Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = brominated chalcones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5721 KB  
Article
Macroalgae-Inspired Brominated Chalcones as Cosmetic Ingredients with the Potential to Target Skin Inflammaging
by Ana Jesus, Sara Gimondi, Sónia A. Pinho, Helena Ferreira, Nuno M. Neves, Andreia Palmeira, Emília Sousa, Isabel F. Almeida, Maria T. Cruz and Honorina Cidade
Mar. Drugs 2025, 23(7), 278; https://doi.org/10.3390/md23070278 - 2 Jul 2025
Viewed by 784
Abstract
Skin aging is mainly caused by external factors like sunlight, which triggers oxidative stress and chronic inflammation. Natural halogenated flavonoids have demonstrated anti-inflammatory properties. Inspired by the macroalgae-derived bromophenol BDDE, we investigated the anti-inflammatory potential of structure-related chalcones (17 [...] Read more.
Skin aging is mainly caused by external factors like sunlight, which triggers oxidative stress and chronic inflammation. Natural halogenated flavonoids have demonstrated anti-inflammatory properties. Inspired by the macroalgae-derived bromophenol BDDE, we investigated the anti-inflammatory potential of structure-related chalcones (17). Chalcones 1 and 7 showed the least cytotoxicity in keratinocyte and macrophage cells. Chalcones 1, 2, 4, and 5 exhibited the most significant anti-inflammatory effects in murine macrophages after lipopolysaccharide stimulation, with chalcone 1 having the lowest IC50 value (≈0.58 μM). A SNAP assay confirmed that chalcones do not exert their effects through direct NO scavenging. Symmetrical bromine atoms and 3,4-dimethoxy groups on both aromatic rings improved the anti-inflammatory activity, indicating a relevant structure–activity relationship. Chalcones 1 and 2 were selected for study to clarify their mechanisms of action. At a concentration of 7.5 μM, chalcone 2 demonstrated a rapid and effective inhibitory action on the protein levels of inducible nitric oxide synthase (iNOS), while chalcone 1 exhibited a gradual inhibitory action. Moreover, chalcone 1 effectively activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway with around a 3.5-fold increase at the end of 24 h at 7.5 μM, highlighting its potential as a modulator of oxidative stress responses. These findings place chalcone 1 as a promising candidate for skincare products targeting inflammation and skin aging. Full article
Show Figures

Graphical abstract

8 pages, 479 KB  
Communication
Synthesis of a New Bichalcone via Suzuki–Miyaura Coupling Reaction
by François-Xavier Toublet, Yves Champavier, Aurélie Lévêque, Catherine Fagnère and Christelle Pouget
Molbank 2025, 2025(2), M2012; https://doi.org/10.3390/M2012 - 26 May 2025
Viewed by 985
Abstract
Unlike the wide number of natural biflavonoids, natural bichalcones are a rare and even less studied class. Nevertheless, some of them have proved their interest in the fight against cancer through their cytotoxic activity against human tumor cell lines. The aim of this [...] Read more.
Unlike the wide number of natural biflavonoids, natural bichalcones are a rare and even less studied class. Nevertheless, some of them have proved their interest in the fight against cancer through their cytotoxic activity against human tumor cell lines. The aim of this study was to synthesize a novel bichalcone: 3′,3‴,4,4′,4″,4‴,5′,5‴-octamethoxy-2,3″-bichalcone 1. The most efficient synthetic pathway was the Suzuki–Miyaura reaction between a boronated chalcone and a brominated one. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

19 pages, 5939 KB  
Article
Antimicrobial Properties of Flavonoid Derivatives with Bromine, Chlorine, and Nitro Group Obtained by Chemical Synthesis and Biotransformation Studies
by Martyna Perz, Daria Szymanowska, Tomasz Janeczko and Edyta Kostrzewa-Susłow
Int. J. Mol. Sci. 2024, 25(10), 5540; https://doi.org/10.3390/ijms25105540 - 19 May 2024
Cited by 10 | Viewed by 1917
Abstract
The search for new substances of natural origin, such as flavonoids, is necessary in the fight against the growing number of diseases and bacterial resistance to antibiotics. In our research, we wanted to check the influence of flavonoids with chlorine or bromine atoms [...] Read more.
The search for new substances of natural origin, such as flavonoids, is necessary in the fight against the growing number of diseases and bacterial resistance to antibiotics. In our research, we wanted to check the influence of flavonoids with chlorine or bromine atoms and a nitro group on pathogenic and probiotic bacteria. We synthesized flavonoids using Claisen–Schmidt condensation and its modifications, and through biotransformation via entomopathogenic filamentous fungi, we obtained their glycoside derivatives. Biotransformation yielded two new flavonoid glycosides: 8-amino-6-chloroflavone 4′-O-β-D-(4″-O-methyl)-glucopyranoside and 6-bromo-8-nitroflavone 4′-O-β-D-(4″-O-methyl)-glucopyranoside. Subsequently, we checked the antimicrobial properties of the aforementioned aglycon flavonoid compounds against pathogenic and probiotic bacteria and yeast. Our studies revealed that flavones have superior inhibitory effects compared to chalcones and flavanones. Notably, 6-chloro-8-nitroflavone showed potent inhibitory activity against pathogenic bacteria. Conversely, flavanones 6-chloro-8-nitroflavanone and 6-bromo-8-nitroflavanone stimulated the growth of probiotic bacteria (Lactobacillus acidophilus and Pediococcus pentosaceus). Our research has shown that the presence of chlorine, bromine, and nitro groups has a significant effect on their antimicrobial properties. Full article
(This article belongs to the Special Issue New Research on Bioactive Natural Products)
Show Figures

Figure 1

19 pages, 4482 KB  
Article
Antimicrobial Activities and Mode of Flavonoid Actions
by Amal Thebti, Ahmed Meddeb, Issam Ben Salem, Coulibaly Bakary, Sami Ayari, Farhat Rezgui, Khadija Essafi-Benkhadir, Abdellatif Boudabous and Hadda-Imene Ouzari
Antibiotics 2023, 12(2), 225; https://doi.org/10.3390/antibiotics12020225 - 20 Jan 2023
Cited by 35 | Viewed by 4561
Abstract
The emergence of antibiotics-resistant bacteria has been a serious concern for medical professionals over the last decade. Therefore, developing new and effective antimicrobials with modified or different modes of action is a continuing imperative. In this context, our study focuses on evaluating the [...] Read more.
The emergence of antibiotics-resistant bacteria has been a serious concern for medical professionals over the last decade. Therefore, developing new and effective antimicrobials with modified or different modes of action is a continuing imperative. In this context, our study focuses on evaluating the antimicrobial activity of different chemically synthesized flavonoids (FLAV) to guide the chemical synthesis of effective antimicrobial molecules. A set of 12 synthesized molecules (4 chalcones, 4 flavones and 4 flavanones), bearing substitutions with chlorine and bromine groups at the C6′ position and methoxy group at the C4′ position of the B-ring were evaluated for antimicrobial activity toward 9 strains of Gram-positive and Gram-negative bacteria and 3 fungal strains. Our findings showed that most tested FLAV exhibited moderate to high antibacterial activity, particularly against Staphylococcus aureus with minimum inhibitory concentrations (MIC) between the range of 31.25 and 125 μg/mL and that chalcones were more efficient than flavones and flavanones. The examined compounds were also active against the tested fungi with a strong structure-activity relationship (SAR). Interestingly, leakage measurements of the absorbent material at 260 nm and scanning electron microscopy (SEM) demonstrated that the brominated chalcone induced a significant membrane permeabilization of S. aureus. Full article
(This article belongs to the Special Issue Synthesis and Biological Activity of Antimicrobial Agents, 2nd Volume)
Show Figures

Figure 1

2 pages, 205 KB  
Abstract
BDDE-Inspired Chalcone Derivatives as New Antimicrobial Adjuvants
by Ana Jesus, Fernando Durães, Nikoletta Szemerédi, Joana Freitas-Silva, Paulo Martins Costa, Eugénia Pinto, Madalena Pinto, Gabriella Spengler, Emília Sousa and Honorina Cidade
Med. Sci. Forum 2022, 14(1), 68; https://doi.org/10.3390/ECMC2022-13650 - 16 Nov 2022
Viewed by 1381
Abstract
The effective response of antibiotics is threatened by the proliferation of micro-organisms that manifest resistance mechanisms, leading to an increase of progressively untreatable infectious diseases around the world. One solution to this problem could lie in shifting the strategy from searching for new [...] Read more.
The effective response of antibiotics is threatened by the proliferation of micro-organisms that manifest resistance mechanisms, leading to an increase of progressively untreatable infectious diseases around the world. One solution to this problem could lie in shifting the strategy from searching for new antibacterials to discovering new compounds that potentiate the antimicrobial activity of current antibiotics, therefore reverting resistance, through the interference with several mechanisms including biofilm formation and efflux pumps (EPs). Using bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) as a template, a macroalgae brominated bromophenol with antimicrobial activity, a series of 18 chalcone derivatives was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. This includes seven chalcones, six dihydrochalcones and five diarylpropanes. Among them, two chalcones exhibited interesting antifungal activity and all compounds reversed resistance to vancomycin in the environmental isolate Enterococcus faecalis B3/101. Three compounds caused a four-fold decrease in the minimum inhibitory concentration (MIC) values of vancomycin against E. faecalis. All the dihydrochalcones and diarylpropanes displayed inhibition of EPs and biofilm formation in the tested multidrug-resistant strain, suggesting that these compounds are EP inhibitors. Notably, dihydrochalcones and diarylpropanes did not show cytotoxicity in a mouse embryonic fibroblast cell line and they can potentially be regarded as hits for bacterial EP inhibition. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
21 pages, 6084 KB  
Article
BDDE-Inspired Chalcone Derivatives to Fight Bacterial and Fungal Infections
by Ana Jesus, Fernando Durães, Nikoletta Szemerédi, Joana Freitas-Silva, Paulo Martins da Costa, Eugénia Pinto, Madalena Pinto, Gabriella Spengler, Emília Sousa and Honorina Cidade
Mar. Drugs 2022, 20(5), 315; https://doi.org/10.3390/md20050315 - 8 May 2022
Cited by 11 | Viewed by 5737
Abstract
The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new [...] Read more.
The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new compounds that not only exhibit antimicrobial activity, but can also potentiate the antimicrobial activity and revert antibiotics’ resistance, through the interference with several mechanisms, including the inhibition of efflux pumps (EPs) and biofilm formation. Inspired by macroalgae brominated bromophenol BDDE with antimicrobial activity, a series of 18 chalcone derivatives, including seven chalcones (915), six dihydrochalcones (1618, and 2224) and five diarylpropanes (1921, and 25 and 26), was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. Among them, chalcones 13 and 14 showed promising antifungal activity against the dermatophyte clinical strain of Trichophyton rubrum, and all compounds reversed the resistance to vancomycin in Enterococcus faecalis B3/101, with 9, 14, and 24 able to cause a four-fold decrease in the MIC of vancomycin against this strain. Compounds 1724 displayed inhibition of EPs and the formation of biofilm by S. aureus 272123, suggesting that these compounds are inhibiting the EPs responsible for the extrusion of molecules involved in biofilm-related mechanisms. Interestingly, compounds 1724 did not show cytotoxicity in mouse embryonic fibroblast cell lines (NIH/3T3). Overall, the results obtained suggest the potential of dihydrochalcones 1618 and 2224, and diarylpropanes 1921, 25 and 26, as hits for bacterial EPs inhibition, as they are effective in the inhibition of EPs, but present other features that are important in this matter, such as the lack of antibacterial activity and cytotoxicity. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Marine Macrophytes)
Show Figures

Graphical abstract

11 pages, 832 KB  
Article
Synthesis and Antibacterial Activity of Benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide Derivatives
by Jatinder P. Bassin, Michelle J. Botha, Rajesh Garikipati, Madhu Goyal, Lee Martin and Amit Shah
Molecules 2017, 22(11), 1889; https://doi.org/10.3390/molecules22111889 - 4 Nov 2017
Cited by 9 | Viewed by 5085
Abstract
Using a routine procedure, a number of derivatives of the benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide ring system have been synthesized from readily available starting materials. A series of chalcones were synthesized, which were subsequently reacted with chlorosulfonic acid to generate chalcone sulfonyl chlorides. The chalcone [...] Read more.
Using a routine procedure, a number of derivatives of the benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide ring system have been synthesized from readily available starting materials. A series of chalcones were synthesized, which were subsequently reacted with chlorosulfonic acid to generate chalcone sulfonyl chlorides. The chalcone sulfonyl chlorides were then treated with bromine to generate dibromo chalcone sulfonyl chlorides. These were subsequently reacted with 1,2-diaminopropane and 2-methyl-1,2-diaminopropane in boiling ethanol resulting in compounds 210 and 1119 respectively, in 12–80% yields. The products were characterized by spectral analysis and the definitive structure of compound 11 was determined by X-ray crystallography. The synthesized compounds were screened for potential antibacterial properties against Bacillus subtilis, Escherichia coli, Proteus vulgaris and Staphylococcus aureus. Full article
Show Figures

Graphical abstract

16 pages, 890 KB  
Article
Synthesis and Antimicrobial Activity of 1,2-Benzothiazine Derivatives
by Chandani Patel, Jatinder P. Bassin, Mark Scott, Jenna Flye, Ann P. Hunter, Lee Martin and Madhu Goyal
Molecules 2016, 21(7), 861; https://doi.org/10.3390/molecules21070861 - 30 Jun 2016
Cited by 45 | Viewed by 7809
Abstract
A number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 19 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 1018. These were converted to the [...] Read more.
A number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 19 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 1018. These were converted to the dibromo compounds 1927 through reaction with bromine in glacial acetic acid. Compounds 1927 were reacted with ammonia, methylamine, ethylamine, aniline and benzylamine to generate a library of 45 1,2-benzothiazines 2872. Compounds 2872 were evaluated for their antimicrobial activity using broth microdilution techniques against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Proteus vulgaris and Salmonella typhimurium). The results demonstrated that none of the compounds showed any activity against Gram-negative bacteria P. vulgaris and S. typhimurium; however, compounds 31, 33, 38, 43, 45, 50, 53, 55, 58, 60, 63 and 68 showed activity against Gram-positive bacteria Bacillus subtilis and Staphylococcous aureus. The range of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was 25–600 µg/mL, though some of the MIC and MBC concentrations were high, indicating weak activity. Structure activity relationship studies revealed that the compounds with a hydrogen atom or an ethyl group on the nitrogen of the thiazine ring exerted antibacterial activity against Gram-positive bacteria. The results also showed that the compounds where the benzene ring of the benzoyl moiety contained a methyl group or a chlorine or bromine atom in the para position showed higher antimicrobial activity. Similar influences were identified where either a bromine or chlorine atom was in the meta position. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop