybridization. Anatolia was identified as both a center of origin and a dispersal corridor, with divergence events estimated to have occurred during the Late Miocene–Pliocene epochs. Inferred migration routes extended toward the Balkans, the Caucasus, and Central Asia, corresponding to paleoenvironmental events such as the uplift of the Anatolian Plateau and the Messinian Salinity Crisis. Phylogeographic patterns indicated genetic affiliations between Turkish taxa and drought-adapted Irano-Turanian lineages, offering valuable potential for climate-resilient breeding strategies. The results establish a molecularly informed foundation for conservation and varietal development, supporting sustainability-oriented innovation in forage crop systems and contributing to regional food security. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

14 pages, 2327 KB  
Article
Sex-Associated Indels and Candidate Gene Identification in Fujian Oyster (Magallana angulata)
by Yi Han, Yue Ning, Ling Li, Qijuan Wan, Shuqiong Li, Ying Yao, Chaonan Tang, Qisheng Wu, Xiang Guo, Jianfei Qi, Yizhou Ke, Hui Ge and Mingyi Cai
Fishes 2025, 10(9), 438; https://doi.org/10.3390/fishes10090438 - 2 Sep 2025
Viewed by 445
Abstract
Sex determination is a fundamental biological process governing animal reproduction. Although substantial progress has been made in elucidating its genetic basis, the genetic architecture underlying complex sex determination systems remains poorly understood. In this study, we identify sex-associated insertion–deletion (indel) variants, screen candidate [...] Read more.
Sex determination is a fundamental biological process governing animal reproduction. Although substantial progress has been made in elucidating its genetic basis, the genetic architecture underlying complex sex determination systems remains poorly understood. In this study, we identify sex-associated insertion–deletion (indel) variants, screen candidate genes, and compare sex-associated variation across populations with different genetic backgrounds in the Fujian oyster (Magallana angulata). Based on whole-genome resequencing data of a culture strain (designated FL), a total of 299,774 high-quality indels were identified. By integrating genome-wide association analysis (GWAS), fixation index (FST) analysis, and sex-biased genotype frequency comparisons, 77 overlapping sex-associated indels were identified, predominantly clustered within a 1.8 Mb (8.3–10.1 Mb) region on chromosome 9. Principal component analysis (PCA) based on the sex-associated markers and their subsets consistently separated male and female individuals in the FL strain. For two representative sex-associated indels, PCR-based genotyping methods were developed and validated. Functional annotation identified putative candidate genes for sex determination, including PKD1L1, 5-HTRL, SCP, and CCKRa. Comparative analysis of variants within PKD1L1 across wild, farmed, and selectively bred populations revealed a progressive enrichment of male-linked alleles in domesticated and selectively bred groups, particularly in male individuals. This study provides direct evidence that sex in the Fujian oyster is genetically determined and reveals that domestication and artificial selection may drive the emergence of major sex-determining loci, offering important insights into the genetic basis of sex determination in the Fujian oyster, and establishing a theoretical and practical foundation for molecular marker-assisted breeding of monosex lines for this species. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

12 pages, 1498 KB  
Article
A Genome-Wide Association Study of Sugarcane Smut Resistance
by Xinglong Chen, Xuhui Li, Enping Cai, Xiaomin Feng, Junteng Fang, Jiayun Wu and Nannan Zhang
Agronomy 2025, 15(9), 2111; https://doi.org/10.3390/agronomy15092111 - 2 Sep 2025
Viewed by 212
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, is a globally prevalent disease that severely impacts sugarcane yield and quality. The most cost-effective and sustainable approach to disease control is breeding for smut-resistant varieties. In this study, we conducted a genome-wide association study (GWAS) [...] Read more.
Sugarcane smut, caused by Sporisorium scitamineum, is a globally prevalent disease that severely impacts sugarcane yield and quality. The most cost-effective and sustainable approach to disease control is breeding for smut-resistant varieties. In this study, we conducted a genome-wide association study (GWAS) using a panel of core sugarcane parents and their derived lines to elucidate the genetic basis of smut resistance across seven different environments. We identified 68 new loci significantly associated with smut resistance across all the chromosomes. Based on functional annotations and genomic positions, 164 candidate genes were identified, many of which are related to enzymatic systems, resistance genes, transcription factors, and other pathways implicated in smut defense. Using resistance ratings and associated SNPs, we further selected ten elite parents and derivatives as potential donors for marker-assisted selection (MAS). This study provides a valuable reservoir of genetic resources for improving smut resistance in sugarcane. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

29 pages, 22431 KB  
Article
Transcriptomic Analysis of Resistant and Susceptible Eggplant Genotypes (Solanum melongena L.) Provides Insights into Phytophthora capsici Infection Defense Mechanisms
by Hesbon Ochieng Obel, Xiaohui Zhou, Songyu Liu, Yan Yang, Jun Liu and Yong Zhuang
Horticulturae 2025, 11(9), 1026; https://doi.org/10.3390/horticulturae11091026 - 1 Sep 2025
Viewed by 255
Abstract
Phytophthora fruit rot caused by Phytophthora capsici is a devastating disease in many solanaceous vegetables, resulting in tremendous yield and economic losses. However, the underlying resistance or susceptibility to P. capsici in eggplant remains obscure. In this study, the transcriptomic analysis was performed [...] Read more.
Phytophthora fruit rot caused by Phytophthora capsici is a devastating disease in many solanaceous vegetables, resulting in tremendous yield and economic losses. However, the underlying resistance or susceptibility to P. capsici in eggplant remains obscure. In this study, the transcriptomic analysis was performed between the resistant (G42) and susceptible (EP28) eggplant genotypes at 0, 1, 3 and 5 days post-inoculation (dpi). Taking 0 dpi as the control, a total of 4111, 7496 and 7325 DEGs were expressed at 1, 3 and 5 dpi, respectively, in G42 and 5316, 12675 and 12048 DEGs were identified at 1, 3 and 5 dpi, respectively, in EP28. P. capsici infection induced substantial transcriptional changes in the inoculated fruits. The analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) identified defense-related pathways including ‘plant-pathogen interactions’, ‘mitogen-activated protein kinase (MAPK)’ and ‘hormone biosynthesis and signal transduction’. The hormone-related genes encompassing ethylene, abscisic acid, auxins and gibberellins showed differential expression between G42 and EP28 eggplant genotypes, signifying their important roles in plant disease resistance. P. capsici infection induced the expression of major transcription factors such as MYB, NAC/NAM, bHLH, WRK, HSF, HD-ZIPAP2/ERF and Mad-box. qRT-PCR validation of the selected genes corroborates with RNA-seq, depicting the precision and consistency of the transcriptomic data. According to qRT-PCR and RNA-seq analyses, the expression of the pathogenesis-related gene transcriptional activator, SmPTI6 (Smechr0603020), is upregulated in G42 and downregulated in EP28. This differential expression suggests a potential role in the resistance to P. capsici. Functional analysis via a virus-induced gene silencing (VIGS) system found that silencing SmPTI6 in G42 enhanced infection by P. capsici, indicating that SmPTI6 performs a critical role in response to pathogen attack. The comprehensive results obtained in this study provide a valuable resource for understanding the molecular mechanisms underlying eggplant resistance to P. capsici and for establishing breeding resistant eggplant genotypes to P. capsici. Full article
(This article belongs to the Special Issue Vegetable Genomics and Breeding Research)
Show Figures

Figure 1

27 pages, 832 KB  
Review
Enhancing Genomic Selection in Dairy Cattle Through Artificial Intelligence: Integrating Advanced Phenotyping and Predictive Models to Advance Health, Climate Resilience, and Sustainability
by Karina Džermeikaitė, Monika Šidlauskaitė, Ramūnas Antanaitis and Lina Anskienė
Dairy 2025, 6(5), 50; https://doi.org/10.3390/dairy6050050 - 1 Sep 2025
Viewed by 458
Abstract
The convergence of genomic selection and artificial intelligence (AI) is redefining precision breeding in dairy cattle, enabling earlier, more accurate, and multi-trait selection for health, fertility, climate resilience, and economic efficiency. This review critically examines how advanced genomic tools—such as genome-wide association studies [...] Read more.
The convergence of genomic selection and artificial intelligence (AI) is redefining precision breeding in dairy cattle, enabling earlier, more accurate, and multi-trait selection for health, fertility, climate resilience, and economic efficiency. This review critically examines how advanced genomic tools—such as genome-wide association studies (GWAS), genomic breeding values (GEBVs), machine learning (ML), and deep learning (DL) models to accelerate genetic gain for complex, low heritability traits. Key applications include improved resistance to mastitis and metabolic diseases, enhanced thermotolerance, reduced enteric methane emissions, and increased milk yield. We discuss emerging computational frameworks that combine sensor-derived phenotypes, omics datasets, and environmental data to support data-driven selection decisions. Furthermore, we address implementation challenges related to data integration, model interpretability, ethical considerations, and access in low-resource settings. By synthesizing interdisciplinary advances, this review provides a roadmap for developing AI-augmented genomic selection pipelines that support sustainable, climate-smart, and economically viable dairy systems. Full article
Show Figures

Figure 1

16 pages, 2315 KB  
Article
Morphometric Variation and Production Constraints of Criollo Sheep in the High Andes of Southern Peru
by Richard Estrada, Elias Guelac-Mori, Cristian Pedemonte-Cruz, Katherine M. Chiqui-Condori, Klinsmann Montero Pacherres, Dilser Cerdan-Ramos and Dayana M. Zúñiga-Aranibar
Agriculture 2025, 15(17), 1860; https://doi.org/10.3390/agriculture15171860 - 31 Aug 2025
Viewed by 280
Abstract
This study aimed to characterize the morphometric traits and production systems of Criollo sheep in the highlands of Caylloma, Arequipa, Peru. A total of 455 sheep were evaluated using a stratified proportional sampling method across the districts of Tisco, San Antonio de Chuca, [...] Read more.
This study aimed to characterize the morphometric traits and production systems of Criollo sheep in the highlands of Caylloma, Arequipa, Peru. A total of 455 sheep were evaluated using a stratified proportional sampling method across the districts of Tisco, San Antonio de Chuca, and Yanque. Morphometric data were collected under standardized conditions, and nine zoometric indices were calculated to assess functional conformation and productive aptitude. Additionally, 52 sheep producers were surveyed to contextualize herd management practices. Results revealed low levels of formal education and limited technical assistance among producers. Sheep farming was primarily sustained by family tradition, with declining flock sizes attributed to pasture scarcity and climatic challenges. Campaign-based sales strategies and rudimentary reproductive management were prevalent. Health practices showed widespread deworming but limited preventive care. Multivariate analysis indicated significant morphometric variation linked to sex, biotype, and dental stage. This integrative approach highlights both the adaptive potential and production constraints of Criollo sheep in high-altitude environments, providing a basis for developing breeding strategies based on morphometric indices. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

16 pages, 3581 KB  
Article
Study on the Flower Biology of Camellia luteoflora—A Species with an Extremely Small Population
by Fen Liu, Bangyou Liu, Weicheng Yang, YueHua Song, Sheng Liang, Hangdan Chen, Mengqing Zhou and Gaoyin Wu
Agronomy 2025, 15(9), 2098; https://doi.org/10.3390/agronomy15092098 - 30 Aug 2025
Viewed by 359
Abstract
The aim of this study was to elucidate the reproductive strategy of Camellia luteoflora, an endangered evergreen endemic to karst ecosystems. We observed and recorded its flowering phenology and flower-visiting insects, observed pollen morphology, determined pollen viability, and assessed stigma receptivity. The [...] Read more.
The aim of this study was to elucidate the reproductive strategy of Camellia luteoflora, an endangered evergreen endemic to karst ecosystems. We observed and recorded its flowering phenology and flower-visiting insects, observed pollen morphology, determined pollen viability, and assessed stigma receptivity. The results showed that the flowering period of C. luteoflora started from early September to late December, with the average flowering period of individual flowers being 10–12 days. The pollen morphology of C. luteoflora was subprolate and prolate, with three germinal apertures and the fossulate exine ornamentation. Pollen viability was the highest at the initial opening stage (80.30%). In the process of pollen in vitro, the order of influence on the germination rate and pollen tube length was temperature > sucrose > calcium chloride (CaCl2) > boric acid (H3BO3). The best combination for the germination rate was 24 °C, 75 g/L sucrose, 0.2 g/L CaCl2, 0.15 g/L H3BO3, while that for the pollen tube length was 24 °C, 100 g/L sucrose, 0.2 g/L CaCl2, 0.25 g/L H3BO3. Stigma receptivity was the strongest at the full blooming stage. The pollen/ovule ratio (P/O) was 2240, suggesting a facultative outcrossing breeding system. The outcrossing index (OCI) was 4, suggesting that the exogamous breeding system is the cross-pollination type, partially self-compatible and insect pollinator-dependent. The flower-visiting insects included bees, weevils, and ants. In summary, C. luteoflora exhibits an extended flowering period, with a prolonged overlap of stable pollen viability and stigma receptivity, suggesting a potential strategy to cope with pollination uncertainty. However, field observations recorded only a few species of potential pollinators, while the occurrence frequency of non-pollinating insects was relatively high. It is thus hypothesized that this apparent lack of effective pollinators may act as a potential barrier to successful fertilization and natural regeneration, which might also be one of the factors contributing to its endangered status. Future studies, particularly pollinator exclusion and hand-pollination experiments, are critically needed to verify whether pollinator limitation is indeed a key factor. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

20 pages, 815 KB  
Review
Non-Alcoholic Fatty Liver Disease in Poultry: Risk Factors, Mechanism of Development, and Emerging Strategies
by Aneeqa Imtiaz, Muhammad Talha Bin Tahir, Minmeng Zhao, Daoqing Gong, Jing Ge and Tuoyu Geng
Int. J. Mol. Sci. 2025, 26(17), 8460; https://doi.org/10.3390/ijms26178460 - 30 Aug 2025
Viewed by 327
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant metabolic disorder in modern poultry production, particularly affecting high-yielding laying hens. This condition compromises bird welfare, productivity, and economic sustainability within commercial farming systems. This narrative review provides a comprehensive overview of the [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant metabolic disorder in modern poultry production, particularly affecting high-yielding laying hens. This condition compromises bird welfare, productivity, and economic sustainability within commercial farming systems. This narrative review provides a comprehensive overview of the underlying mechanisms through which hepatic lipid accumulation, metabolic dysfunctions, hormonal imbalances, genetic susceptibilities, and environmental stress contribute to the development of NAFLD. The multifactorial nature of NAFLD is explored through a critical assessment of the literature, highlighting the influence of diet composition, management practices, and physiological demands associated with intensive egg production. Emphasis is placed on recent advancements in nutritional modulation, selective breeding, and housing improvements aimed at prevention and mitigation of NAFLD. Furthermore, the review identifies key research gaps, including limited understanding of epigenetic influences and the long-term efficacy of intervention strategies. An integrative framework is advocated, synergizing genetics, nutrition, and environmental optimization to effectively address the complexity of NAFLD in poultry and supports the development of resilient production systems. The insights presented aims to inform both future research and practical applications for enhancing poultry health and performance. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

22 pages, 2009 KB  
Article
Nutritional Intervention with Antimicrobial Peptides Improves Growth Performance, Muscle Quality, Antioxidant Capacity, and Immune Function of Crucian Carp (Carassius auratus) Through TLR4/NF-κB Signaling Pathway
by Xiaoqing Dong, Dan Jiang, Guijuan Qu and Guiqin Wang
Animals 2025, 15(17), 2554; https://doi.org/10.3390/ani15172554 - 30 Aug 2025
Viewed by 269
Abstract
Antimicrobial peptides (AMPs) are small-molecule polypeptides with broad-spectrum antibacterial and immunomodulatory properties. As feed additives, they have demonstrated synergistic effects in aquaculture by enhancing growth performance and maintaining host health. Its negligible drug resistance makes it an ideal additive to replace antibiotics in [...] Read more.
Antimicrobial peptides (AMPs) are small-molecule polypeptides with broad-spectrum antibacterial and immunomodulatory properties. As feed additives, they have demonstrated synergistic effects in aquaculture by enhancing growth performance and maintaining host health. Its negligible drug resistance makes it an ideal additive to replace antibiotics in the “antibiotic-free breeding” system. Antimicrobial peptides were added to the basic diet of the crucian carp (Carassius auratus) to assess their impacts on growth, muscle quality, antioxidant capacity, immune function, and key gene expression in the TLR4/NF-κB signaling pathway. Crucian carp were fed with experimental diets containing antimicrobial peptides for 49 days, namely four treatments: L0 (0 g/kg), L1 (0.2 g/kg), L2 (0.4 g/kg), and L3 (0.6 g/kg), with three repetitions of each treatment. The findings indicated that AMPs had the potential to improve growth performance and muscle quality. The final weight, WGR, and SGR of crucian carp of group L1 significantly increased compared with groups L0 and L3 (p < 0.05). The condition factor of group L2 significantly increased compared with group L0 (p < 0.05). The FCR of groups L0, L1, and L2 was significantly reduced compared with group L3 (p < 0.05). The muscle redness of group L1 was significantly higher compared with groups L0, L2, and L3 (p < 0.05). The muscle shear force of groups L0, L1, and L2 was significantly lower compared with group L3 (p < 0.05). The crude protein content of groups L0, L1, and L2 showed significantly higher crude protein content than group L3 (p < 0.05). Conversely, the crude fat content was significantly lower in groups L1, L2, and L3 compared with group L0 (p < 0.05). The superoxide dismutase (SOD) activity of group L1 was significantly higher compared with groups L0, L2, and L3 (p < 0.05). The catalase (CAT) activity of groups L0 and L1 was significantly increased compared with groups L2 and L3 (p < 0.05). The malondialdehyde (MDA) content of groups L1 and L2 was significantly reduced compared with groups L0 and L3 (p < 0.05). The acid phosphatase (ACP) activity of groups L1 and L2 was significantly increased compared with group L0 (p < 0.05). The alkaline phosphatase (AKP) activity of group L1 was significantly increased compared with groups L0 and L3 (p < 0.05). Compared with groups L2 and L3, the lysozyme activity of group L1 was significantly increased (p < 0.05). The C3 content of groups L1, L2, and L3 was significantly higher compared with group L0 (p < 0.05). Similarly, C4 levels of groups L2 and L3 significantly exceeded group L0 (p < 0.05). For inflammatory cytokines, the IL-1 levels of groups L1 and L2 were significantly higher than those of group L0 (p < 0.05). The IL-6 and IL-12 levels of groups L0, L1, and L2 significantly increased compared with group L3 (p < 0.05). Compared with group L0, the levels of TNF and IFN-γ of groups L1, L2, and L3 were significantly higher (p < 0.05). Compared with group L0, the relative expression levels and protein expression levels of key genes TLR4, MyD88, IRAK4, TRAF6, and NF-κB of groups L1, L2, and L3 were significantly upregulated (p < 0.05). In conclusion, supplementation with 0.2–0.4 g/kg antimicrobial peptides promoted the growth of crucian carp, improved muscle quality, enhanced the antioxidant capacity, and boosted immunity through modulation of the TLR4/NF-κB signaling pathway. Full article
(This article belongs to the Special Issue Feed Additives for Improving the Immunity of Aquatic Animals)
Show Figures

Figure 1

22 pages, 9499 KB  
Article
Comprehensive Responses of Root System Architecture and Anatomy to Nitrogen Stress in Maize (Zea mays L.) Genotypes with Contrasting Nitrogen Efficiency
by Zhe Chen, Yuzhuo Hou, Jianxin Yan, Song Cheng, Yin Wang, Guozhong Feng and Hongguang Cai
Agronomy 2025, 15(9), 2083; https://doi.org/10.3390/agronomy15092083 - 29 Aug 2025
Viewed by 296
Abstract
Root architecture and anatomy critically regulate maize nitrogen (N) acquisition, but their coordinated low-N response in N-efficient hybrids remains poorly understood. Elucidating this mechanism is essential for advancing root system regulation and breeding strategies aimed at enhancing N-use efficiency. In this study, six [...] Read more.
Root architecture and anatomy critically regulate maize nitrogen (N) acquisition, but their coordinated low-N response in N-efficient hybrids remains poorly understood. Elucidating this mechanism is essential for advancing root system regulation and breeding strategies aimed at enhancing N-use efficiency. In this study, six root architectures, twelve root anatomies, and six N-efficiency traits were evaluated in six maize hybrids and nine parental inbreds under sufficient (SN, 180 kg ha−1) and low N (LN, 30 kg ha−1), with transcriptome analysis of inbreds applied to uncover mechanisms. Hybrids were categorized as follows: EE (N-efficient under both N levels), SNE (N-efficient only under SN), and NN (inefficient under both N). Compared with other hybrids, EE developed a 6.0–15.7% narrower root opening angle (ROA), a 11.9–12.4% larger root projected area (RPA), 16.3–22.6% deeper roots (D_Wmax), and 22.6–37.1% more cortical aerenchyma (AA) under LN; SNE showed 9.49–19.51% lower RPA and higher LN-induced reductions in D_Wmax (8.84–17.09%); NN exhibited the largest ROA (60.75–64.48°) and LN-induced reductions in RPA (16.43%), D_Wmax (14.76%), and total projected structure length (11.28%). Correlation, principal component, and structural equation modeling analyses revealed significant root architecture–anatomy integration, and they collectively influence yield through traits such as D_Wmax, AA, and xylem vessel area (XVA) (r = −0.48–0.62, path coefficients: 0.19–0.27). Additionally, the EE and NN hybrids inherited and integrated the superior N-efficient root phenotypes from their parental inbred lines. Transcriptomic analysis identified eight root development genes, including GRMZM5G878558, whose expression correlated with both D_Wmax and AA (r = 0.61–0.73). These findings clarified that N-efficient maize achieved higher yield through coordinated root architecture–anatomy optimization involving associated genes, providing a theoretical foundation for N-efficiency-targeted root regulation and varietal selection. Full article
Show Figures

Figure 1

Back to TopTop