Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,268)

Search Parameters:
Keywords = build quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1888 KB  
Article
Augmented Reality Application for Reducing Reconstruction Costs, Preventing Loss of Working Days and Improving Design Quality
by Halil Esendal and Aynur Kazaz
Buildings 2025, 15(19), 3595; https://doi.org/10.3390/buildings15193595 (registering DOI) - 7 Oct 2025
Abstract
The development of digital technologies in the construction sector, alongside the healthcare, industrial, and automotive sectors where technology has a wide range of applications, has created a significant transformation in building production processes and has enabled the widespread use of Building Information Modeling [...] Read more.
The development of digital technologies in the construction sector, alongside the healthcare, industrial, and automotive sectors where technology has a wide range of applications, has created a significant transformation in building production processes and has enabled the widespread use of Building Information Modeling (BIM) and Augmented Reality (AR) applications in particular. In this study, a two-storey villa with an area of 300 m2 was designed to demonstrate the application of technology adaptation in the construction sector. This designed project was adapted using an AR application as a result of Revit → 3ds Max → Unity → tablet APK, and new designs meeting the needs and expectations of three different customers were created. Subsequently, the resulting cost, time and quality items were evaluated. Taking the average of the three studies, the reconstruction cost is approximately 14% (16,237 USD) of the initial construction cost, and the average additional working days are approximately 18% (42 working days) of the total working days. This study, which aimed to eliminate or minimize reconstruction costs, working days and quality loss, sought to emphasize the importance of design quality, cost and working day loss based on the results obtained. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

32 pages, 19967 KB  
Article
Monitoring the Recovery Process After Major Hydrological Disasters with GIS, Change Detection and Open and Free Multi-Sensor Satellite Imagery: Demonstration in Haiti After Hurricane Matthew
by Wilson Andres Velasquez Hurtado and Deodato Tapete
Water 2025, 17(19), 2902; https://doi.org/10.3390/w17192902 (registering DOI) - 7 Oct 2025
Abstract
Recovery from disasters is the complex process requiring coordinated measures to restore infrastructure, services and quality of life. While remote sensing is a well-established means for damage assessment, so far very few studies have shown how satellite imagery can be used by technical [...] Read more.
Recovery from disasters is the complex process requiring coordinated measures to restore infrastructure, services and quality of life. While remote sensing is a well-established means for damage assessment, so far very few studies have shown how satellite imagery can be used by technical officers of affected countries to provide crucial, up-to-date information to monitor the reconstruction progress and natural restoration. To address this gap, the present study proposes a multi-temporal observatory method relying on GIS, change detection techniques and open and free multi-sensor satellite imagery to generate thematic maps documenting, over time, the impact and recovery from hydrological disasters such as hurricanes, tropical storms and induced flooding. The demonstration is carried out with regard to Hurricane Matthew, which struck Haiti in October 2016 and triggered a humanitarian crisis in the Sud and Grand’Anse regions. Synthetic Aperture Radar (SAR) amplitude change detection techniques were applied to pre-, cross- and post-disaster Sentinel-1 image pairs from August 2016 to September 2020, while optical Sentinel-2 images were used for verification and land cover classification. With regard to inundated areas, the analysis allowed us to determine the needed time for water recession and rural plain areas to be reclaimed for agricultural exploitation. With regard to buildings, the cities of Jérémie and Les Cayes were not only the most impacted areas, but also were those where most reconstruction efforts were made. However, some instances of new settlements located in at-risk zones, and thus being susceptible to future hurricanes, were found. This result suggests that the thematic maps can support policy-makers and regulators in reducing risk and making the reconstruction more resilient. Finally, to evaluate the replicability of the proposed method, an example at a country-scale is discussed with regard to the June 2023 flooding event. Full article
(This article belongs to the Special Issue Applications of GIS and Remote Sensing in Hydrology and Hydrogeology)
Show Figures

Figure 1

5 pages, 165 KB  
Editorial
Building Energy Performance Modelling and Simulation
by Joanna Ferdyn-Grygierek, Krzysztof Grygierek and Agnes Psikuta
Energies 2025, 18(19), 5295; https://doi.org/10.3390/en18195295 (registering DOI) - 7 Oct 2025
Abstract
The building sector is currently facing two conflicting challenges—the urgent need to reduce energy consumption and greenhouse gas emissions, and the continuous growth of expectations regarding thermal comfort, indoor air quality, and health [...] Full article
(This article belongs to the Special Issue Building Energy Performance Modelling and Simulation)
29 pages, 3369 KB  
Article
Longitudinal Usability and UX Analysis of a Multiplatform House Design Pipeline: Insights from Extended Use Across Web, VR, and Mobile AR
by Mirko Sužnjević, Sara Srebot, Mirta Moslavac, Katarina Mišura, Lovro Boban and Ana Jović
Appl. Sci. 2025, 15(19), 10765; https://doi.org/10.3390/app151910765 - 6 Oct 2025
Abstract
Computer-Aided Design (CAD) software has long served as a foundation for planning and modeling in Architecture, Engineering, and Construction (AEC). In recent years, the introduction of Augmented Reality (AR) and Virtual Reality (VR) has significantly reshaped the CAD landscape, offering novel interaction paradigms [...] Read more.
Computer-Aided Design (CAD) software has long served as a foundation for planning and modeling in Architecture, Engineering, and Construction (AEC). In recent years, the introduction of Augmented Reality (AR) and Virtual Reality (VR) has significantly reshaped the CAD landscape, offering novel interaction paradigms that bridge the gap between digital prototypes and real-world spatial understanding. These technologies have enabled users to engage with 3D architectural content in more immersive and intuitive ways, facilitating improved decision making and communication throughout design workflows. As digital design services grow more complex and span multiple media platforms—from desktop-based modeling to immersive AR/VR environments—evaluating usability and User Experience (UX) becomes increasingly challenging. This paper presents a longitudinal usability and UX study of a multiplatform house design pipeline (i.e., structured workflow for creating, adapting, and delivering house designs so they can be used seamlessly across multiple platforms) comprising a web-based application for initial house creation, a mobile AR tool for contextual exterior visualization, and VR applications that allow full-scale interior exploration and configuration. Together, these components form a unified yet heterogeneous service experience across different devices and modalities. We describe the iterative design and development of this system over three distinct phases (lasting two years), each followed by user studies which evaluated UX and usability and targeted different participant profiles and design maturity levels. The paper outlines our approach to cross-platform UX evaluation, including methods such as the Think-Aloud Protocol (TAP), standardized usability metrics, and structured interviews. The results from the studies provide insight into user preferences, interaction patterns, and system coherence across platforms. From both participant and evaluator perspectives, the iterative methodology contributed to improvements in system usability and a clearer mental model of the design process. The main research question we address is how iterative design and development affects the UX of the heterogeneous service. Our findings highlight important considerations for future research and practice in the design of integrated, multiplatform XR services for AEC, with potential relevance to other domains. Full article
(This article belongs to the Special Issue Extended Reality (XR) and User Experience (UX) Technologies)
Show Figures

Figure 1

31 pages, 3755 KB  
Article
Perception Evaluation and Optimization Strategies of Pedestrian Space in Beijing Fayuan Temple Historic and Cultural District
by Qin Li, Yanwei Li, Qiuyu Li, Shaomin Peng, Yijun Liu and Wenlong Li
Buildings 2025, 15(19), 3574; https://doi.org/10.3390/buildings15193574 - 3 Oct 2025
Abstract
With the rapid development of urbanization and tourism in China, increasing attention has been paid to the protection and utilization of historical and cultural heritage, while tourists’ demands for travel experiences have gradually shifted towards in-depth cultural perception. This paper selects Beijing Fayuan [...] Read more.
With the rapid development of urbanization and tourism in China, increasing attention has been paid to the protection and utilization of historical and cultural heritage, while tourists’ demands for travel experiences have gradually shifted towards in-depth cultural perception. This paper selects Beijing Fayuan Temple Historic and Cultural District as the research case, and adopts methods such as the LDA (Latent Dirichlet Allocation) topic model, collection and analysis of online text data, and field research to explore the current situation of pedestrian space in Fayuan Temple District and its optimization strategies from the perspective of tourists’ perception. The study found that the dimensions of tourists’ perception of the pedestrian space in Fayuan Temple District mainly include six aspects: historical buildings and relics, tour modes and transportation, natural landscapes and environment, historical figures and culture, residents’ life and activities, and tourists’ experiences and visits. By integrating online text data, questionnaire surveys, and on-site behavioral observations, the study constructed a “physical environment-cultural experience-behavioral network” three-dimensional IPA (Importance–Possession Analysis) evaluation model, and analyzed and evaluated the high-frequency perception elements in tourists’ spontaneous evaluations. Based on the current situation evaluation of the pedestrian space in Fayuan Temple District, this paper puts forward optimization strategies for the perception of pedestrian space from the aspects of block space, transportation usage, landscape ecology, digital technology, and cultural symbol translation. It aims to promote the high-quality development of historical blocks by improving and optimizing the pedestrian space, and achieve the dual goals of cultural inheritance and utilization of tourism resources. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 6532 KB  
Article
Interfacial Strength Testing of Laser Powder Bed Fusion Metal Samples Produced Using the Multi-Material Binning Method
by Suyash Niraula, Brendon S. Dodge, Justin D. Gillham and Thomas A. Berfield
J. Manuf. Mater. Process. 2025, 9(10), 327; https://doi.org/10.3390/jmmp9100327 - 3 Oct 2025
Abstract
Creating complex structures using multiple materials in additive manufacturing comes with a unique set of challenges, particularly when it comes to how the materials transition and bond together. This research looks at a new powder binning method for combining metal powders to create [...] Read more.
Creating complex structures using multiple materials in additive manufacturing comes with a unique set of challenges, particularly when it comes to how the materials transition and bond together. This research looks at a new powder binning method for combining metal powders to create multi-material components in a single build, all produced on a standard Laser Powder Bed Fusion EOS M 290 machine. The study focuses on the size and quality of the resulting multi-material interfaces and how different scan strategies used affect the interface strength. The strength of the interface between different material pairings is evaluated for combinations of 316 stainless steel bonded to Inconel 718, Inconel 718 bonded to Inconel 625, and Inconel 625 bonded to 316 stainless steel. The Ultimate Tensile Strength (UTS) and interface region lengths were calculated to be 675 MPa and 1250 µm for 316L–IN718, 1004 MPa and 2500 µm for IN718–IN625, and 687 MPa and 2000 µm for IN625–316L, respectively. The findings show that the laser powder bed fusion material binning method is comparable to traditional methods, such as welding or directed energy deposition. This suggests that the new material binning method offers clear advantages when it comes to enabling complex geometry multi-material components while maintaining the strength and durability of the bonds between different metal materials found in traditional means. Further, optimization of scan strategies in the interface zones could play a significant role in improving the overall performance of these multi-material components, which is particularly important for industries such as aerospace, automotive, and energy production. Full article
Show Figures

Figure 1

27 pages, 4873 KB  
Article
The Streamer Selection Strategy for Live Streaming Sales: Genuine, Virtual, or Hybrid
by Delong Jin
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 273; https://doi.org/10.3390/jtaer20040273 - 3 Oct 2025
Abstract
Research Problem and Gap: Live streaming sales rely heavily on streamers, with both genuine and AI-generated virtual streamers gaining popularity. However, these streamer types possess contrasting capabilities. Genuine streamers are superior at building trust and reducing product valuation uncertainty but have limited reach, [...] Read more.
Research Problem and Gap: Live streaming sales rely heavily on streamers, with both genuine and AI-generated virtual streamers gaining popularity. However, these streamer types possess contrasting capabilities. Genuine streamers are superior at building trust and reducing product valuation uncertainty but have limited reach, while virtual streamers excel at broad audience engagement but are less effective at mitigating uncertainty, often leading to higher product return rates. This trade-off creates a critical strategic gap; that is, brand firms lack clear guidance on whether to invest in genuine or virtual streamers or adopt a hybrid approach for their live channels. Objective and Methods: This study addresses this gap by developing a theoretical analytical model to determine a monopolistic brand firm’s optimal streamer strategy among three options: using only a genuine streamer, only a virtual streamer, or a combination of the two (hybrid approach). The researchers model consumer utility, factoring in uncertainty and the streamers’ differential impact on reach, to derive optimal decisions on pricing and streamer selection. Results and Findings: The analysis yields several key findings with direct managerial implications. First, while a hybrid strategy leverages the complementary strengths of both streamer types, its success depends on employing high-quality streamers; in other words, this strategy does not justify settling for inferior talent of either type. Second, employing a virtual streamer requires a moderate price reduction to compensate for higher consumer uncertainty and prevent high profit-eroding return rates. Third, a pure strategy (only genuine or only virtual) is optimal only when that streamer type has a significant cost advantage. Otherwise, the hybrid strategy tends to be the most profitable. Moreover, higher product return costs directly diminish the viability of virtual streamers, making a genuine or hybrid strategy more attractive for products with expensive return processes. Conclusions: The results provide a clear framework for brand firms—that is, the choice of streamer is a strategic decision intertwined with pricing and product return costs. Firms should pursue a hybrid strategy not as a compromise but as a premium approach, use targeted pricing to mitigate the risk of virtual streamers, and avoid virtual options altogether for products with high return costs. Full article
Show Figures

Figure 1

22 pages, 16284 KB  
Article
C5LS: An Enhanced YOLOv8-Based Model for Detecting Densely Distributed Small Insulators in Complex Railway Environments
by Xiaoai Zhou, Meng Xu and Peifen Pan
Appl. Sci. 2025, 15(19), 10694; https://doi.org/10.3390/app151910694 - 3 Oct 2025
Abstract
The complex environment along railway lines, characterized by low imaging quality, strong background interference, and densely distributed small objects, causes existing detection models to suffer from low accuracy in practical applications. To tackle these challenges, this study aims to develop a robust and [...] Read more.
The complex environment along railway lines, characterized by low imaging quality, strong background interference, and densely distributed small objects, causes existing detection models to suffer from low accuracy in practical applications. To tackle these challenges, this study aims to develop a robust and lightweight insulator detection model specifically optimized for these challenging railway scenarios. To this end, we release a dedicated comprehensive dataset named complexRailway that covers typical railway scenarios to address the limitations of existing insulator datasets, such as the lack of small-scale objects in high-interference backgrounds. On this basis, we present CutP5-LargeKernelAttention-SIoU (C5LS), an improved YOLOv8 variant with three key improvements: (1) optimized YOLOv8’s detection head by removing the P5 branch to improve feature extraction for small- and medium-sized targets while reducing computational redundancy, (2) integrating a lightweight Large Separable Kernel Attention (LSKA) module to expand the receptive field and improve contextual modeling, (3) and replacing CIoU with SIoU loss to refine localization accuracy and accelerate convergence. Experimental results demonstrate that it reaches 94.7% in mAP@0.5 and 65.5% in mAP@0.5–0.95, outperforming the baseline model by 1.9% and 3.5%, respectively. With an inference speed of 104 FPS and a model size of 13.9 MB, the model balances high precision and lightweight deployment. By providing stable and accurate insulator detection, C5LS not only offers reliable spatial positioning basis for subsequent defect identification but also builds an efficient and feasible intelligent monitoring solution for these failure-prone insulators, thereby effectively enhancing the operational safety and maintenance efficiency of the railway power system. Full article
Show Figures

Figure 1

17 pages, 2223 KB  
Article
Dynamic Evolution Analysis of Incentive Strategies and Symmetry Enhancement in the Personal-Data Valorization Industry Chain
by Jun Ma, Junhao Yu and Yingying Cheng
Symmetry 2025, 17(10), 1639; https://doi.org/10.3390/sym17101639 - 3 Oct 2025
Abstract
The value of personal data can only be unlocked through efficient circulation. This study explores a multi-party collaborative mechanism for personal-data trading, aiming to improve data quality and market vitality via incentive-compatible institutional design, thereby supporting the high-quality development of the digital economy. [...] Read more.
The value of personal data can only be unlocked through efficient circulation. This study explores a multi-party collaborative mechanism for personal-data trading, aiming to improve data quality and market vitality via incentive-compatible institutional design, thereby supporting the high-quality development of the digital economy. Symmetry enhancement refers to the use of strategies and mechanisms to narrow the information gap among data controllers, operators, and demanders, enabling all parties to facilitate personal-data transactions on relatively equal footing. Drawing on evolutionary-game theory, we construct a tripartite dynamic-game model that incorporates data controllers, data operators, and data demanders. We analyze how initial willingness, payoff structures, breach costs, and risk factors (e.g., data leakage) shape each party’s strategic choices (cooperate vs. defect) and their evolutionary trajectories, in search of stable equilibrium conditions and core incentive mechanisms for a healthy market. We find that (1) the initial willingness to cooperate among participants is the foundation of a virtuous cycle; (2) the net revenue of data products significantly influences operators’ and demanders’ propensity to cooperate; and (3) the severity of breach penalties and the potential losses from data leakage jointly affect the strategies of all three parties, serving as key levers for maintaining market trust and compliance. Accordingly, we recommend strengthening contract enforcement and trust-building; refining the legal and regulatory framework for data rights confirmation, circulation, trading, and security; and promoting stable supply–demand cooperation and market education to enhance awareness of data value and compliance, thereby stimulating individuals’ willingness to authorize the use of their data and maximizing its value. Full article
Show Figures

Figure 1

8 pages, 1277 KB  
Proceeding Paper
National Integration and Optimization of CAMS Products: The Eratosthenes Center of Excellence as National Coordinator for Atmospheric Monitoring in Cyprus
by Maria Anastasiadou, Silas Michaelides and Diofantos G. Hadjimitsis
Environ. Earth Sci. Proc. 2025, 35(1), 62; https://doi.org/10.3390/eesp2025035062 - 2 Oct 2025
Abstract
The Copernicus Atmosphere Monitoring Service (CAMS) offers a broad portfolio of global and regional atmospheric products that support environmental monitoring, air quality assessment, health applications and climate policy. Under the CAMS National Collaboration Programme (NCP), the ERATOSTHENES Centre of Excellence (ECoE) serves as [...] Read more.
The Copernicus Atmosphere Monitoring Service (CAMS) offers a broad portfolio of global and regional atmospheric products that support environmental monitoring, air quality assessment, health applications and climate policy. Under the CAMS National Collaboration Programme (NCP), the ERATOSTHENES Centre of Excellence (ECoE) serves as the national coordinator for Cyprus, working to bridge the gap between CAMS outputs and local end-user needs. This paper presents the strategy and implementation framework adopted by ECoE to facilitate CAMS uptake in Cyprus. Efforts focus on integrating CAMS data into national systems, developing tailored applications (e.g., UV forecasting, dust event alerts), building stakeholder capacity, and supporting regulatory reporting. Outcomes also include the deployment of the AirData Hub platform and initial steps toward institutionalizing CAMS-derived workflows in public health and environmental planning. The work highlights both the opportunities and technical challenges of customizing CAMS products for small-island contexts. Full article
Show Figures

Figure 1

36 pages, 462 KB  
Article
No Reproducibility, No Progress: Rethinking CT Benchmarking
by Dmitry Polevoy, Danil Kazimirov, Marat Gilmanov and Dmitry Nikolaev
J. Imaging 2025, 11(10), 344; https://doi.org/10.3390/jimaging11100344 - 2 Oct 2025
Abstract
Reproducibility is a cornerstone of scientific progress, yet in X-ray computed tomography (CT) reconstruction, it remains a critical and unresolved challenge. Current benchmarking practices in CT are hampered by the scarcity of openly available datasets, the incomplete or task-specific nature of existing resources, [...] Read more.
Reproducibility is a cornerstone of scientific progress, yet in X-ray computed tomography (CT) reconstruction, it remains a critical and unresolved challenge. Current benchmarking practices in CT are hampered by the scarcity of openly available datasets, the incomplete or task-specific nature of existing resources, and the lack of transparent implementations of widely used methods and evaluation metrics. As a result, even the fundamental property of reproducibility is frequently violated, undermining objective comparison and slowing methodological progress. In this work, we analyze the systemic limitations of current CT benchmarking, drawing parallels with broader reproducibility issues across scientific domains. We propose an extended data model and formalized schemes for data preparation and quality assessment, designed to improve reproducibility and broaden the applicability of CT datasets across multiple tasks. Building on these schemes, we introduce checklists for dataset construction and quality assessment, offering a foundation for reliable and reproducible benchmarking pipelines. A key aspect of our recommendations is the integration of virtual CT (vCT), which provides highly realistic data and analytically computable phantoms, yet remains underutilized despite its potential to overcome many current barriers. Our work represents a first step toward a methodological framework for reproducible benchmarking in CT. This framework aims to enable transparent, rigorous, and comparable evaluation of reconstruction methods, ultimately supporting their reliable adoption in clinical and industrial applications. Full article
(This article belongs to the Special Issue Tools and Techniques for Improving Radiological Imaging Applications)
Show Figures

Figure 1

34 pages, 3039 KB  
Article
Research on the Behavioral Strategies of Manufacturing Enterprises for High-Quality Development: A Perspective on Endogenous and Exogenous Factors
by Yongqiang Su, Jinfa Shi and Manman Zhang
Mathematics 2025, 13(19), 3165; https://doi.org/10.3390/math13193165 - 2 Oct 2025
Abstract
High-quality development highlights the importance of environmental protection and green low-carbon development. The high-quality development of the manufacturing industry is not only the key content for achieving green transformation, but also an important cornerstone for building a modern national industrial system. Current research [...] Read more.
High-quality development highlights the importance of environmental protection and green low-carbon development. The high-quality development of the manufacturing industry is not only the key content for achieving green transformation, but also an important cornerstone for building a modern national industrial system. Current research focuses on companies and governments, ignoring the important value of suppliers and consumers. As a result, existing mechanisms have failed to deliver the desired results. This paper constructs an evolutionary game model involving manufacturing enterprises, local governments, suppliers, and consumers, and systematically analyzes the strategy selection process of the four participating populations. On this basis, the impact of exogenous and endogenous factors on the evolutionarily stable strategy is studied at the microscopic level using numerical simulation methods. The results show that (1) increasing any of the endogenous factors, such as innovative capability, organization building, and industrial resources, can accelerate the evolution of manufacturing enterprises evolve to smart upgrade strategy. (2) Increasing any one of the exogenous factors, such as policy environment, industrial cooperation, and market demand, can accelerate the rate at which manufacturing enterprises choose to adopt the strategy of smart upgrade. The purpose of this paper is to provide a theoretical reference for the behavioral strategies of manufacturing enterprises, and to provide a realistic reference for local governments to build a mechanism to promote the high-quality development of the manufacturing industry. Full article
10 pages, 4647 KB  
Article
Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification
by Yanan Zhang, Zhizhe Wang, Dazheng Chen, Tongwanming Zheng, Menglin Yan, Yibing He, Zihao Wang, Weihang Zhang and Chunfu Zhang
Materials 2025, 18(19), 4579; https://doi.org/10.3390/ma18194579 - 2 Oct 2025
Abstract
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to [...] Read more.
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to realize color-tunable semi-transparent CsPbBr3 PSCs. From the optical perspective, the P3HT acted as the assistant photoactive layer, enhanced the light absorption capacity of the CsPbBr3 film, and broadened the spectrum response range of devices. In view of the hole transport layer, P3HT modified the energy level matching between the CsPbBr3/anode interface and facilitated the hole transport. Simultaneously, the S in P3HT formed a more stable Pb-S bond with the uncoordinated Pb2+ on the surface of CsPbBr3 and played the role of a defect passivator. As the P3HT concentration increased from 0 to 15 mg/mL, the color of CsPbBr3 devices gradually changed from light yellow to reddish brown. The PSC treated by an optimal P3HT concentration of 10 mg/mL achieved a champion power conversion efficiency (PCE) of 8.71%, with a VOC of 1.30 V and a JSC of 8.54 mA/cm2, which are remarkably higher than those of control devices (6.86%, 1.22 V, and 8.21 mA/cm2), as well its non-degrading stability and repeatability. Here, the constructed CsPbBr3/P3HT heterostructure revealed effective paths for enhancing the photovoltaic performance of CsPbBr3 PSCs and boosted their semi-transparent applications in building integrated photovoltaics (BIPVs). Full article
Show Figures

Figure 1

26 pages, 2248 KB  
Article
Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach
by Aljawharah A. Alnaser and Haytham Elmousalami
Buildings 2025, 15(19), 3543; https://doi.org/10.3390/buildings15193543 - 2 Oct 2025
Abstract
Artificial intelligence-enhanced digital twins are widely acknowledged as effective instruments for facilitating digital transformation in the building industry. Nonetheless, their implementation remains uneven, with little knowledge regarding the organizational conditions that convert these technologies into enhanced project outcomes. This study investigates the critical [...] Read more.
Artificial intelligence-enhanced digital twins are widely acknowledged as effective instruments for facilitating digital transformation in the building industry. Nonetheless, their implementation remains uneven, with little knowledge regarding the organizational conditions that convert these technologies into enhanced project outcomes. This study investigates the critical success factors (CSFs) that shape the effectiveness of AI-integrated digital twins in Saudi Arabia’s construction industry. A hierarchical structural equation model was developed to capture three dimensions of CSFs, including human-centric, technological, and governance-related, and to evaluate their impact on project deliverables, including time, cost, resource utilization, quality, and risk. Data from a survey of 120 industry professionals were assessed utilizing a PLS-SEM approach, incorporating rigorous measurement and structural assessments. Results indicate that technology and infrastructural factors have the most significant impact on critical success factors, followed by governance and human-related enablers. Consequently, CSFs substantially forecast project outcomes, mediating the influences of all three domains. These findings underscore the importance of investing in data quality, scalable infrastructure, and governance frameworks, complemented by workforce training and incentives, to realize the benefits of AI-enabled digital transformations fully. The study presents a validated paradigm that elucidates how enabling conditions enhance performance improvements, providing practical direction for industry players and policymakers. Full article
(This article belongs to the Special Issue The Power of Knowledge in Enhancing Construction Project Delivery)
Show Figures

Figure 1

21 pages, 799 KB  
Article
What Is Successful Aging? From Seniors’ Needs for a Happy and Meaningful Life to Moving into a Senior Living Community
by Zihui Ma and Hyun Jeong Kim
J. Ageing Longev. 2025, 5(4), 39; https://doi.org/10.3390/jal5040039 - 2 Oct 2025
Abstract
This study investigates the decision-making process behind moving into a senior living community. Prospective residents were asked to identify the most important qualities of a happy, healthy, and engaged life, so called successful aging. Our effort resulted in a scale with 27 [...] Read more.
This study investigates the decision-making process behind moving into a senior living community. Prospective residents were asked to identify the most important qualities of a happy, healthy, and engaged life, so called successful aging. Our effort resulted in a scale with 27 items reflecting seniors’ needs for successful aging. Building upon the Andersen’s model to predict the medical service utilization, this study developed the Needs of Successful Aging-Enabling-Psychosocial (N-SEP) model. The results showed the needs for successful aging have a positive effect on prospective residents’ attitudes and subjective norms, which in turn affect seniors’ decision to move. In addition, enabling factors were found to increase the perceived control, leading to a decision to move. This study benefits both senior living practitioners and academics who are interested in studying this fast-growing field in the future. Full article
Show Figures

Figure 1

Back to TopTop