Research Progress on Pathogenicity of Fungi in Crops—2nd Edition

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Pest and Disease Management".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 3410

Special Issue Editors


E-Mail Website
Guest Editor
School of Grassland Science, Beijing Forestry University, Beijing 100083, China
Interests: gene editing technology and precision molecular breeding; population genomics; molecular biology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
Interests: applied microbiology; mycology; plant pathology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The demands for higher food quantities and good food quality are increasing with the growing global population. Plant diseases have always been significant threats to agricultural production, causing a large amount of food losses and reducing the quality of agricultural products annually. Concurrently, plant diseases caused by pathogenic fungi are the most serious among all kinds of pathogens. Accurately identifying pathogens and gaining a clear understanding of their pathogenic mechanisms and of the interactions between pathogens and hosts will play important roles in plant disease control. This Special Issue mainly focuses on research papers related to fungal pathogen identification and phylogeny, comparative genomics, the molecular genetics of fungal plant pathogens, the molecular mechanisms of pathogenic fungi, and the molecular basis of fungal–crop interaction. In the context of this Special Issue, studies on pathogenic fungal diseases related to fruit trees and vegetables are highly important.

In this Special Issue, we aim to share knowledge on any aspects related to the progression of pathogenic fungi, thus facilitating the sustainable development of crop production in plant cultivation.

Dr. Yunpeng Gai
Dr. Hong-Kai Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pathogenic fungi
  • identification
  • phylogenicity
  • molecular mechanism
  • pathogenic-related gene
  • fungi–host interaction

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2783 KiB  
Article
Response of the Edamame Germplasm to Early-Season Diseases in the United States
by Xiaoying Li, Rafael Zaia, Kathryn Liu, Xueming Xu, Marcos Da Silva, Alejandro Rojas, Gregory E. Welbaum, Bo Zhang and Steven Rideout
Agronomy 2024, 14(8), 1660; https://doi.org/10.3390/agronomy14081660 - 29 Jul 2024
Viewed by 324
Abstract
Edamame (Glycine max (L.) Merr.) is a specialty soybean newly grown in the United States that has become the second most widely consumed soy food (25,000–30,000 tons annually). Poor crop establishment caused by soilborne diseases is a major problem limiting edamame production [...] Read more.
Edamame (Glycine max (L.) Merr.) is a specialty soybean newly grown in the United States that has become the second most widely consumed soy food (25,000–30,000 tons annually). Poor crop establishment caused by soilborne diseases is a major problem limiting edamame production in the U.S. This study investigated 24 edamame cultivars/lines to determine their response to three soilborne pathogens causing seed rot and seedling damping off, including Rhizoctonia solani, Sclerotium rolfsii, Pythium irregulare, and Xanthomonas campestris pv. glycines, a seedborne pathogen that caused severe outbreaks of bacterial leaf pustules in mid-Atlantic regions in 2021. The hypothesis was that resistant variations existed among the genotypes, which could be used for production and future breeding efforts. The results reveal that all genotypes were affected, but partially resistant varieties could be clearly recognized by a significantly lower disease index (p < 0.05), and no genotype was resistant to all four diseases. Newly developed breeding lines showed overall higher disease resistance than commercial cultivars, particularly to R. solani and P. irregulare. This study found genetic variability in edamame, which can be helpful in breeding for resistance or tolerance to early-season diseases. The result will promote domestic edamame production and further strengthen and diversify agricultural economies in the U.S. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

22 pages, 6203 KiB  
Article
Mechanisms and Applications of Pseudomonas monteilii SX001: A Promising Agent for Improving Cucumber Tolerance to Salt Stress
by Bin Li, Zhexuan Wang, Bo Qiao, Tongxin Liu, Sen Li, Lixiang Zhao, Lincao Wei and Lingjuan Han
Agronomy 2024, 14(8), 1642; https://doi.org/10.3390/agronomy14081642 - 26 Jul 2024
Viewed by 275
Abstract
To investigate the effects of Pseudomonas monteilii SX001 on various parameters of cucumber plants under salt stress, the salt-sensitive cucumber variety “Jinyou No. 4” was used as the test material, and coconut bran was used to simulate salt stress by applying NaCl solution. [...] Read more.
To investigate the effects of Pseudomonas monteilii SX001 on various parameters of cucumber plants under salt stress, the salt-sensitive cucumber variety “Jinyou No. 4” was used as the test material, and coconut bran was used to simulate salt stress by applying NaCl solution. The results indicated that salt stress significantly reduced the morphological structure, relative growth rate, root morphology, and photosynthetic parameters of the cucumber plants. Leaf starch, soluble sugar, and sucrose contents significantly increased, whereas their levels in roots decreased. Cell membrane damage leads to the accumulation of reactive oxygen species and malondialdehyde, with notable increases in the activities of major antioxidant enzymes such as SOD, CAT, and POD. Nitrogen metabolism was disrupted, as evidenced by a significant decrease in nitrate nitrogen content and an increase in ammonium nitrogen content, as well as a significant reduction in the activity of NR enzymes involved in nitrogen metabolism. The enzyme activity in the cucumber rhizosphere soil decreased. However, Pseudomonas monteilii SX001 significantly enhanced the growth of cucumber seedlings under salt stress, improved photosynthetic efficiency, and facilitated sugar transformation and transport via glucose metabolism. Additionally, Pseudomonas monteilii SX001 reduced the reactive oxygen content and increased antioxidant enzyme activity. It also increased the activity of substrate enzymes and decreased the diversity of rhizosphere soil microorganisms but also increased the abundance of Asticcacaulis, Acinetobacter, Brevundimonas, Pseudomonas, and Enterobacter. These findings demonstrate that Pseudomonas monteilii SX001 is a promising bioinoculant for alleviating salt stress in cucumber production and improving soil health. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

11 pages, 2629 KiB  
Article
In Vitro Screening of Endophytic Micromonospora Strains Associated with White Clover for Antimicrobial Activity against Phytopathogenic Fungi and Promotion of Plant Growth
by Wojciech Sokołowski, Sylwia Wdowiak-Wróbel, Monika Marek-Kozaczuk and Michał Kalita
Agronomy 2024, 14(5), 1062; https://doi.org/10.3390/agronomy14051062 - 17 May 2024
Viewed by 702
Abstract
Bacteria belonging to the genus Micromonospora are recognized as microorganisms with the potential to be used in biotechnology processes, given their beneficial influence on plant growth and the biocontrol of phytopathogens. In this study, nineteen Micromonospora isolates originating from the root nodules of [...] Read more.
Bacteria belonging to the genus Micromonospora are recognized as microorganisms with the potential to be used in biotechnology processes, given their beneficial influence on plant growth and the biocontrol of phytopathogens. In this study, nineteen Micromonospora isolates originating from the root nodules of white clover plants were taxonomically assigned based on the phylogenetic analysis of the 16S rRNA gene and four housekeeping genes. The antifungal properties of the bacteria against phytopathogenic Botrytis cinerea, Fusarium oxysporum, Fusarium equiseti, Sclerotinia sclerotiorum, and Verticillium albo-atrum were tested with the agar plug test and the dual culture test. The ability to produce various metallophores was determined with the agar plug diffusion test on modified chrome azurol S (CAS) agar medium. International Streptomyces Project-2 medium (ISP2) broth amended with 0.2% L-tryptophan was used to indicate the bacterial ability to produce auxins. The strains belonging to M. tulbaghiae, M. inaquosa, and M. violae showed in vitro potential as antimicrobial agents against the tested fungi. M. inaquosa strain 152, M. violae strain 126, M. violae strain 66, and M. violae strain 45 were recognized as the most efficient metallophore producers. M. alfalfae strain 55 and M. lupini strain 5052 were identified as the most promising auxin compound producers and, therefore, show potential as plant-growth-promoting bacteria. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

16 pages, 2215 KiB  
Article
Evaluation of Maize Hybrids for Resistance to Ear Rot Caused by Dominant Fusarium Species in Northeast China
by Zhoujie Ma, Jianjun Wang, Shenghui Wen, Jiankai Ren, Hongyan Hui, Yufei Huang, Junwei Yang, Bianping Zhao, Bo Liu and Zenggui Gao
Agronomy 2024, 14(4), 855; https://doi.org/10.3390/agronomy14040855 - 19 Apr 2024
Viewed by 816
Abstract
Ear rot caused by the Fusarium species has led to a decline in maize yield and kernel quality worldwide. The changes in the population structure of pathogens and the widespread planting of susceptible maize varieties have exacerbated the occurrence and harm of ear [...] Read more.
Ear rot caused by the Fusarium species has led to a decline in maize yield and kernel quality worldwide. The changes in the population structure of pathogens and the widespread planting of susceptible maize varieties have exacerbated the occurrence and harm of ear rot in China. Therefore, it is very important to establish the species composition of Fusarium and evaluate the resistance of the main cultivated hybrids. In this study, 366 single conidial isolates of Fusarium spp. were obtained from three provinces of Northeast China. F. verticillioides, F. subglutinans, F. proliferatum, F. oxysporum, and F. graminearum species complex (FGSC) were identified, with F. verticillioides being the most prevalent with a frequency of 44.0%. Based on the TEF-1α gene sequences analysis, the FGSC populations consisted of two independent species: F. boothii and F. graminearum, which account for 23.8% and 5.7% of the total isolates, respectively. Additionally, the resistance to ear rot by 97 maize hybrids commonly planted in Northeast China was evaluated by inoculation with F. verticillioides during 2021 and 2022. The results showed that the disease parameters of different hybrids varied significantly (p < 0.05). Approximately half of the hybrids had damage rates ranging from 0 to 15%, and 79.4% of the hybrids had a severity rating of less than 5.5. In total, 49 (50.5%) hybrids were rated as moderately resistant, which was the dominant resistance category, and 71 hybrids (73.2%) were identified as moderately to highly resistant to ear rot. Current research confirms that Fusarium ear rot in maize is mainly caused by F. verticillioides in Northeast China, and many hybrids are resistant to the disease. This study will guide growers to scientifically deploy resistant commercial hybrids to control ear rot. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

14 pages, 5404 KiB  
Article
Genome-Wide Identification and Characterization of Tea SGR Family Members Reveal Their Potential Roles in Chlorophyll Degradation and Stress Tolerance
by Hengze Ren, Yating Yu, Chao Huang, Danying Li, Jiale Ni, Wuyun Lv, Kang Wei, Liyuan Wang and Yuchun Wang
Agronomy 2024, 14(4), 769; https://doi.org/10.3390/agronomy14040769 - 8 Apr 2024
Viewed by 842
Abstract
Photosynthesis plays vital roles in plant growth and development. Stay-green (SGR) proteins are responsible for chlorophyll degradation and photosynthetic metabolism. To identify SGR family members and determine their potential functions in tea plants, we identified and cloned three SGR genes. Phylogenetic analysis revealed [...] Read more.
Photosynthesis plays vital roles in plant growth and development. Stay-green (SGR) proteins are responsible for chlorophyll degradation and photosynthetic metabolism. To identify SGR family members and determine their potential functions in tea plants, we identified and cloned three SGR genes. Phylogenetic analysis revealed that the tea SGR homologs were classified into the SGR subfamily (named CsSGR1 and CsSGR2) and the SGRL subfamily (named CsSGRL). Cis-element analysis indicated that the promoters of CsSGR1, CsSGR2 and CsSGRL contained light-, phytohormone- and stress-related elements. Subcellular localization confirmed that CsSGR1 was localized in the chloroplast, while CsSGR2 and CsSGRL were localized in the chloroplast, membrane and nucleus. The RT-qPCR results showed that the three genes in the matures of albino tea cultivars were expressed higher than in the green tea cultivar. However, only CsSGR2-overexpressing tobacco leaves exhibited a yellowish phenotype and significantly lower Fv/Fm values. CsSGR1 and CsSGR2 exhibited similar expression patterns in different tissues after infection with the pathogen Colletotrichum camelliae, which was opposite to the pattern observed for CsSGRL. In addition, CsSGR1 was significantly induced in response to cold stress, SA, JA and ABA in C. camelliae. These findings identified valuable candidate genes for elucidating the mechanism of leaf albinism, stress response and phytohormone signaling in tea plants. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

Back to TopTop