Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = cadherin peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2230 KB  
Article
Baricitinib and Infliximab Mitigate the Endothelial-to-Mesenchymal Transition (EndMT) Induced by Cytokines in HUVECs
by Amelia Barilli, Rossana Visigalli, Giulia Recchia Luciani, Eleonora Crescini, Valeria Dall’Asta and Bianca Maria Rotoli
Int. J. Mol. Sci. 2025, 26(17), 8672; https://doi.org/10.3390/ijms26178672 - 5 Sep 2025
Viewed by 1632
Abstract
Endothelial-to-mesenchymal transition (EndMT) is associated with various pathologies including cardiovascular, inflammatory, and fibrotic diseases or neoplasia. Concerning COVID-19, multiple organ dysfunctions and long COVID syndrome are mediated by microvascular damage and, recently, the role of SARS-CoV-2 peptide fragments in the induction of EndMT [...] Read more.
Endothelial-to-mesenchymal transition (EndMT) is associated with various pathologies including cardiovascular, inflammatory, and fibrotic diseases or neoplasia. Concerning COVID-19, multiple organ dysfunctions and long COVID syndrome are mediated by microvascular damage and, recently, the role of SARS-CoV-2 peptide fragments in the induction of EndMT was demonstrated. Here, we investigated the immune-mediated effects of Spike S1 of SARS-CoV-2 on EndMT and demonstrated that cytokines secreted by S1-activated macrophages, mainly TNFα + IFNγ, also induce the phenotypical switch in HUVECs. In particular, a loss of the typical cobblestone morphology is observed, along with a huge reduction in endothelial adhesion molecules, such as vWF, CD31, and VE-cadherin, and a concomitant acquisition of mesenchymal markers, such as N-cadherin and FSP1 protein. In addition, the combined use of the drug infliximab, targeting TNFα, and baricitinib, an inhibitor of the JAK-STAT pathway, hinders the phenotypical changes by restoring the proper expression of endothelial markers. The protective effect of these drugs is evident not only when they are added to the culture medium together with the trigger, but also when added later, i.e., once EndMT has been started. These findings reinforce the role of COVID-19-associated cytokine storm in endothelial dysfunction and in the onset of the fibrotic process and sustain the clinical relevance of infliximab and baricitinib for the prevention of vascular damage. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

23 pages, 8915 KB  
Article
Annexin A1 Is Involved in the Antitumor Effects of 5-Azacytidine in Human Oral Squamous Carcinoma Cells
by Nunzia Novizio, Raffaella Belvedere, Mariangela Palazzo, Silvia Varricchio, Francesco Merolla, Stefania Staibano, Gennaro Ilardi and Antonello Petrella
Cancers 2025, 17(7), 1058; https://doi.org/10.3390/cancers17071058 - 21 Mar 2025
Viewed by 2824
Abstract
Background: the treatment of squamous cell carcinomas of the oral cavity (OSCCs) is limited by the lack of reliable diagnostic/prognostic, and predictive markers, as well as by intrinsic tumor cell heterogeneity. 5-azacytidine (5-AZA) offers opportunities for cancer cell reprogramming to develop new target-specific [...] Read more.
Background: the treatment of squamous cell carcinomas of the oral cavity (OSCCs) is limited by the lack of reliable diagnostic/prognostic, and predictive markers, as well as by intrinsic tumor cell heterogeneity. 5-azacytidine (5-AZA) offers opportunities for cancer cell reprogramming to develop new target-specific treatments. The protein annexin A1 (ANXA1) is downregulated in head and neck squamous cell carcinoma (HNSCC), correlated with pathological differentiation grade. Objectives: this work aimed to further investigate the role of ANXA1 in OSCC progression based on 5-AZA activity. Methods: we used CAL27 and CAL33 cell lines, which differ in drug sensitivity and differentiation status. Results: CAL27 showed a higher expression of the stemness markers compared to CAL33 cells, but this positivity was lost after treatment with 5-AZA. This drug also decreased CAL27 cell motility, promoting a less aggressive phenotype. Moreover, 5-AZA increased ANXA1 expression only in CAL27. After siRNA-mediated downmodulation, we witnessed a significant rise in cell motility and the inversion of E-/N-cadherin expression, which was reverted again by 5-AZA. To investigate the role of exogenous ANXA1 derived from the tumor microenvironment, we treated CAL27 with Ac2-26, an ANXA1 mimetic peptide. Interestingly, we found that this peptide alone showed impacts similar to 5-AZA in reversing the aggressive phenotype. All these effects were not evidenced in CAL33 cells. Finally, to prove the loop of the exogenous protein, we detected increased expression of its receptors, formyl peptide receptors (FPRs), and their activation, leading to oncosuppressor effects. Conclusions: we propose that ANXA1 mediates the effects of 5-AZA only in poorly differentiated stemlike CAL27 cell lines. This suggests the relevance of ANXA1 as a diagnostic/prognostic biomarker in OSCCs, paving the way for personalized therapies to overcome treatment difficulties. Full article
Show Figures

Figure 1

15 pages, 2546 KB  
Article
Unraveling the Molecular Mechanisms of Synthetic Acetyl Hexapeptide in E-Cadherin Activation for Tissue Rejuvenation
by Nikoleta Topouzidou, Androulla N. Miliotou, Danai Nodaraki, Eleftheria Galatou, Christos Petrou and Yiannis Sarigiannis
Cosmetics 2025, 12(2), 48; https://doi.org/10.3390/cosmetics12020048 - 12 Mar 2025
Cited by 1 | Viewed by 2692
Abstract
Objective: Dermo-cosmetics have significantly advanced, focusing on innovative and effective products such as cosmeceuticals—cosmetics infused with bioactive ingredients for skin benefits. Synthetic peptides are prominent among these bioactive molecules, noted for their enhanced effects in cellular processes related to skin physiology. Specifically, the [...] Read more.
Objective: Dermo-cosmetics have significantly advanced, focusing on innovative and effective products such as cosmeceuticals—cosmetics infused with bioactive ingredients for skin benefits. Synthetic peptides are prominent among these bioactive molecules, noted for their enhanced effects in cellular processes related to skin physiology. Specifically, the glycoprotein E-cadherin plays a crucial role in cellular adhesion and has shown promise in wound healing studies, although its broader cellular functions remain underexplored. Despite their widespread use, many cosmetic peptides lack genetic validation of their effects. This study focuses on the synthetic, amphiphilic acetyl hexapeptide-1, aimed to possess wound healing and anti-aging properties, with a novel exploration of its molecular mechanisms, specifically its effect on the expression of the CDH-1 gene, which encodes E-cadherin—a key protein in cellular adhesion and wound healing. Methods: In this investigation, the acetyl hexapeptide-1 was synthesized in house, followed by cell culture assessment and molecular evaluation. Human hepatocytes HepG2 were exposed to the synthetic hexapeptide to assess cytotoxic effects and examine its impact on gene expression, specifically targeting the wound healing-associated gene CDH-1, as well as apoptosis-related genes BAX, Bcl-2, Caspase-9, and Cyclin D1. Results: No cytotoxic effects were observed in cell cultures. Gene expression analysis revealed a significant increase in E-cadherin expression, along with the NO modulation of apoptosis-related genes (BAX, Bcl-2, Caspase-9) and the cell cycle-related gene Cyclin D1. These findings suggest peptide’s role in enhancing cellular adhesion, without any cytotoxic effects. Conclusions: The findings of this study provide promising insights into the potential molecular properties of synthetic acetyl hexapeptide-1, implying its applicability in cosmeceuticals. These cosmetic peptides hold enormous potential and diverse applications not only within skincare. To fully understand their benefits and expand their scope, additional investigations are warranted to comprehensively explore their molecular mechanisms across a spectrum of applications. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

15 pages, 3149 KB  
Article
The Role of Beta-Defensin 2 in Preventing Preterm Birth with Chorioamnionitis: Insights into Inflammatory Responses and Epithelial Barrier Protection
by Sangho Yun, Shin-Hae Kang, Jiwon Ryu, Kyoungseon Kim, Keun-Young Lee, Jae Jun Lee, Ji Young Hong and Ga-Hyun Son
Int. J. Mol. Sci. 2025, 26(5), 2127; https://doi.org/10.3390/ijms26052127 - 27 Feb 2025
Viewed by 1123
Abstract
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, [...] Read more.
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, focusing on its regulation of inflammatory cytokines and its protective effect on the epithelial barrier. Our results show increased BD2 expression in chorioamnionitis, and Lipopolysaccharide (LPS)-induced inflammation increased BD2 release from hAECs in a dose- and time-dependent manner. BD2 treatment effectively modulated the inflammatory response by reducing pro-inflammatory cytokines (IL-6, IL-1β) and enhancing the release of the anti-inflammatory cytokine IL-10. Additionally, BD2 helps preserve epithelial barrier integrity by restoring E-cadherin expression and reducing Snail expression in inflamed hAECs. In an LPS-induced preterm birth mouse model, BD2 treatment delayed preterm delivery and reduced inflammatory cytokine levels. These results suggest that BD2 plays a protective role in preventing preterm birth by regulating inflammation and maintaining epithelial barrier function, highlighting its therapeutic potential for inflammation-related preterm birth. Full article
(This article belongs to the Special Issue Antimicrobial Peptides in Reproductive Health and Disease)
Show Figures

Figure 1

18 pages, 4300 KB  
Article
Angiotensin II Induces Vascular Endothelial Dysfunction by Promoting Lipid Peroxidation-Mediated Ferroptosis via CD36
by Qian Zhou, Ying Zhang, Wei Shi, Lu Lu, Jianglan Wei, Jinhan Wang, Hu Zhang, Yuepu Pu and Lihong Yin
Biomolecules 2024, 14(11), 1456; https://doi.org/10.3390/biom14111456 - 17 Nov 2024
Cited by 6 | Viewed by 2757
Abstract
Angiotensin II (Ang II) is an effective vasoconstriction peptide, a major effector molecule of the renin–angiotensin–aldosterone system (RAAS) and one of the important causes of endothelial dysfunction. Ferroptosis is considered to be involved in the occurrence and development of cardiovascular diseases. This study [...] Read more.
Angiotensin II (Ang II) is an effective vasoconstriction peptide, a major effector molecule of the renin–angiotensin–aldosterone system (RAAS) and one of the important causes of endothelial dysfunction. Ferroptosis is considered to be involved in the occurrence and development of cardiovascular diseases. This study is dedicated to exploring the role and mechanism of Ang II-induced ferroptosis in HUVECs and to finding molecular targets for vascular endothelial injury and dysfunction during the progression of hypertension. In this study, we found that with the increase in exposure concentration, the intracellular ROS content and apoptosis rate increased significantly, the NO release decreased significantly in the medium- and high-concentration groups and the ET-1 content in the high-concentration group increased significantly. The expression of ZO-1 protein was significantly decreased in the high-concentration group. The expression of p-eNOS, VE-cadherin and Occludin protein showed a dose-dependent downward trend, while the ICAM-1 protein showed an upward trend. Ang II caused lipid metabolism disorders in HUVECs, and the PL–PUFAs associated with ferroptosis were significantly increased. In addition, Ang II promoted a significant increase in intracellular free Fe2+ content and MDA and a significant decrease in GSH content. Furthermore, the expression of GPX4, SLC7A11 and SLC3A2 was down-regulated, the expression of ACSL4, LPCAT3 and ALOX15 was up-regulated, and the ratio of p-cPLA2/cPLA2 was increased. After the intervention of ferroptosis inhibitor Fer-1, the injury and dysfunction of HUVECs induced by Ang II were significantly rescued. Immunofluorescence results showed that the expression of CD36 showed a significant increasing trend and was localized in the cytoplasm. Over-expression of CD36 promoted Ang II-induced ferroptosis and endothelial dysfunction. In conclusion, Ang II induces the injury of HUVECs, decreases vascular diastole and endothelial barrier-related molecules, and increases vascular constriction and adhesion-related molecules, which may be related to CD36 and its mediated lipid peroxidation and ferroptosis signals. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 6910 KB  
Article
Poly(Epsilon-Lysine) Dendrons Inhibit Proliferation in HER2-Overexpressing SKBR3 Breast Cancer Cells at Levels Higher than the Low-Expressing MDA-MB-231 Phenotype and Independently from the Presentation of HER2 Bioligands in Their Structure
by Giordana M. S. Peregrino, Laila Kudsiova and Matteo Santin
Int. J. Mol. Sci. 2024, 25(22), 11987; https://doi.org/10.3390/ijms252211987 - 8 Nov 2024
Viewed by 1627
Abstract
Among the known breast cancers, the subtype with HER2 receptors-overexpressing cells is associated with a poor prognosis. The adopted monoclonal antibody Trastuzumab has improved clinical outcomes, but it is associated with drug resistance and relatively high costs. The present work adopted the peptide [...] Read more.
Among the known breast cancers, the subtype with HER2 receptors-overexpressing cells is associated with a poor prognosis. The adopted monoclonal antibody Trastuzumab has improved clinical outcomes, but it is associated with drug resistance and relatively high costs. The present work adopted the peptide solid-phase synthesis method to synthesise branched poly(ε-lysine) peptide dendrons with 8 branching arms integrating, at their carboxy terminal molecular root, either an arginine or the HER2 receptor-binding sequence LSYCCK or the scramble sequence CSCLYK. These dendrons were synthesised in quantities higher than 100 mg/batch and with a purity exceeding 95%. When tested with two types of breast cancer cells, the dendrons led to levels of inhibition in the HER2 receptor-overexpressing breast cancer cells (SKBR3) comparable to Trastuzumab and higher than breast cancer cells with low receptor expression (MDA-MB-231) where inhibition was more moderate. Noticeably, the presence of the amino acid sequence LSYCCK at the dendron molecular root did not appear to produce any additional inhibitory effect. This was demonstrated also when the scramble sequence CSCLYK was integrated into the dendron and by the lack of any antiproliferative effect by the control linear target sequence. The specific inhibitory effect on proliferation was finally proven by the absence of cytotoxicity and normal expression of the cell migration marker N-Cadherin. Therefore, the present study shows the potential of poly(ε-lysine) dendrons as a cost-effective alternative to Trastuzumab in the treatment of HER2-positive breast cancer. Full article
(This article belongs to the Special Issue Solid-Phase Peptides: Syntheses and Applications)
Show Figures

Figure 1

12 pages, 2150 KB  
Communication
Korean Red Ginseng Polysaccharides Enhance Intestinal IgA Production and Barrier Function via Peyer’s Patch Activation in Mice
by Sung Jin Kim, Hae-Kyung Lee, Ki Sung Kang, Mi-Gi Lee and Myoung-Sook Shin
Nutrients 2024, 16(22), 3816; https://doi.org/10.3390/nu16223816 - 7 Nov 2024
Cited by 3 | Viewed by 2098
Abstract
Background: Natural products are gaining attention for their potential benefits in gastrointestinal health. Plant-derived polysaccharides are essential for boosting intestinal immunity and maintaining gut homeostasis. This study investigated the effects of Korean red ginseng polysaccharides (KRG-P) on intestinal homeostasis including IgA and [...] Read more.
Background: Natural products are gaining attention for their potential benefits in gastrointestinal health. Plant-derived polysaccharides are essential for boosting intestinal immunity and maintaining gut homeostasis. This study investigated the effects of Korean red ginseng polysaccharides (KRG-P) on intestinal homeostasis including IgA and SCFA production and mucosal barrier integrity. Methods: Mice were orally administered KRG-P at doses of 50 mg/kg or 200 mg/kg for 10 days. Fecal IgA levels were measured on days 3, 5, and 11 and IgA from cultured Peyer’s patch cells from KRG-P-treated mice were analyzed. Additionally, mRNA and protein expression levels of α-defensin, lysozyme, and E-cadherin in the small intestine were examined. Short-chain fatty acids (SCFAs) content in the cecum was also assessed. Results: KRG-P-treated groups showed a significant increase in fecal IgA levels on days 5 and 11, with no notable change on day 3. Cultured Peyer’s patch cells from mice demonstrated heightened IgA production. Additionally, KRG-P administration upregulated α-defensin and lysozyme mRNA expression, along with elevated protein expression of E-cadherin, α-defensin, and lysozyme, in the small intestine. KRG-P treatment also led to increased cecal SCFA levels, including acetate, butyrate, and propionate. Conclusions: KRG-P may promote intestinal homeostasis and host defense mechanisms by activating immune cells in Peyer’s patches, stimulating IgA production, enhancing antimicrobial peptide expression, and modulating gut microbiota metabolism through increased SCFA production. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

23 pages, 3787 KB  
Article
Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR)
by Jimmy Ka-Wai Cheung, King-Kit Li, Lei Zhou, Chi-Ho To and Thomas Chuen Lam
Int. J. Mol. Sci. 2024, 25(19), 10644; https://doi.org/10.3390/ijms251910644 - 3 Oct 2024
Viewed by 1298
Abstract
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism [...] Read more.
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism in the early stages of myopia. In this study, a data-independent acquisition (SWATH-MS) was combined with targeted LC-ESI-MS/MS to identify and quantify the relative protein changes in the vitreous during the normal growth period (4, 7, 14, 21 and 28 days old) in the chick model. Chicks were raised under normal growing conditions (12/12 h Dark/light cycle) for 28 days, where ocular measurements, including refractive and biometric measurements, were performed on days 4 (baseline), 7, 14, 21 and 28 (n = 6 chicks at each time point). Extracted vitreous proteins from individual animals were digested and pooled into a left eye pool and a right pool at each time point for protein analysis. The vitreous proteome for chicks was generated using an information-dependent acquisition (IDA) method by combining injections from individual time points. Using individual pool samples, SWATH-MS was employed to quantify proteins between each time point. DEPs were subsequently confirmed in separate batches of animals individually on random eyes (n = 4) using MRMHR between day 7 and day 14. Refraction and vitreous chamber depth (VCD) were found to be significantly changed (p < 0.05, n = 6 at each time point) during the period. A comprehensive vitreous protein ion library was built with 1576 non-redundant proteins (22987 distinct peptides) identified at a 1% false discovery rate (FDR). A total of 12 up-regulated and 26 down-regulated proteins were found across all time points compared to day 7 using SWATH-MS. Several DEPs, such as alpha-fetoprotein, the cadherin family group, neurocan, and reelin, involved in structural and growth-related pathways, were validated for the first time using MRMHR under this experimental condition. This study provided the first comprehensive spectral library of the vitreous for chicks during normal growth as well as a list of potential growth-related protein biomarker candidates using SWATH-MS and MRMHR during the emmetropization period. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Disease 3.0)
Show Figures

Figure 1

17 pages, 2072 KB  
Article
Antioxidant and Anti-Atherosclerosis Activities of Hydrolyzed Jellyfish Collagen and Its Conjugate with Black Jelly Mushroom Extract
by Thunwa Binlateh, Pilaiwanwadee Hutamekalin, Soottawat Benjakul and Lalita Chotphruethipong
Foods 2024, 13(15), 2463; https://doi.org/10.3390/foods13152463 - 4 Aug 2024
Cited by 2 | Viewed by 2530
Abstract
Atherosclerosis, a noncommunicable disease caused by cholesterol plaque, can cause chronic diseases. The antiplatelet medicines used in its treatment can cause complications. Marine collagen peptides can be used as a natural atherosclerosis remedy. The present study investigated the preparation and characterization of hydrolyzed [...] Read more.
Atherosclerosis, a noncommunicable disease caused by cholesterol plaque, can cause chronic diseases. The antiplatelet medicines used in its treatment can cause complications. Marine collagen peptides can be used as a natural atherosclerosis remedy. The present study investigated the preparation and characterization of hydrolyzed collagen (HC) from jellyfish and its conjugation with black jelly mushroom extract (BJME). Their cytotoxicity and ability to prevent cholesterol-induced endothelial cell injury were also examined. HC was prepared using Alcalase or papain hydrolysis (0.2–0.4 units/g of dry matter (DM)). Higher yield, degree of hydrolysis, and antioxidant activities (AAs) were found in the HC obtained from Alcalase, especially at 0.4 units/g DM (A-0.4), compared to other processes (p < 0.05). Thus, A-0.4 was further conjugated with BJME (1–4%, w/w of HC). The HC-2%BJME conjugate showed the highest surface hydrophobicity and AAs compared to other samples. The FTIR spectra and size distribution also confirmed the conjugation between HC and BJME. When EA.hy926 endothelial cells were treated with HC or HC-2%BJME (25–1000 µg/mL), HC-2%BJME had no cytotoxicity, whereas HC at 1000 µg/mL induced cytotoxicity (p < 0.05). Both samples also exhibited protective ability against cholesterol-induced apoptosis and VE-cadherin downregulation of cells. Therefore, HC and conjugate could be natural agents for preventing atherosclerosis. Full article
Show Figures

Figure 1

29 pages, 8084 KB  
Article
Local, Sustained, and Targeted Co-Delivery of MEK Inhibitor and Doxorubicin Inhibits Tumor Progression in E-Cadherin-Positive Breast Cancer
by Paul M. Kuhn, Gabriella C. Russo, Ashleigh J. Crawford, Aditya Venkatraman, Nanlan Yang, Bartholomew A. Starich, Zachary Schneiderman, Pei-Hsun Wu, Thi Vo, Denis Wirtz and Efrosini Kokkoli
Pharmaceutics 2024, 16(8), 981; https://doi.org/10.3390/pharmaceutics16080981 - 25 Jul 2024
Cited by 2 | Viewed by 2407
Abstract
Effectively utilizing MEK inhibitors in the clinic remains challenging due to off-target toxicity and lack of predictive biomarkers. Recent findings propose E-cadherin, a breast cancer diagnostic indicator, as a predictor of MEK inhibitor success. To address MEK inhibitor toxicity, traditional methodologies have systemically [...] Read more.
Effectively utilizing MEK inhibitors in the clinic remains challenging due to off-target toxicity and lack of predictive biomarkers. Recent findings propose E-cadherin, a breast cancer diagnostic indicator, as a predictor of MEK inhibitor success. To address MEK inhibitor toxicity, traditional methodologies have systemically delivered nanoparticles, which require frequent, high-dose injections. Here, we present a different approach, employing a thermosensitive, biodegradable hydrogel with functionalized liposomes for local, sustained release of MEK inhibitor PD0325901 and doxorubicin. The poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) triblock co-polymer gels at physiological temperature and has an optimal degradation time in vivo. Liposomes were functionalized with PR_b, a biomimetic peptide targeting the α5β1 integrin receptor, which is overexpressed in E-cadherin-positive triple negative breast cancer (TNBC). In various TNBC models, the hydrogel-liposome system delivered via local injection reduced tumor progression and improved animal survival without toxic side effects. Our work presents the first demonstration of local, sustained delivery of MEK inhibitors to E-cadherin-positive tumors alongside traditional chemotherapeutics, offering a safe and promising therapeutic strategy. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Applications)
Show Figures

Figure 1

11 pages, 2787 KB  
Article
The Missense Variant in the Signal Peptide of α-GLA Gene, c.13 A/G, Promotes Endoplasmic Reticular Stress and the Related Pathway’s Activation
by Sabrina Bossio, Ida Daniela Perrotta, Danilo Lofaro, Daniele La Russa, Vittoria Rago, Renzo Bonofiglio, Rosita Greco, Michele Andreucci, Antonio Aversa, Antonella La Russa and Anna Perri
Genes 2024, 15(7), 947; https://doi.org/10.3390/genes15070947 - 19 Jul 2024
Cited by 3 | Viewed by 1861
Abstract
Anderson–Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could [...] Read more.
Anderson–Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could drive tissue damage, including endoplasmic reticulum (ER) stress and its related signaling pathway’s activation. We identified a new missense variant in the signal peptide of α-GLA gene, c.13 A/G, in a 55-year-old woman affected by chronic kidney disease, acroparesthesia, hypohidrosis, and deafness and exhibiting normal values of lysoGb3 and αGLA activity. The functional study of the new variant performed by its overexpression in HEK293T cells showed an increased protein expression of a key ER stress marker, GRP78, the pro-apoptotic BAX, the negative regulator of cell cycle p21, the pro-inflammatory cytokine, IL1β, together with pNFkB, and the pro-fibrotic marker, N-cadherin. Transmission electron microscopy showed signs of ER injury and intra-lysosomal inclusions. The proband’s PBMC exhibited higher expression of TGFβ 1 and pNFkB compared to control. Our findings suggest that the new variant, although it did not affect enzymatic activity, could cause cellular damage by affecting ER homeostasis and promoting apoptosis, inflammation, and fibrosis. Further studies are needed to demonstrate the variant’s contribution to cellular and tissue damage. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3772 KB  
Article
Plasma Proteins Associated with COVID-19 Severity in Puerto Rico
by Lester J. Rosario-Rodríguez, Yadira M. Cantres-Rosario, Kelvin Carrasquillo-Carrión, Alexandra Rosa-Díaz, Ana E. Rodríguez-De Jesús, Verónica Rivera-Nieves, Eduardo L. Tosado-Rodríguez, Loyda B. Méndez, Abiel Roche-Lima, Jorge Bertrán and Loyda M. Meléndez
Int. J. Mol. Sci. 2024, 25(10), 5426; https://doi.org/10.3390/ijms25105426 - 16 May 2024
Cited by 1 | Viewed by 2062
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in [...] Read more.
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21–71 years old were recruited in Puerto Rico from 2020–2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans. Full article
(This article belongs to the Special Issue Molecular Research and Insights into COVID-19)
Show Figures

Figure 1

13 pages, 11220 KB  
Article
Leptin Promotes Vasculogenic Mimicry in Breast Cancer Cells by Regulating Aquaporin-1
by Deok-Soo Han and Eun-Ok Lee
Int. J. Mol. Sci. 2024, 25(10), 5215; https://doi.org/10.3390/ijms25105215 - 10 May 2024
Cited by 4 | Viewed by 2202
Abstract
Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer [...] Read more.
Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM. Full article
(This article belongs to the Special Issue Cancer Biomarkers and Bioinformatics)
Show Figures

Figure 1

17 pages, 4768 KB  
Article
Revitalizing Skin Repair: Unveiling the Healing Power of Livisin, a Natural Peptide Calcium Mimetic
by Xuehui Zhan, Danni Wang, Hanfei Wang, Hui Chen, Xinyi Wu, Tao Li, Junmei Qi, Tianbao Chen, Di Wu and Yitian Gao
Toxins 2024, 16(1), 21; https://doi.org/10.3390/toxins16010021 - 31 Dec 2023
Cited by 1 | Viewed by 2440
Abstract
When the skin is damaged, accelerating the repair of skin trauma and promoting the recovery of tissue function are crucial considerations in clinical treatment. Previously, we isolated and identified an active peptide (livisin) from the skin secretion of the frog Odorrana livida. [...] Read more.
When the skin is damaged, accelerating the repair of skin trauma and promoting the recovery of tissue function are crucial considerations in clinical treatment. Previously, we isolated and identified an active peptide (livisin) from the skin secretion of the frog Odorrana livida. Livisin exhibited strong protease inhibitory activity, water solubility, and stability, yet its wound-healing properties have not yet been studied. In this study, we assessed the impact of livisin on wound healing and investigated the underlying mechanism contributing to its effect. Our findings revealed livisin effectively stimulated the migration of keratinocytes, with the underlying mechanisms involved the activation of CaSR as a peptide calcium mimetic. This activation resulted in the stimulation of the CaSR/E-cadherin/EGFR/ERK signaling pathways. Moreover, the therapeutic effects of livisin were partially reduced by blocking the CaSR/E-cadherin/EGFR/ERK signaling pathway. The interaction between livisin and CaSR was further investigated by molecular docking. Additionally, studies using a mouse full-thickness wound model demonstrated livisin could accelerate skin wound healing by promoting re-epithelialization and collagen deposition. In conclusion, our study provides experimental evidence supporting the use of livisin in skin wound healing, highlighting its potential as an effective therapeutic option. Full article
Show Figures

Figure 1

15 pages, 11287 KB  
Article
PEPITEM Treatment Ameliorates EAE in Mice by Reducing CNS Inflammation, Leukocyte Infiltration, Demyelination, and Proinflammatory Cytokine Production
by Mohammed Alassiri, Fahd Al Sufiani, Mohammed Aljohi, Asma Alanazi, Aiman Saud Alhazmi, Bahauddeen M. Alrfaei, Hasan Alnakhli, Yasser A. Alshawakir, Saleh M. Alharby, Abdullah Y. Almubarak, Mohammed Alasseiri, Nora Alorf and Mashan L. Abdullah
Int. J. Mol. Sci. 2023, 24(24), 17243; https://doi.org/10.3390/ijms242417243 - 8 Dec 2023
Cited by 2 | Viewed by 2524
Abstract
To investigate the effect of the therapeutic treatment of the immunopeptide, peptide inhibitor of trans-endothelial migration (PEPITEM) on the severity of disease in a mouse model of experimental autoimmune encephalomyelitis (EAE) as a model for human multiple sclerosis (MS), a series of experiments [...] Read more.
To investigate the effect of the therapeutic treatment of the immunopeptide, peptide inhibitor of trans-endothelial migration (PEPITEM) on the severity of disease in a mouse model of experimental autoimmune encephalomyelitis (EAE) as a model for human multiple sclerosis (MS), a series of experiments were conducted. Using C57BL/6 female mice, we dosed the PEPITEM in the EAE model via IP after observing the first sign of inflammation. The disease was induced using MOG35-55 and complete Freund’s adjuvants augmented with pertussis toxin. The EAE score was recorded daily until the end of the experiment (21 days). The histological and immunohistochemistry analysis was conducted on the spinal cord sections. A Western blot analysis was performed to measure the protein concentration of MBP, MAP-2, and N-Cadherin, and ELISA kits were used to measure IL-17 and FOXP3 in the serum and spinal cord lysate. The therapeutic treatment with PEPITEM reduced the CNS infiltration of T cells, and decreased levels of the protein concertations of MBP, MAP-2, and N-Cadherin were observed, in addition to reduced concertations of IL-17 and FOXP3. Using PEPITEM alleviated the severity of the symptoms in the EAE model. Our study revealed the potential of PEPITEM to control inflammation in MS patients and to reduce the harmful effects of synthetic drugs. Full article
Show Figures

Figure 1

Back to TopTop