Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = bridge rectifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6160 KB  
Article
Design of a Compact IPT System for Medium Distance-to-Diameter Ratio AGV Applications with Enhanced Misalignment Tolerance
by Junchen Xie, Guangyao Li, Zhiliang Yang, Seungjin Jo and Dong-Hee Kim
Appl. Sci. 2025, 15(17), 9799; https://doi.org/10.3390/app15179799 (registering DOI) - 6 Sep 2025
Abstract
Automated guided vehicles (AGVs) operating in uneven environments are typically designed with an elevated chassis to enhance obstacle-crossing. In inductive power transfer (IPT) systems for such AGVs, a long transmission distance along with limited installation space for coils leads to a medium distance-to-diameter [...] Read more.
Automated guided vehicles (AGVs) operating in uneven environments are typically designed with an elevated chassis to enhance obstacle-crossing. In inductive power transfer (IPT) systems for such AGVs, a long transmission distance along with limited installation space for coils leads to a medium distance-to-diameter ratio (DDR) (1 < DDR ≤ 2), which reduces coupling efficiency and degrades misalignment tolerance. To address this issue, this paper proposes a compact dual-receiver IPT system for medium DDR conditions. The system adopts a flat U-shaped solenoid (FUS) coil as both the transmitter and the primary receiver, and a square solenoid (SS) coil as the secondary receiver, forming the FUSS dual-receiver structure. The FUS coil is optimized through finite element analysis to improve coupling, while the SS coil captures vertical flux to compensate for misalignment losses, thereby enhancing misalignment tolerance. A hybrid rectifier integrating a full-bridge and voltage doubler topology is used to suppress output voltage fluctuation, reduce the number of receiver coil turns, and minimize system volume. A 300 W/100 kHz prototype with a coupler size of 183 × 126 × 838 mm3 achieves 83.51% efficiency under medium DDR and a 185 mm air gap. Voltage fluctuation remains within 5% under ±51.4% X-axis and ±51.7% Y-axis misalignment, confirming the stable power delivery and improved misalignment tolerance of the system. Full article
(This article belongs to the Special Issue Control Systems for Next Generation Electric Applications)
20 pages, 4256 KB  
Article
Design Strategies for Stack-Based Piezoelectric Energy Harvesters near Bridge Bearings
by Philipp Mattauch, Oliver Schneider and Gerhard Fischerauer
Sensors 2025, 25(15), 4692; https://doi.org/10.3390/s25154692 - 29 Jul 2025
Viewed by 431
Abstract
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as [...] Read more.
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as bridges. The need for such monitoring is exemplified by the fact that the condition of close to 25% of public roadway bridges in, e.g., Germany is not satisfactory. Stack-based piezoelectric energy harvesting systems (pEHSs) installed near bridge bearings could provide information about the traffic and dynamic loads on the one hand and condition-dependent changes in the bridge characteristics on the other. This paper presents an approach to co-optimizing the design of the mechanical and electrical components using a nonlinear solver. Such an approach has not been described in the open literature to the best of the authors’ knowledge. The mechanical excitation is estimated through a finite element simulation, and the electric circuitry is modeled in Simulink to account for the nonlinear characteristics of rectifying diodes. We use real traffic data to create statistical randomized scenarios for the optimization and statistical variation. A main result of this work is that it reveals the strong dependence of the energy output on the interaction between bridge, harvester, and traffic details. A second result is that the methodology yields design criteria for the harvester such that the energy output is maximized. Through the case study of an actual middle-sized bridge in Germany, we demonstrate the feasibility of harvesting a time-averaged power of several milliwatts throughout the day. Comparing the total amount of harvested energy for 1000 randomized traffic scenarios, we demonstrate the suitability of pEHS to power wireless sensor nodes. In addition, we show the potential sensory usability for traffic observation (vehicle frequency, vehicle weight, axle load, etc.). Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

23 pages, 16399 KB  
Article
Design and Implementation of a Full SiC-Based Phase-Shifted Full-Bridge DC-DC Converter with Nanocrystalline-Cored Magnetics for Railway Battery Charging Applications
by Fatih Enes Gocen, Salih Baris Ozturk, Mehmet Hakan Aksit, Gurkan Dugan, Benay Cakmak and Caner Demir
Energies 2025, 18(15), 3945; https://doi.org/10.3390/en18153945 - 24 Jul 2025
Viewed by 447
Abstract
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary [...] Read more.
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary side, resulting in significant efficiency improvements due to the superior switching characteristics and high-temperature tolerance inherent in SiC devices. A nanocrystalline-cored center-tapped transformer is optimized to minimize voltage stress on the rectifier diodes. Additionally, the use of a nanocrystalline core provides high saturation flux density, low core loss, and excellent permeability, particularly at high frequencies, which significantly enhances system efficiency. The converter also compensates for temperature fluctuations during operation, enabling a wide and adjustable output voltage range according to the temperature differences. A prototype of the 10-kW, 50-kHz PSFB converter, operating with an input voltage range of 700–750 V and output voltage of 77–138 V, was developed and tested both through simulations and experimentally. The converter achieved a maximum efficiency of 97% and demonstrated a high power density of 2.23 kW/L, thereby validating the effectiveness of the proposed design for railway battery charging applications. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

15 pages, 3596 KB  
Article
Fuzzy-Aided P–PI Control for Start-Up Current Overshoot Mitigation in Solid-State Lithium Battery Chargers
by Chih-Tsung Chang and Kai-Jun Pai
Appl. Sci. 2025, 15(14), 7979; https://doi.org/10.3390/app15147979 - 17 Jul 2025
Viewed by 271
Abstract
A battery charger for solid-state lithium battery packs was developed and implemented. The power stage used a phase-shifted full-bridge converter integrated with a current-doubler rectifier and synchronous rectification. Dual voltage and current control loops were employed to enable constant-voltage and constant-current charging modes. [...] Read more.
A battery charger for solid-state lithium battery packs was developed and implemented. The power stage used a phase-shifted full-bridge converter integrated with a current-doubler rectifier and synchronous rectification. Dual voltage and current control loops were employed to enable constant-voltage and constant-current charging modes. To improve the lifespan of the output filter capacitor, the current-doubler rectifier was adopted to effectively reduce output current ripple. During the initial start-up phase, as the charger transitions from constant-voltage to constant-current output mode, the use of proportional–integral control in the voltage and current loop error amplifiers may cause current overshoot during the step-rising phase, primarily due to the integral action. Therefore, this study incorporated fuzzy control, proportional control, and proportional–integral control strategies into the current-loop error amplifier. This approach effectively reduced the current overshoot during the step-rising phase, preventing the charger from mistakenly triggering the overcurrent protection mode. The analysis and design considerations of the proposed circuit topology and control loop are presented. Experimental results agree with theoretical predictions, thereby confirming the validity of the proposed approach. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 5795 KB  
Article
Analysis and Design of a Multiple-Driver Power Supply Based on a High-Frequency AC Bus
by Qingqing He, Zhaoyang Tang, Wenzhe Zhao and Keliang Zhou
Energies 2025, 18(14), 3748; https://doi.org/10.3390/en18143748 - 15 Jul 2025
Viewed by 266
Abstract
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high [...] Read more.
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high costs and system complexity is a significant challenge. Leveraging the constant-current characteristics of the LCL-T network, this paper presents a multi-channel DC/DC LED driver comprising a full-bridge inverter, a transformer, and a passive resonant rectifier. The driver generates a high-frequency AC bus with series-connected diode rectifiers, a structure that guarantees excellent current sharing among all output channels using only a single control loop. Fully considering the impact of higher harmonics, this paper derives an exact solution for the output current. A step-by-step parameter design methodology ensures soft switching and enhanced switch utilization. Finally, experimental verification was conducted using a prototype with five channels and 200 W, confirming the correctness and accuracy of the theoretical analysis. The experimental results showed that within a wide input voltage range of 380 V to 420 V, the driver was able to provide a stable current of 700 mA to each channel, and the system could achieve a peak efficiency of up to 94.4%. Full article
(This article belongs to the Special Issue Reliability of Power Electronics Devices and Converter Systems)
Show Figures

Figure 1

37 pages, 16852 KB  
Review
Advances in Interface Circuits for Self-Powered Piezoelectric Energy Harvesting Systems: A Comprehensive Review
by Abdallah Al Ghazi, Achour Ouslimani and Abed-Elhak Kasbari
Sensors 2025, 25(13), 4029; https://doi.org/10.3390/s25134029 - 28 Jun 2025
Viewed by 1116
Abstract
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed [...] Read more.
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed with respect to their advantages, limitations, and overall impact on energy harvesting efficiency. Th work explores alternative methods that leverage phase shifting between voltage and current waveform components to enhance conversion performance. Additionally, it provides detailed insights into advanced design strategies, including adaptive power management algorithms, low-power control techniques, and complex impedance matching. The paper also addresses the fundamental principles and challenges of converting mechanical vibrations into electrical energy. Experimental results and performance metrics are reviewed, particularly in relation to hybrid approaches, load impedance, vibration frequency, and power conditioning requirements in energy harvesting systems. This review aims to provide researchers and engineers with a critical understanding of the current state of the art, key challenges, and emerging opportunities in piezoelectric energy harvesting. By examining recent developments, it offers valuable insights into optimizing interface circuit design for the development of efficient and self-sustaining piezoelectric energy harvesting systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

37 pages, 8365 KB  
Article
Hybrid Piezo–Electromagnetic Device Designed to Harvest the Vibrations of the Human Body
by George-Claudiu Zărnescu, Lucian Pîslaru-Dănescu and Ioan Stamatin
Micromachines 2025, 16(6), 675; https://doi.org/10.3390/mi16060675 - 31 May 2025
Viewed by 1162
Abstract
This paper focuses on hybrid piezo–electromagnetic generators, which are assembled from a magnetic repulsion pad made of two disk magnets, a sliding cylindrical magnet placed inside a tube, a coil, and an assembly of piezoelectric elements connected with the magnetic pad, as well [...] Read more.
This paper focuses on hybrid piezo–electromagnetic generators, which are assembled from a magnetic repulsion pad made of two disk magnets, a sliding cylindrical magnet placed inside a tube, a coil, and an assembly of piezoelectric elements connected with the magnetic pad, as well as an electronic system for rectification and voltage adjustment. Four piezo–electromagnetic generators have been developed. Two linear generators without magnetic cores were tested and optimized for low-frequency (0.2 Hz…5 Hz) and low-amplitude body movements. The other two generators were also designed to handle high-vibration amplitudes, to generate up to 2.2–2.5 W of power. An algorithm for the calculation and modeling of these hybrid generators is presented, as well as simulation models. In addition, an electronic hybrid voltage converter was realized. It was observed that the system harvesting efficiency was increased by adding a large capacitive buffer made of electrolytic capacitors after the Schottky diode rectifiers bridges. This capacitive buffer, together with the electronic pre-regulator, has the role of limiting the voltage to the desired input value and of being the first charging stage. Finally, in the second charging stage, an electronic converter is used to charge the supercapacitors. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

23 pages, 6379 KB  
Article
Dual High-Voltage Switch Rectifier Bridge for Efficient Energy Transfer in Triboelectric Nanogenerators
by Chengyao Liu and Mingcong Deng
Electronics 2025, 14(11), 2215; https://doi.org/10.3390/electronics14112215 - 29 May 2025
Viewed by 819
Abstract
This study proposes a novel capacitor-based energy representation model for triboelectric nanogenerators (TENGs). Using this model, the energy conversion behavior of contact–separation-mode TENGs (CS-TENGs) is analyzed with particular attention to their inherent dual-capacitor structure. According to the relationship of high-voltage and high-energy output [...] Read more.
This study proposes a novel capacitor-based energy representation model for triboelectric nanogenerators (TENGs). Using this model, the energy conversion behavior of contact–separation-mode TENGs (CS-TENGs) is analyzed with particular attention to their inherent dual-capacitor structure. According to the relationship of high-voltage and high-energy output characteristics of CS-TENGs, a specialized energy harvesting circuit is designed, featuring a dual high-voltage switch that enables bidirectional charge transfer and efficient electromagnetic energy conversion. This switch forms the core of a new rectifier bridge and energy storage topology optimized for intermittent mechanical inputs. Experimental results confirm the validity of the proposed energy model and demonstrate that the developed topology significantly enhances energy harvesting and storage efficiency. The integration of theoretical modeling with circuit innovation offers a comprehensive and effective strategy for improving the electrical performance of CS-TENG systems. This work bridges the theoretical gap in dual-capacitor modeling with a practical rectifier design, offering an integrated solution for real-world TENG energy harvesting challenges. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

21 pages, 5910 KB  
Article
Applying Structure Exchange to Battery Charging to Enhance Light-Load Efficiency
by Kuo-Ing Hwu, Pei-Ching Tseng and Jenn-Jong Shieh
Energies 2025, 18(11), 2699; https://doi.org/10.3390/en18112699 - 23 May 2025
Viewed by 501
Abstract
A full-bridge DC–DC converter with structure exchange is proposed to simulate battery charging based on an electronic load. The full-bridge phase-shift converter (FBPSC) uses an external resonant inductor and phase-shift control on the primary side to realize zero voltage switching (ZVS) above medium [...] Read more.
A full-bridge DC–DC converter with structure exchange is proposed to simulate battery charging based on an electronic load. The full-bridge phase-shift converter (FBPSC) uses an external resonant inductor and phase-shift control on the primary side to realize zero voltage switching (ZVS) above medium load. However, the energy of the resonant inductor is not enough to carry away the energy of the parasitic capacitance on the switch at light load, leading to the inability of ZVS as well as the circulating current problem due to the long duration of the primary-side circulating current. Consequently, in order to conquer such problems mentioned above, the structure exchange, with only the control strategy changed from the phase-shift control to the two-transistor forward control, is presented to increase the light-load efficiency remarkably. Furthermore, the number of inductors is reduced by using the center-tap structure on the secondary side compared to the current-doubler structure. In addition, the synchronous rectifier on the secondary side is used to further improve the overall efficiency of the converter. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

14 pages, 3796 KB  
Article
Nanoarchitectonics and Theoretical Evaluation on Electronic Transport Mechanism of Spin-Filtering Devices Based on Bridging Molecules
by Haiyan Wang, Shuaiqi Liu, Chao Wu, Fang Xie, Zhiqiang Fan and Xiaobo Li
Nanomaterials 2025, 15(10), 759; https://doi.org/10.3390/nano15100759 - 18 May 2025
Viewed by 592
Abstract
By combining density functional theory with the non-equilibrium Green’s function method, we conducted a first-principles investigation of spin-dependent transport properties in a molecular device featuring a dynamic covalent chemical bridge connected to zigzag graphene nanoribbon electrodes. The effects of spin-filtering and spin-rectifying on [...] Read more.
By combining density functional theory with the non-equilibrium Green’s function method, we conducted a first-principles investigation of spin-dependent transport properties in a molecular device featuring a dynamic covalent chemical bridge connected to zigzag graphene nanoribbon electrodes. The effects of spin-filtering and spin-rectifying on the IV characteristics are revealed and explained for the proposed molecular device. Interestingly, our results demonstrate that all three devices exhibit significant single-spin-filtering behavior in parallel (P) magnetization and dual-spin-filtering effects in antiparallel (AP) configurations, achieving nearly 100% spin-filtering efficiency. At the same time, from the IV curves, we find that there is a weak negative differential resistance effect. Moreover, a high rectifying ratio is found for spin-up electron transport in AP magnetization, which is explained by the transmission spectrum and local density of state. The fundamental mechanisms governing these phenomena have been elucidated through a systematic analysis of spin-resolved transmission spectra and spin-polarized electron transport pathways. These results extend the design principles of spin-controlled molecular electronics beyond graphene-based systems, offering a universal strategy for manipulating spin-polarized currents through dynamic covalent interfaces. The nearly ideal spin-filtering efficiency and tunable rectification suggest potential applications in energy-efficient spintronic logic gates and non-volatile memory devices, while the methodology provides a framework for optimizing spin-dependent transport in hybrid organic–inorganic nanoarchitectures. Our findings suggest that such systems are promising candidates for future spintronic applications. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

22 pages, 4858 KB  
Article
Research on the Double Frequency Suppression Strategy of DC Bus Voltage on the Rectification Side of a Power Unit in a New Type of Same Phase Power Supply System
by Jinghua Zhou and Yuchen Li
Electronics 2025, 14(10), 2047; https://doi.org/10.3390/electronics14102047 - 17 May 2025
Viewed by 383
Abstract
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic [...] Read more.
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic distortion and negative sequence in the power supply system. In view of the shortcomings of the traditional in-phase power supply system in DC bus voltage stability control, a new in-phase power supply topology based on a back-to-back H-bridge power supply unit is proposed in this study. By establishing the iterative analysis model of the rectifier side double closed-loop control system, the internal correlation mechanism between the DC bus voltage second harmonic fluctuation and the grid side current harmonic is deeply revealed. On this basis, a rectifier-side disturbance compensation control strategy with a second harmonic suppression function is designed. Through real-time detection and compensation of second harmonic components, the active stability control of DC bus voltage is realized. The simulation model of the new cophase power supply system based on the experimental platform shows that the strategy can reduce the ripple coefficient of the DC bus voltage and the total harmonic distortion of the grid side current, which effectively verifies the superiority of the second harmonic suppression strategy in improving the power quality of the cophase power supply system. This work provides a new solution for a high-power quality traction power system. Full article
Show Figures

Figure 1

14 pages, 7669 KB  
Article
Towards Feasible Thermal Management Design of Electronic Control Module for Variable Frequency Air Conditioner Function in Extremely High Ambient Temperatures
by Lianyu Shan, Changbo Bu, Yuxi Su, Junhong Wu, Yunyi Wang, Limei Shen and Junlong Xie
Electronics 2025, 14(8), 1595; https://doi.org/10.3390/electronics14081595 - 15 Apr 2025
Cited by 1 | Viewed by 562
Abstract
The widespread adoption of variable frequency air conditioners (VFACs) in household appliances is primarily driven by their energy-saving qualities. However, extremely high ambient temperatures and limited space affect the heat dissipation of the electronic control module of a VFAC, resulting in a substantial [...] Read more.
The widespread adoption of variable frequency air conditioners (VFACs) in household appliances is primarily driven by their energy-saving qualities. However, extremely high ambient temperatures and limited space affect the heat dissipation of the electronic control module of a VFAC, resulting in a substantial increase in the temperature of its electronic chips. Its reliability and working performance will be largely compromised. To address this issue, we propose a feasible thermal management design based on thermoelectric coolers (TECs) that can cool electronic control modules working in an extremely high ambient temperature of 55 °C. Firstly, we designed four cooling schemes and established simulation models via Ansys Icepak. Then, we compared the chip temperatures across different schemes. The results indicate that the average temperatures of IPM, IGBT, FRD, and Rectifier Bridge were reduced by 13.58 °C, 14.03 °C, 15.88 °C, and 15.56 °C, respectively, in the scheme incorporating TECs, indicating that TECs have a significant impact on the thermal management of electronic control modules. This enables VFACs to operate at their full potential in extremely high ambient temperatures. This study explores the potential of using TECs to cool the electronic control modules of VFACs in extremely high ambient temperatures, suggesting that TECs can be effectively utilized at a large scale in the commercial VFAC field. Full article
Show Figures

Figure 1

14 pages, 5121 KB  
Article
A Single-Phase AC-AC Power Electronic Transformer Without Bulky Energy Storage Elements
by Hui Wang, Shuyang Xie and Liang Yuan
Energies 2025, 18(7), 1769; https://doi.org/10.3390/en18071769 - 1 Apr 2025
Viewed by 492
Abstract
Compared with the line-frequency transformer (LFT), the emerging power electronic transformers (PETs) have gained wide concerns due to the significant merits of higher power density, higher reliability, more flexibility, and multiple functions. However, the need for bulky energy storage elements, multi-stage power conversion [...] Read more.
Compared with the line-frequency transformer (LFT), the emerging power electronic transformers (PETs) have gained wide concerns due to the significant merits of higher power density, higher reliability, more flexibility, and multiple functions. However, the need for bulky energy storage elements, multi-stage power conversion and reduced conversion efficiency, and the intrinsic twice-frequency pulsating power issue are the main disadvantages of the conventional single-phase PETs. To overcome the above shortcomings of conventional single-phase PETs, this paper develops a matrix-type single-phase AC-AC PET without bulky energy storage elements. The proposed PET consists of a line-frequency commutated rectifier, a half-bridge LLC resonant converter with a fixed switching frequency, a boost converter, and a line-frequency commutated inverter. The LLC operates efficiently with unity voltage gain and acts as a high-frequency isolated DC transformer (DCX). The boost converter provides AC output voltage regulation function and the line-frequency commutated inverter unfolds the output voltage of the boost converter to generate the sinusoidal AC output voltage. As a result, high power density, reduced power conversion stages, direct AC-AC power conversion without twice-frequency pulsating power, high conversion efficiency, and high reliability are achieved. The experimental results on a 1kW PET prototype show that sinusoidal input current and output voltage, ZVS of the LLC stage, and output voltage regulation capability are realized. The experimental results verify the correctness and feasibility of the presented methods. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

16 pages, 17437 KB  
Article
A Parallel Dual LLC Resonant Converter with Wide Output Voltage Range for Energy System Applications
by Chih-Chiang Hua, Jian-Bin Lai and Wei-Cheng Hung
Energies 2025, 18(7), 1635; https://doi.org/10.3390/en18071635 - 25 Mar 2025
Viewed by 739
Abstract
This paper proposes a half-bridge parallel dual LLC resonant converter with wide output voltage range. The proposed converter uses a conventional parallel double half-bridge LLC resonant converter. On the primary side of the converter, only one of the two half bridges is used [...] Read more.
This paper proposes a half-bridge parallel dual LLC resonant converter with wide output voltage range. The proposed converter uses a conventional parallel double half-bridge LLC resonant converter. On the primary side of the converter, only one of the two half bridges is used to control the two resonant loops. Due to the resonance of the converter, the active switches can achieve ZVS (zero-voltage switching), and the rectifier diode can also achieve ZCS (zero-current switching), and thus the switching loss is reduced. The current stress can be reduced and power can be distributed on both of the primary side and/or the secondary side. A voltage regulation circuit is designed on the secondary side to achieve the function of wide output voltage. The operation and analysis of the proposed converter are described in detail. The experiments were carried out on a circuit prototype, which is a converter with DC input voltage of 384 V and output voltage of 24–40 V and operating at a switching frequency of 107 kHz. The feasibility and performance of the proposed converter were verified by simulation and experimental results. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

28 pages, 982 KB  
Article
Wireless Power Transfer Optimization with a Minimalist Single-Capacitor Design for Battery Charging
by Sabriansyah Rizqika Akbar, Wijaya Kurniawan, Achmad Basuki, Agung Setia Budi and Barlian Henryranu Prasetio
Energies 2025, 18(7), 1574; https://doi.org/10.3390/en18071574 - 21 Mar 2025
Viewed by 484
Abstract
Along with the emerging needs to either complement or replace the limitation of energy storage technologies in batteries in supplying power to mobile devices, including electric vehicles, Wireless Power Transfer (WPT) technologies are becoming the main focus to solve this problem. However, much [...] Read more.
Along with the emerging needs to either complement or replace the limitation of energy storage technologies in batteries in supplying power to mobile devices, including electric vehicles, Wireless Power Transfer (WPT) technologies are becoming the main focus to solve this problem. However, much research is still in progress in relation to how to achieve high power delivery from the transmitter to the receiver of the WPT circuit. Since most research that has been done tends to add components or circuits so that the system becomes more complex, this study proposes the optimization design of a single capacitor on the WPT transmitter side due to the fact that the presence of the rectifier circuits guarantees the existence of a capacitance characteristic on the receiver side. Using a full bridge rectifier to represent the WPT load, a mathematical model of the overall system is then built based on state space and transfer function methods. Then, a Genetic Algorithm (GA) is applied to the model to find the optimum solutions for achieving high power delivery. Here, the WPT power output to the load is chosen as the fitness function, while the constraints are the available capacitance and voltage source frequency values. A case study with MATLAB R2024b simulation shows that the proposed method successfully delivers the highest possible power transfer delivery, which is around 0.1 watts using a normalized AC voltage source amplitude of 1 volt. This power will increase if the voltage source amplitude is increased. In addition, the results of the GA sensitivity test ensure the consistency of the optimization results. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop