Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = cacao pod

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 20467 KiB  
Article
Isolation and Biological Control of Colletotrichum sp. Causing Anthracnosis in Theobroma cacao L. in Chiapas, Mexico
by Nadia Denisse Rodríguez-Velázquez, Irene Gómez-de la Cruz, Guillermo López-Guillen, Belén Chávez-Ramírez and Paulina Estrada-de los Santos
J. Fungi 2025, 11(4), 312; https://doi.org/10.3390/jof11040312 - 15 Apr 2025
Viewed by 344
Abstract
Anthracnose is a phytosanitary issue caused by various species of Colletotrichum. This study aims to revise the presence of Colletotrichum in the south of Mexico (the Soconusco area in Chiapas) and assess the inhibitory capacity of Paenibacillus sp. NMA1017 against Colletotrichum in [...] Read more.
Anthracnose is a phytosanitary issue caused by various species of Colletotrichum. This study aims to revise the presence of Colletotrichum in the south of Mexico (the Soconusco area in Chiapas) and assess the inhibitory capacity of Paenibacillus sp. NMA1017 against Colletotrichum in in vitro and field experiments. The study involved sampling pods with anthracnose from 17 sites in the Soconusco area, Chiapas, Mexico. The incidence of the disease ranged from 0.6 to 11.63%. A total of 142 isolates exhibiting the morphological characteristics of the Colletotrichum genus were obtained. Fifty selected isolates were identified using the ITS region and were classified as Colletotrichum gloeosporioides with 99% similarity. The concatenation of morphological and physiological characteristics resulted in nine main clusters. The in vitro test showed that Paenibacillus sp. NMA1017 inhibited the fungal growth of selected strains by 30–50%. The field experiments included three commercial biocontrol agents, Paenibacillus sp. NMA1017, and a water control. The incidence of anthracnose (control with water) ranged from 32 to 65%, while the commercial biocontrol agents and Paenibacillus showed an incidence range of 12 to 20%. These findings support the use of Paenibacillus sp. NMA1017 as a biocontrol agent for cacao anthracnose. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

19 pages, 1591 KiB  
Article
Pectin Extraction Process from Cocoa Pod Husk (Theobroma cacao L.) and Characterization by Fourier Transform Infrared Spectroscopy
by Ismael Santiago-Gómez, Areli Carrera-Lanestosa, Fanny Adabel González-Alejo, Zenaida Guerra-Que, Ricardo García-Alamilla, José Luis Rivera-Armenta and Pedro García-Alamilla
ChemEngineering 2025, 9(2), 25; https://doi.org/10.3390/chemengineering9020025 - 27 Feb 2025
Viewed by 687
Abstract
The Cocoa Pod Husk (CPH) accounts for 67–76% of the total cocoa fruit weight, making it its main agro-industrial waste of cocoa production. A valorization of this waste is possible through the extraction of pectin. In this study, pectin was extracted from CPH [...] Read more.
The Cocoa Pod Husk (CPH) accounts for 67–76% of the total cocoa fruit weight, making it its main agro-industrial waste of cocoa production. A valorization of this waste is possible through the extraction of pectin. In this study, pectin was extracted from CPH powder by acid hydrolysis using citric acid and sulfuric acid. Fourier transform infrared spectroscopy (FT-IR) was employed as a qualitative and quantitative characterization technique. The FT-IR of the pectin samples showed the bands visible at 1732 and 1626 cm−1 corresponding to the esterified and free carboxylic groups, respectively. These bands can be differentiated according to their degree of methyl esterification (DE) by analyzing the area under the curve. The extracted pectin showed no significant difference in yields (p ≤ 0.05) between the two acids; however, significant differences (p ≤ 0.05) were observed in DE and methoxylation percentage (MeO). According to the FT-IR results, pectin extracted with citric acid presented a lower DE (7.43%) and MeO (1.12%) compared to pectin extracted with sulfuric acid, which showed a DE of 18.15% and a 2.96% MeO. Pectin with a DE below 50% is classified as low-methylated, making it unsuitable for the food industry. However, these create a raw material that has a potential use in the pharmaceutical and bioenergy industries. Full article
(This article belongs to the Collection Green and Environmentally Sustainable Chemical Processes)
Show Figures

Graphical abstract

35 pages, 10743 KiB  
Article
Influences of Depulping, Pod Storage and Fermentation Time on Fermentation Dynamics and Quality of Ghanaian Cocoa
by Stefanie Streule, Amandine André, Susette Freimüller Leischtfeld, Karin Chatelain, Elodie Gillich, Irene Chetschik and Susanne Miescher Schwenninger
Foods 2024, 13(16), 2590; https://doi.org/10.3390/foods13162590 - 19 Aug 2024
Cited by 1 | Viewed by 1809
Abstract
This study investigated the impact of the depulping of cocoa beans after pod opening, as well as the influences of pod storage (PS) and fermentation time on the fermentation dynamics and the overall quality of beans and liquors made thereof. Twelve variations were [...] Read more.
This study investigated the impact of the depulping of cocoa beans after pod opening, as well as the influences of pod storage (PS) and fermentation time on the fermentation dynamics and the overall quality of beans and liquors made thereof. Twelve variations were conducted in three experimental runs (with/without depulping; 1-/3-day PS; and fermentation times of 3, 4, 5, 6 or 7 days). Fermentation dynamics (e.g., temperature and pH) and the quality of dried beans (e.g., cut-test and fermentation index) and liquors (sensory assessment, quantification of cocoa key-odorants and tastants) were investigated. It was demonstrated that 17–20% of cocoa pulp, relative to the total bean-pulp-mass weight, could be mechanically removed without negatively affecting the bean quality. No significant differences were found in the percentages of well-fermented beans after 5–6 days fermentation with 1-day PS, resulting in 49 ± 9% with, and 48 ± 12% without depulping. There were no significant differences in key tastants present in the liquors; however, significantly less volatile acids and esters were found when liquors were produced from 5–6 day-fermented depulped beans, with 1-day PS, without negatively affecting the sensory profiles. This strategy allows producers to maximize the cacao fruit’s value by integrating part of the pulp into the cocoa value chain. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

21 pages, 882 KiB  
Review
Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness
by Juan Manuel Silva, Fernanda Peyronel, Yinan Huang, Carlos Eugenio Boschetti and Maria G. Corradini
Foods 2024, 13(15), 2397; https://doi.org/10.3390/foods13152397 - 29 Jul 2024
Cited by 2 | Viewed by 4388
Abstract
The cacao fruit is a rich source of polyphenols, including flavonoids and phenolic acids, which possess significant health benefits. The accurate identification and quantification of these bioactive compounds extracted from different parts of the cacao fruit, such as pods, beans, nibs, and cacao [...] Read more.
The cacao fruit is a rich source of polyphenols, including flavonoids and phenolic acids, which possess significant health benefits. The accurate identification and quantification of these bioactive compounds extracted from different parts of the cacao fruit, such as pods, beans, nibs, and cacao shells, require specific treatment conditions and analytical techniques. This review presents a comprehensive comparison of extraction processes and analytical techniques used to identify and quantify polyphenols from various parts of the cacao fruit. Additionally, it highlights the environmental impact of these methods, exploring the challenges and opportunities in selecting and utilizing extraction, analytical, and impact assessment techniques, while considering polyphenols’ yield. The review aims to provide a thorough overview of the current knowledge that can guide future decisions for those seeking to obtain polyphenols from different parts of the cacao fruit. Full article
Show Figures

Figure 1

26 pages, 6737 KiB  
Article
Effect of Pod Storage and Drying Temperature on Fermentation Dynamics and Final Bean Quality of Cacao Nacional in Ecuador
by Stefanie Streule, Susette Freimüller Leischtfeld, Karin Chatelain and Susanne Miescher Schwenninger
Foods 2024, 13(10), 1536; https://doi.org/10.3390/foods13101536 - 15 May 2024
Cited by 4 | Viewed by 2239
Abstract
The impact of pod storage (PS) and two drying temperatures of fermented cocoa beans was investigated in Ecuador. Therefore, four variations were simultaneously carried out three times at two locations, independently: 0, 3, and 5 days of PS, dried at 60 °C and [...] Read more.
The impact of pod storage (PS) and two drying temperatures of fermented cocoa beans was investigated in Ecuador. Therefore, four variations were simultaneously carried out three times at two locations, independently: 0, 3, and 5 days of PS, dried at 60 °C and 0 days of PS, dried at 80 °C. Pod weight during storage, pulp content, pH, temperature, microbial counts, total free amino acids, protein profiles, sugars, organic acids, cut-test, fermentation index, and sensory profiles were analyzed. Minor differences in fermentation dynamics and bean quality were found between variations with and without PS. A rather accelerated fermentation with pod-stored beans was observed (e.g., faster color change, slightly lower pH in cotyledon after 48 h), along with a significantly higher maximal temperature during 24–42 h (43.1 ± 3.2 °C compared to 39.2 ± 2.0 °C without PS). More well-fermented beans were reached with PS (52.3 ± 22.6%) than without (62.7 ± 9.2%). Differences during fermentation were observed between the locations (e.g., pH, acids, sugars), but sensory evaluation indicated that the impact of location was mitigated with PS. Drying at 80 °C showed no adverse effects, as evidenced by the results of the cut-test and fermentation index. However, sensory evaluations revealed significant differences between 80 °C and 60 °C, with the former exhibiting more bitter and astringent cocoa liquor. Full article
Show Figures

Figure 1

11 pages, 2631 KiB  
Article
Description and Pathogenicity of Colletotrichum kapreanum sp. nov, a Cherelle Wilt Pathogen Belonging to the Gigasporum Species Complex
by Yoshiki Takata, Celynne Ocampo-Padilla, Mike Andre C. Malonzo, Dan Charlie Joy Camara Pangilinan, Shunsuke Nozawa and Kyoko Watanabe
J. Fungi 2024, 10(3), 204; https://doi.org/10.3390/jof10030204 - 8 Mar 2024
Viewed by 1883
Abstract
Similar to cacao pod rot, cherelle wilt decreases production from cacao fields. Among all known fungal pathogens of the cacao, Colletotrichum spp. are common infectious agents that affect the cherelles and pods of cacao; thus, cacao diseases are often classified by stage. Therefore, [...] Read more.
Similar to cacao pod rot, cherelle wilt decreases production from cacao fields. Among all known fungal pathogens of the cacao, Colletotrichum spp. are common infectious agents that affect the cherelles and pods of cacao; thus, cacao diseases are often classified by stage. Therefore, knowing whether these pathogens are common in both fruit stages is necessary for implementing disease control measures. Symptoms of cherelle wilt were found in cacao plants in Pangasinan, Philippines, in 2022. The fungal strain obtained from the lesion was found to be pathogenic towards cherelles, but not towards pods. The strain was classified as an unknown species belonging to the gigasporum species complex, based on the morphological and molecular phylogenetic analyses of ITS, GAPDH, CHS1, ACT, and TUB2. We propose Colletotrichum kapreanum sp. nov. as a causal agent of cacao cherelle wilt, but not pod rot. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

16 pages, 40315 KiB  
Article
Rapid Automatic Cacao Pod Borer Detection Using Edge Computing on Low-End Mobile Devices
by Eros Allan Somo Hacinas, Lorenzo Sangco Querol, Kris Lord T. Santos, Evian Bless Matira, Rhodina C. Castillo, Mercedes Arcelo, Divina Amalin and Dan Jeric Arcega Rustia
Agronomy 2024, 14(3), 502; https://doi.org/10.3390/agronomy14030502 - 29 Feb 2024
Cited by 2 | Viewed by 3084
Abstract
The cacao pod borer (CPB) (Conopomorpha cramerella) is an invasive insect that causes significant economic loss for cacao farmers. One of the most efficient ways to reduce CPB damage is to continuously monitor its presence. Currently, most automated technologies for continuous [...] Read more.
The cacao pod borer (CPB) (Conopomorpha cramerella) is an invasive insect that causes significant economic loss for cacao farmers. One of the most efficient ways to reduce CPB damage is to continuously monitor its presence. Currently, most automated technologies for continuous insect pest monitoring rely on an internet connection and a power source. However, most cacao plantations are remotely located and have limited access to internet and power sources; therefore, a simpler and readily available tool is necessary to enable continuous monitoring. This research proposes a mobile application developed for rapid and on-site counting of CPBs on sticky paper traps. A CPB counting algorithm was developed and optimized to enable on-device computations despite memory constraints and limited capacity of low-end mobile phones. The proposed algorithm has an F1-score of 0.88, with no significant difference from expert counts (R2 = 0.97, p-value = 0.55, α = 0.05). The mobile application can be used to provide the required information for pest control methods on-demand and is also accessible for low-income farms. This is one of the first few works on enabling on-device processing for insect pest monitoring. Full article
Show Figures

Figure 1

11 pages, 5046 KiB  
Article
Fungal Pathogens of Cacao in Puerto Rico
by Alina Sandra Puig
Plants 2023, 12(22), 3855; https://doi.org/10.3390/plants12223855 - 15 Nov 2023
Cited by 3 | Viewed by 2424
Abstract
Cacao production is a rapidly expanding industry in Puerto Rico, with new farmers planting ~20,000 trees in the past few years. To determine the etiology and extent of diseases affecting cacao in Puerto Rico, a survey was performed at eight sites around the [...] Read more.
Cacao production is a rapidly expanding industry in Puerto Rico, with new farmers planting ~20,000 trees in the past few years. To determine the etiology and extent of diseases affecting cacao in Puerto Rico, a survey was performed at eight sites around the island. Pod rot and/or branch dieback were observed at all sites. Most organisms isolated from symptomatic pod and stem samples were identified as Diaporthe spp. (48%) and Lasiodiplodia spp. (25%) based on sequences of the internal transcribed spacer and large subunit regions. Within these genera, Diaporthe tulliensis and Lasiodiplodia theobromae were the most prevalent species and were used in inoculation studies to determine their relative virulence on pods and stems. Phytophthora palmivora served as a positive control due to its well-established pathogenicity in all tissues. On pods, L. theobromae and P. palmivora caused significantly larger lesions (6.1 and 5.9 cm, respectively) than D. tulliensis (2.7 cm) four days post-inoculation. All three species caused disease on stems, with no differences found among species. Although P. palmivora was thought to be the primary pathogen affecting cacao in Puerto Rico, this study identifies L. theobromae and D. tulliensis as the common pathogens on the island. This improved understanding will help scientists and farmers control disease by selecting fungicides effective against both oomycetes and fungi. Full article
(This article belongs to the Special Issue The Research of Plant Fungal Disease)
Show Figures

Figure 1

17 pages, 1427 KiB  
Article
Development of a Diet Production System for Conopomorpha cramerella (Lepidoptera: Gracillariidae), a Major Cocoa Production Pest in Southeast Asia and the Pacific Islands
by Jerome Niogret, Anisah Binti Savantil, Arni Ekayanti, Mavis Peter Jaus, Wulan Wulan, Elviah Mitzo, Jean-Philippe Marelli and Desmond Conlong
Insects 2023, 14(8), 708; https://doi.org/10.3390/insects14080708 - 14 Aug 2023
Viewed by 1981
Abstract
The development of artificial diets for the cocoa pod borer Conopomorpha cramerella, a major pest of cocoa plants, has undergone significant advancements. In this study, we present the success rates of two diet formulations, MM1 and MM4, which have been progressively improved. [...] Read more.
The development of artificial diets for the cocoa pod borer Conopomorpha cramerella, a major pest of cocoa plants, has undergone significant advancements. In this study, we present the success rates of two diet formulations, MM1 and MM4, which have been progressively improved. Nutritional composition analysis revealed that the MM1 diet differed from the natural host, cocoa pods, in several aspects, including protein, carbohydrate, and vitamin C content. To address these differences, modifications were made to the diet compositions, leading to the MM4 diet version. These modifications resulted in improved diet quality and reduced contamination, leading to enhanced success rates in all stages of C. cramerella development. Larval development, pupation success rates, and adult emergence rates were significantly higher in the MM4 diet compared with the MM1 diet. Moreover, the duration of larval development and pupal stage decreased, while adult longevity increased with the MM4 diet. The overall development success of diet-reared insects from egg to adult was comparable with that of insects reared on cocoa pods. However, the cocoon formation, body length and fresh weight of the adults reared on the artificial diets were lower than those reared on cocoa pods. This diet formulation provides a promising approach for laboratory rearing of C. cramerella and opens avenues for further research and mass-rearing initiatives to mitigate the impact of this pest on cocoa production. Full article
Show Figures

Figure 1

11 pages, 6657 KiB  
Article
Optimization of Paenibacillus sp. NMA1017 Application as a Biocontrol Agent for Phytophthora tropicalis and Moniliophthora roreri in Cacao-Growing Fields in Chiapas, Mexico
by Irene Gómez-de la Cruz, Belén Chávez-Ramírez, Carlos Hugo Avendaño-Arrazate, Yolanda Elizabeth Morales-García, Jesús Muñoz-Rojas and Paulina Estrada-de los Santos
Plants 2023, 12(12), 2336; https://doi.org/10.3390/plants12122336 - 15 Jun 2023
Cited by 3 | Viewed by 2090
Abstract
In Mexico, cacao production is endangered by pathogenic fungi, such as Phytophthora spp. and Moniliophthora rorei, that cause black pod rot and moniliasis, respectively. In this study the biocontrol agent Paenibacillus sp. NMA1017 was tested in cacao fields against the previous diseases. The [...] Read more.
In Mexico, cacao production is endangered by pathogenic fungi, such as Phytophthora spp. and Moniliophthora rorei, that cause black pod rot and moniliasis, respectively. In this study the biocontrol agent Paenibacillus sp. NMA1017 was tested in cacao fields against the previous diseases. The treatments applied were shade management, inoculation of the bacterial strain with or without an adherent, and use of chemical control. The statistical analysis showed that the incidence of black pod rot in tagged cacao trees diminished when the bacterium was applied (reduction of 44.24 to 19.11%). The same result was observed with moniliasis when the pods were tagged (reduction of 66.6 to 27%). The use of Paenibacillus sp. NMA1017 with an integrated management might be a solution to cacao diseases and to having a sustainable production of cacao in Mexico. Full article
Show Figures

Figure 1

14 pages, 630 KiB  
Article
Development of a Method for Detecting and Estimating Moniliophthora roreri Spore Loads Based on Spore Traps and qPCR
by Diana L. Jiménez-Zapata, Manuela Quiroga-Pérez, Manuela Quiroz-Yepes, Alejandro Marulanda-Tobón, Javier C. Álvarez and Sandra Mosquera-López
J. Fungi 2023, 9(1), 47; https://doi.org/10.3390/jof9010047 - 28 Dec 2022
Viewed by 2358
Abstract
Frosty pod rot, caused by Moniliophthora roreri, is the most damaging disease of cacao in Latin America and, to better comprehend its epidemiology, we must understand its dissemination and proliferation. However, we do not know how M. roreri spores loads fluctuate in [...] Read more.
Frosty pod rot, caused by Moniliophthora roreri, is the most damaging disease of cacao in Latin America and, to better comprehend its epidemiology, we must understand its dissemination and proliferation. However, we do not know how M. roreri spores loads fluctuate in time and space due to the lack of a reliable technique to quantify M. roreri spores in the fields. Therefore, we developed a method that relies on spore traps and qPCR to detect and quantify M. roreri spore loads. This study demonstrated that the qPCR protocol can detect down to 0.025 ng of M. roreri DNA and quantify between 0.006 ng and 60 ng. Moreover, it demonstrated that qPCR protocol can detect and quantify DNA extracted from spore suspension and spore traps containing at least 2.9 × 104 M. roreri spores. However, the variability of the estimates for spore samples was high. Finally, we described a spore-trap device designed to carry spore traps in the field. The qPCR protocol and spore-trap device here developed will help in the understanding of the M. roreri dissemination patterns since they can be used to assess the environmental loads of M. roreri spore in cacao fields. Full article
Show Figures

Figure 1

14 pages, 1749 KiB  
Article
Analysis of the Ricinodendron heudelotii × Theobroma cacao L. Interaction in Traditional Agroforestry Systems in Côte d’Ivoire
by Jean-Claude N’Zi, Jean-Parfait Kouadio Brou, Alban Antoine Kacou M’Bo, Wenceslas Affessi, Henri Kouadio Kouassi and Christophe Kouame
Horticulturae 2023, 9(1), 26; https://doi.org/10.3390/horticulturae9010026 - 23 Dec 2022
Cited by 2 | Viewed by 2532
Abstract
The objective of this study was to improve cacao (Theobroma cacao) production through its association with a woody species, such as Ricinodendron heudelotii, in western Côte d’Ivoire. To do this, a design of two transects (10 m and 20 m) [...] Read more.
The objective of this study was to improve cacao (Theobroma cacao) production through its association with a woody species, such as Ricinodendron heudelotii, in western Côte d’Ivoire. To do this, a design of two transects (10 m and 20 m) was installed around the species in 5 localities (Buyo, Duekoué, Guéyo, San-Pedro, and Soubré). The diameter at the breast height of the tree, the height, the number of fruits, the above biomass, and its carbon stock were measured. Results showed morphological variability of R. heudelotii according to the localities. The presence of the species within cacao trees reduces the rate of pod rot, stabilizes the rate of pods eaten away, and increases the biomass production and the carbon storage of cacao trees. The distance between the two species had no impact on the vigor and the yield of cacao trees. However, cacao density in the 10 m line was reduced compared to that of the 20 m. Therefore, the integration of R. heudelotii into cacao agroforestry systems could improve cacao production. That is why the reduction of cacao density, as well as the use of more suitable varieties of cacao, should be considered for the sustainability of this system. Full article
Show Figures

Figure 1

23 pages, 2407 KiB  
Review
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds
by Elodie Jean-Marie, Weiwen Jiang, Didier Bereau and Jean-Charles Robinson
Foods 2022, 11(24), 3966; https://doi.org/10.3390/foods11243966 - 8 Dec 2022
Cited by 7 | Viewed by 7588
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive [...] Read more.
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50–80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources. Full article
(This article belongs to the Special Issue The Health Benefits of Fruits and Vegetables - 2nd Edition)
Show Figures

Figure 1

12 pages, 2059 KiB  
Article
Sustainability of Cocoa (Theobroma cacao) Cultivation in the Mining District of Ponce Enríquez: A Trace Metal Approach
by Carolina Ramos, Jeny Ruales, José Luis Rivera-Parra, Masayuki Sakakibara and Ximena Díaz
Int. J. Environ. Res. Public Health 2022, 19(21), 14369; https://doi.org/10.3390/ijerph192114369 - 3 Nov 2022
Cited by 2 | Viewed by 4441
Abstract
Historically, cocoa (Theobroma cacao) has been one of Ecuador’s most important export crops. In the Ponce Enriquez district, artisanal and small gold mining (ASGM), and quarrying account for 42% of economic activities, while agriculture and livestock farming account for 30%, making [...] Read more.
Historically, cocoa (Theobroma cacao) has been one of Ecuador’s most important export crops. In the Ponce Enriquez district, artisanal and small gold mining (ASGM), and quarrying account for 42% of economic activities, while agriculture and livestock farming account for 30%, making the analysis of their synergy and interaction key to understanding the long term viability of the different activities. In this study, we evaluated the concentration of potentially toxic metals in different parts of the cocoa plant and fruit, in relation to mining activities within the area. Gold extraction generates pollution, including potentially toxic metals such as mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu), lead (Pb) and zinc (Zn). In order to understand the mobility of these metals within the cocoa plant and fruit, the analysis was conducted separately for leaves, pod, husk and cocoa bean. Concentrations of the target metals in the different plant parts and soil were measured using ICP-MS, and the mobility and risk factors were calculated using the transfer factor (TF) and the risk ratio (HQ). The results suggest that Zn, Cd and Cu are indeed moving from the soil to cocoa leaves and beans. Furthermore, the results show that the concentrations of toxic metals in the different parts of the cocoa fruit and plant, particularly in the cocoa bean, which is used for chocolate manufacture, are not higher than those regulated by FAO food standards, as is the case of Cd, which is limited to 0.2 mg Cd/kg and in the samples analyzed does not exceed this limit. Even though the concentration of these metals does not exceed the safety standard, the presence of these potentially hazardous metals, and the fact they are absorbed by this important local crop, are worrying for the long-term sustainability of cocoa cultivation in the area. Therefore, it is fundamental to monitor the local environment, understanding the distribution of heavy metal pollution, and work with the local authorities in landscape management to minimize the exposure of crops to ASGM pollution. Full article
Show Figures

Figure 1

13 pages, 1923 KiB  
Article
Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks
by Candelaria Tejada-Tovar, Angel Villabona-Ortíz and Ángel González-Delgado
Materials 2022, 15(19), 6937; https://doi.org/10.3390/ma15196937 - 6 Oct 2022
Cited by 11 | Viewed by 3265
Abstract
The serious toxicological effects of heavy metal ions in aquatic ecosystems have motivated the search for alternatives to reduce contamination of water sources from industrial wastewater. In this work, continuous adsorption of nickel, cadmium, and lead was assessed using a packed bed column [...] Read more.
The serious toxicological effects of heavy metal ions in aquatic ecosystems have motivated the search for alternatives to reduce contamination of water sources from industrial wastewater. In this work, continuous adsorption of nickel, cadmium, and lead was assessed using a packed bed column filled with Cocoa (Theobroma cacao L.) pod husks widely available in the northern region of Colombia. The physicochemical characterization of the agricultural biomass was performed to quantify its chemical composition by bromatological, FT-IR, and energy-dispersive X-ray spectroscopy (EDS). The breakthrough curves were constructed for all heavy metal ions with bed depth of 4 and 7.5 cm, taking aliquots at 10, 30, 60, 90, 120, 150, 180, 210, 240, and 270 min. Moreover, experimental data were fitted to adsorption models in continuous mode to predict adsorptive performance (Adams–Bohart, Thomas, and Yoon–Nelson). For the FT-IR analysis of biomass before and after adsorption, the most representative bands occur around 3200–3900 cm−1 attributed to the presence of hydroxyl groups, showing the destruction of the peaks of lignocellulosic materials. The breakthrough curves revealed that for a 7.5 cm bed, adsorption performance reported the following order of promising results: Pb2+ > Ni2+ > Cd2+; while for a 4 cm bed, Pb2+ > Ni2+. The mechanism of adsorption of the evaluated metals onto cocoa pod husk was attributed to cationic exchange and microprecipitation due to the presence of Ca, K, and Si in the structure of the bio-adsorbent. Finally, the continuous adsorption was modeled under the mathematical expressions of Adams–Bohart, Thomas, and Yoon–Nelson reporting good fitting with correlation coefficient above 0.95. Full article
(This article belongs to the Special Issue Advanced Materials for Water Remediation)
Show Figures

Figure 1

Back to TopTop