Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (425)

Search Parameters:
Keywords = cadmium removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4527 KB  
Article
A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]
by Yun Deng, Sheng Wang, Lin Fu, Weijie Xue, Changbo Zhang, Jiawei Deng, Xin Luo, Yuyao Liu, Danyang Zhao and Gilles Mailhot
Toxics 2025, 13(9), 725; https://doi.org/10.3390/toxics13090725 - 28 Aug 2025
Viewed by 97
Abstract
Against the challenge of extreme lead (Pb) contamination (>15,000 ppm) in industrial polluted soils, where conventional agents fail to disrupt stable Pb–soil complexes—this study extends our prior cadmium (Cd) remediation research to validate amino acid ionic liquids (AAILs) for highly recalcitrant metals. Fifteen [...] Read more.
Against the challenge of extreme lead (Pb) contamination (>15,000 ppm) in industrial polluted soils, where conventional agents fail to disrupt stable Pb–soil complexes—this study extends our prior cadmium (Cd) remediation research to validate amino acid ionic liquids (AAILs) for highly recalcitrant metals. Fifteen AAILs were screened via batch washing, with [Met][NO3] (methionine-based) demonstrating the highest Pb removal efficiency. Single-factor optimization revealed that under the conditions of 0.8 mol/L, 6:1 liquid–soil ratio, 60 min, 85.4% Pb was removed from severely contaminated soil by [Met][NO3]. Kinetic analysis using four common models showed that the second-order kinetic equation provided the best fit, indicating that Pb removal was predominantly driven by chemical reactions such as complexation or ion exchange. After washing, the contents of various Pb species were significantly reduced, thereby mitigating environmental risks. Notably, no substantial changes in soil texture were observed. However, a marked increase in organic matter content was detected, accompanied by decreases in soil pH and mineral element concentrations. Analysis of soil mineral composition, functional groups, and chemical speciation revealed that [Met][NO3] primarily facilitated Pb removal through ion-exchange and coordination reactions. This study establishes [Met][NO3] as a green agent with dual efficacy: it achieves high-efficiency remediation of severely Pb-contaminated soil while ensuring environmental sustainability, thus highlighting its potential for practical application. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

18 pages, 4673 KB  
Article
Effect of Iron–Carbon–Zeolite Substrate Configuration on Cadmium Removal in Vertical-Flow Constructed Wetlands
by Mengyi Li, Shiyu Chen, Jundan Chen, Naifu Zhou and Guanlong Yu
Separations 2025, 12(8), 223; https://doi.org/10.3390/separations12080223 - 21 Aug 2025
Viewed by 229
Abstract
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland [...] Read more.
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland (TF-CW), a zeolite–iron–carbon constructed wetland (FT-CW), and an iron–carbon–zeolite mixed constructed wetland (H-CW), to investigate the purification performance and mechanisms of constructed wetlands for cadmium-containing wastewater (0~6 mg/L). The results demonstrated that iron–carbon–zeolite composite substrates significantly enhanced Cd2+ removal efficiency (>99%) through synergistic redox-adsorption mechanisms, where the iron–carbon substrate layer dominated Fe-Cd co-precipitation, while the zeolite layer achieved short-term cadmium retention through ion-exchange adsorption. FT-CW exhibited superior NH4+-N removal efficiency (77.66%~92.23%) compared with TF-CW (71.45%~88.05%), while iron–carbon micro-electrolysis effectively inhibited NO3-N accumulation (<0.1 mg/L). Under cadmium stress, Typha primarily accumulated cadmium through its root systems (>85%) and alleviated oxidative damage by dynamically regulating antioxidative enzyme activity, with the superoxide dismutase (SOD) peak occurring at 3 mg/L Cd2+ treatment. Microbial community analysis revealed that iron–carbon substrates promoted the relative abundance of Bacteroidota and Patescibacteria as well as the enrichment of Saccharimonadales, Thauera, and Rhodocyclaceae (genera), enhancing system stability. This study confirms that iron–carbon–zeolite CWs provide an efficient and sustainable technological pathway for heavy metal-contaminated water remediation through multidimensional mechanisms of “chemical immobilization–plant enrichment–microbial metabolism”. Full article
Show Figures

Figure 1

16 pages, 277 KB  
Review
Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis
by Vasiliki Keramari and Stella Girousi
Chemosensors 2025, 13(8), 313; https://doi.org/10.3390/chemosensors13080313 - 17 Aug 2025
Viewed by 492
Abstract
This review examines the emerging role of manganese-based nanoparticles (Mn-NPs) in detecting heavy metal pollutants in environmental matrices. Heavy metals such as cadmium, lead, zinc, and copper pose serious environmental and health concerns due to their tendency to persist in ecosystems and accumulate [...] Read more.
This review examines the emerging role of manganese-based nanoparticles (Mn-NPs) in detecting heavy metal pollutants in environmental matrices. Heavy metals such as cadmium, lead, zinc, and copper pose serious environmental and health concerns due to their tendency to persist in ecosystems and accumulate in living organisms. As a result, there is a growing need for reliable methods to detect and remove these pollutants. Manganese nanoparticles offer unique advantages that scientists could consider as replacing other metal nanoparticles, which may be more expensive or more toxic. The physicochemical properties of Mn-NPs—including their multiple oxidation states, magnetic susceptibility, catalytic capabilities, and semiconductor conductivity—enable the development of multi-modal sensing platforms with exceptional sensitivity and selectivity. While Mn-NPs exhibit inherently low electrical conductivity, strategies such as transition metal doping and the formation of composites with conductive materials have successfully addressed this limitation. Compared to noble metal nanoparticles (Au, Ag, Pd) and other base metal nanoparticles (Bi, Fe3O4), Mn-NPs demonstrate competitive performance without the drawbacks of high cost, complex synthesis, poor distribution control, or significant aggregation. Preliminary studies retrieved from the Scopus database highlight promising applications of manganese-based nanomaterials in electrochemical sensing of heavy metals, with recent developments showing detection limits in the sub-ppb range. Future research directions should focus on addressing challenges related to scalability, cost-effectiveness, and integration with existing water treatment infrastructure to accelerate the transition from laboratory findings to practical environmental applications. Full article
25 pages, 9730 KB  
Article
Sustainable Synthesis and Dual-Function Sorption of Carbonated Hydroxyapatite for Cadmium and Nitrate Removal
by Cristina Rodica Dumitrescu, Monica Matei, György Deák, Mădălina Boboc, Elena Holban and Florina Diana Gheorghe
Int. J. Mol. Sci. 2025, 26(16), 7766; https://doi.org/10.3390/ijms26167766 - 11 Aug 2025
Viewed by 317
Abstract
Nitrate (NO3) and cadmium (Cd2+) are common water pollutants with distinct chemical behaviors, often requiring different removal strategies. This study presents a low-cost synthesis of carbonated hydroxyapatite nanopowder (cHA), Ca5(PO4)3-y(CO3) [...] Read more.
Nitrate (NO3) and cadmium (Cd2+) are common water pollutants with distinct chemical behaviors, often requiring different removal strategies. This study presents a low-cost synthesis of carbonated hydroxyapatite nanopowder (cHA), Ca5(PO4)3-y(CO3)y(OH) (y = 0.13–0.17), using eggshell waste as a calcium precursor, aimed at removing both NO3 and Cd2+ from wastewater. SEM and TEM analyses revealed a porous nanostructure with an average particle size of 13.53 ± 6.43 nm and a specific surface area of 7.568 m2/g. Adsorption experiments were conducted under varying conditions, including contact time (0.3–3 h), dosage (0.3–2 g/L), initial concentrations (10–100 mg/L for NO3; 5–15 mg/L for Cd2+), and temperature (22 and 50 ± 2 °C). Cd2+ removal reached up to 99% at pH 2–4.5, while NO3 removal peaked at 38% in competitive systems, within 30 min. In single-ion systems, maximum nitrate uptake was 19.14 mg/g at 50 °C. Characterization using FT-IR, EDS, and XRD (with Rietveld refinement) confirmed carbonate B-type substitution and structural changes due to ion exchange and chemisorption. The results demonstrate that cHA derived from food waste is an efficient and sustainable sorbent, particularly for cadmium removal in contaminated water. Full article
(This article belongs to the Special Issue Research of Hydroxyapatite-Based Materials and Their Applications)
Show Figures

Figure 1

14 pages, 1796 KB  
Article
Effect of Stubble Height on Cadmium Removal Potential of Removed Straw
by Yanjiao Dai, Min Song, Yuling Liu, Ying Zhang, Jian Zhu and Hua Peng
Sustainability 2025, 17(15), 7123; https://doi.org/10.3390/su17157123 - 6 Aug 2025
Viewed by 249
Abstract
Straw removal is a method used to reduce cadmium (Cd) concentration in contaminated farmland. Experiments in Hunan Province tested different stubble heights (0, 15, 30, 45 cm) in three Cd-polluted paddy fields with different contamination levels. The results showed that lower stubble heights [...] Read more.
Straw removal is a method used to reduce cadmium (Cd) concentration in contaminated farmland. Experiments in Hunan Province tested different stubble heights (0, 15, 30, 45 cm) in three Cd-polluted paddy fields with different contamination levels. The results showed that lower stubble heights resulted in larger straw biomass and more Cd removed from the field, while the residual biomass and Cd returned to the field decreased accordingly. At stubble heights of 0, 15, 30, and 45 cm, the removed straw biomass accounted for 100%, 69.19%, 48.84%, and 28.17% of the total straw biomass, respectively. The corresponding Cd removal amounts were 12.89, 7.18, 4.18, and 1.83 g ha−1, which constituted 100%, 54.06%, 29.85%, and 12.54% of the total Cd accumulation in straw for the season, respectively. According to the fitted curve, the biomass of returned and removed straw was equal at a stubble height of 31 cm, while at 23 cm, the Cd return and removal amounts were balanced. Rice varieties Huanghuazhan and Nongxiang 42 had better Cd removal but risked grain Cd exceeding limits. Since Cd concentration in straw determines removal efficiency, varieties with high straw Cd accumulation and low grain Cd are more suitable for remediation, rather than high-Cd-accumulating types. Full article
Show Figures

Figure 1

17 pages, 9519 KB  
Article
Lead Recovery from Flue Dust by Using Ultrasonic-Enhanced Hydrogen Peroxide Water Washing
by Tian Wang, Yuxi Xie, Phan Duc Lenh, Thiquynhxuan Le and Libo Zhang
Recycling 2025, 10(4), 150; https://doi.org/10.3390/recycling10040150 - 1 Aug 2025
Viewed by 324
Abstract
An ultrasonic-enhanced hydrogen peroxide water-washing process was developed to recover lead from raw flue dust (RFD) under neutral conditions. At optimal parameters (40 °C, 30 min, 4 mL H2O2, liquid-to-solid ratio 2:1, 240 W ultrasound), the Pb mass fraction [...] Read more.
An ultrasonic-enhanced hydrogen peroxide water-washing process was developed to recover lead from raw flue dust (RFD) under neutral conditions. At optimal parameters (40 °C, 30 min, 4 mL H2O2, liquid-to-solid ratio 2:1, 240 W ultrasound), the Pb mass fraction in the solid residue increased from 41.68% in the RFD to 68.11%, accompanied by a Pb recovery rate of 97.1%. These values are significantly higher than those obtained under identical conditions without ultrasound (64.07% and 95.93%, respectively). Ultrasound promotes de-agglomeration and generates •OH radicals that accelerate the oxidation of PbSO3 to insoluble PbSO4 while concurrently removing impurity cadmium. This research offers a green and efficient alternative to traditional lead recovery methods, fostering sustainable development in the metallurgical industry. Full article
Show Figures

Figure 1

24 pages, 5075 KB  
Article
Automated Machine Learning-Based Prediction of the Effects of Physicochemical Properties and External Experimental Conditions on Cadmium Adsorption by Biochar
by Shuoyang Wang, Xiangyu Song, Jicheng Duan, Shuo Li, Dangdang Gao, Jia Liu, Fanjing Meng, Wen Yang, Shixin Yu, Fangshu Wang, Jie Xu, Siyi Luo, Fangchao Zhao and Dong Chen
Water 2025, 17(15), 2266; https://doi.org/10.3390/w17152266 - 30 Jul 2025
Viewed by 426
Abstract
Biochar serves as an effective adsorbent for the heavy metal cadmium, with its performance significantly influenced by its physicochemical properties and various environmental features. Traditional machine learning models, though adept at managing complex multi-feature relationships, rely heavily on expertise in feature engineering and [...] Read more.
Biochar serves as an effective adsorbent for the heavy metal cadmium, with its performance significantly influenced by its physicochemical properties and various environmental features. Traditional machine learning models, though adept at managing complex multi-feature relationships, rely heavily on expertise in feature engineering and hyperparameter optimization. To address these issues, this study employs an automated machine learning (AutoML) approach, automating feature selection and model optimization, coupled with an intuitive online graphical user interface, enhancing accessibility and generalizability. Comparative analysis of four AutoML frameworks (TPOT, FLAML, AutoGluon, H2O AutoML) demonstrated that H2O AutoML achieved the highest prediction accuracy (R2 = 0.918). Key features influencing adsorption performance were identified as initial cadmium concentration (23%), stirring rate (14.7%), and the biochar H/C ratio (9.7%). Additionally, the maximum adsorption capacity of the biochar was determined to be 105 mg/g. Optimal production conditions for biochar were determined to be a pyrolysis temperature of 570–800 °C, a residence time of ≥2 h, and a heating rate of 3–10 °C/min to achieve an H/C ratio of <0.2. An online graphical user interface was developed to facilitate user interaction with the model. This study not only provides practical guidelines for optimizing biochar but also introduces a novel approach to modeling using AutoML. Full article
Show Figures

Figure 1

20 pages, 4676 KB  
Article
Adsorption of Pb2+ and Cd2+ from Aqueous Solutions by Porous Carbon Foam Derived from Biomass Phenolic Resin
by Jianwei Ling, Yu Gao, Ruiling Wang, Shiyu Lu, Xuemei Li, Shouqing Liu and Jianxiang Liu
Int. J. Mol. Sci. 2025, 26(15), 7302; https://doi.org/10.3390/ijms26157302 - 28 Jul 2025
Viewed by 326
Abstract
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and [...] Read more.
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and Cd2+ from water. The synthesis involved partially substituting phenol with the liquefaction product of bamboo powder, followed by modification with a silane coupling agent (KH560) and foaming with n-hexane-loaded activated carbon (H/AC). The prepared carbon foam was comprehensively characterized, and its adsorption performance and mechanism for Pb2+ and Cd2+ in aqueous solution were investigated. The results showed that M-CF possessed a uniform and well-developed spherical pore structure and demonstrated excellent removal capacity for Cd2+ and Pb2+. The adsorption process conformed to the Sips isotherm model and the pseudo-second-order kinetic equation, with maximum adsorption capacities of 22.15 mg·g−1 and 61.59 mg·g−1 for Cd2+ and Pb2+, respectively. Mechanistic analysis revealed that the removal of Cd2+ and Pb2+ was a result of the synergistic effect of physisorption and chemisorption, accompanied by complexation. Furthermore, precipitates formed during the adsorption process were found to be mainly composed of hydroxides, carbonates, and PbS. This research demonstrates the efficacy of carbon foam prepared from bamboo powder waste as a partial phenol substitute for the efficient removal of Pb2+ and Cd2+ from water, thus expanding the preparation pathways for novel heavy metal adsorption materials. Full article
Show Figures

Figure 1

17 pages, 2863 KB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 534
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

18 pages, 2652 KB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 312
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

13 pages, 710 KB  
Article
A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China
by Yinhua Guo, Wei Liu, Lixiong Zeng, Liwen Qiu, Di Wu, Hao Wen, Rui Yuan, Dingjun Zhang, Rongbin Tang and Zhan Chen
Plants 2025, 14(14), 2202; https://doi.org/10.3390/plants14142202 - 16 Jul 2025
Viewed by 357
Abstract
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were [...] Read more.
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were collected from an abandoned coal mine and adjacent pristine natural areas within the dam-adjacent section of the Three Gorges Reservoir Area to establish three soil treatment groups: unpolluted soil (T1, 0.18 mg·kg−1 Cd), a 1:1 mixture of contaminated and unpolluted soil (T2, 0.35 mg·kg−1 Cd), and contaminated coal mine soil (T3, 0.54 mg·kg−1 Cd). This study aimed to investigate the growth status of plants, Cd accumulation and translocation characteristics, and the relationship between them and soil environmental factors. Woody plants exhibited significant advantages in aboveground biomass accumulation. Under T3 treatment, the Cd extraction amount of S. babylonica (224.93 mg) increased by about 36 times compared to T1, and the extraction efficiency (6.42%) was significantly higher than other species. Among the herbaceous species, A. argyi showed the maximum Cd extraction amount (66.26 mg) and extraction efficiency (3.11%) during T2 treatment. While A. hypochondriacus exhibited a trend of increasing extraction amount but decreasing extraction efficiency with increasing concentration. With the exception of S. babylonica under T1 treatment (BCF = 0.78), the bioconcentration factor was greater than 1 in both woody (BCF = 1.39–6.42) and herbaceous species (BCF = 1.39–3.11). However, herbaceous plants demonstrated significantly higher translocation factors (TF = 1.58–3.43) compared to woody species (TF = 0.31–0.87). There was a significant negative correlation between aboveground phosphorus (P) content and root Cd (p < 0.05), while underground nitrogen (N) content was positively correlated to aboveground Cd content (p < 0.05). Soil total N and available P were significantly positively correlated with plant Cd absorption, whereas total potassium (K) showed a negative correlation. This study demonstrated that woody plants can achieve long-term remediation through biomass advantages, while herbaceous plants, with their high transfer efficiency, are suitable for short-term rotation. In the future, it is suggested to conduct a mixed planting model of woody and herbaceous plants to remediate Cd-contaminated soils in the tailing areas of reservoir areas. This would synergistically leverage the dual advantages of root retention and aboveground removal, enhancing remediation efficiency. Concurrent optimization of soil nutrient management would further improve the Cd remediation efficiency of plants. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 2629 KB  
Article
SDG 6 in Practice: Demonstrating a Scalable Nature-Based Wastewater Treatment System for Pakistan’s Textile Industry
by Kamran Siddique, Aansa Rukya Saleem, Muhammad Arslan and Muhammad Afzal
Sustainability 2025, 17(13), 6226; https://doi.org/10.3390/su17136226 - 7 Jul 2025
Viewed by 529
Abstract
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents [...] Read more.
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents routinely discharged into rivers and agricultural lands despite stringent National Environmental Quality Standards (NEQS). This study presents a pilot-scale case from Faisalabad’s Khurrianwala industrial zone, where a decentralized, nature-based bioreactor was piloted to bridge the gap between policy and practice. The system integrates four treatment stages—anaerobic digestion (AD), floating treatment wetland (FTW), constructed wetland (CW), and sand filtration (SF)—and was further intensified via nutrient amendment, aeration, and bioaugmentation with three locally isolated bacterial strains (Acinetobacter junii NT-15, Pseudomonas indoloxydans NT-38, and Rhodococcus sp. NT-39). The fully intensified configuration achieved substantial reductions in total dissolved solids (TDS) (46%), total suspended solids (TSS) (51%), chemical oxygen demand (COD) (91%), biochemical oxygen demand (BOD) (94%), nutrients, nitrogen (N), and phosphorus (P) (86%), sulfate (26%), and chloride (41%). It also removed 95% iron (Fe), 87% cadmium (Cd), 57% lead (Pb), and 50% copper (Cu) from the effluent. The bacterial inoculants persist in the system and colonize the plant roots, contributing to stable bioremediation. The treated effluent met the national environmental quality standards (NEQS) discharge limits, confirming the system’s regulatory and ecological viability. This case study demonstrates how nature-based systems, when scientifically intensified, can deliver high-performance wastewater treatment in industrial zones with limited infrastructure—offering a replicable model for sustainable, SDG-aligned pollution control in the Global South. Full article
(This article belongs to the Special Issue Progress and Challenges in Realizing SDG-6 in Developing Countries)
Show Figures

Figure 1

28 pages, 829 KB  
Systematic Review
Toxic Metal Content in Deciduous Teeth: A Systematic Review
by Ireneusz Zawiślak, Sylwia Kiryk, Jan Kiryk, Agnieszka Kotela, Julia Kensy, Mateusz Michalak, Jacek Matys and Maciej Dobrzyński
Toxics 2025, 13(7), 556; https://doi.org/10.3390/toxics13070556 - 30 Jun 2025
Viewed by 628
Abstract
Deciduous teeth accumulate toxic metals until fully mineralized, making them a stable biological matrix for assessing chronic exposure during fetal and early postnatal life. Their metal content is influenced by environmental factors (e.g., industrial areas, mining sites) and individual factors (e.g., maternal diet, [...] Read more.
Deciduous teeth accumulate toxic metals until fully mineralized, making them a stable biological matrix for assessing chronic exposure during fetal and early postnatal life. Their metal content is influenced by environmental factors (e.g., industrial areas, mining sites) and individual factors (e.g., maternal diet, early nutrition, passive smoking). The aim of this study was to evaluate the toxic metal content in deciduous teeth and to identify factors contributing to its accumulation, as well as possible health implications. A systematic review was conducted in accordance with the PRISMA guidelines and following the PICO framework. Quality assessment was assessed using the Joanna Briggs Institute (JBI) checklist for quasi-experimental studies. The literature search was carried out in the PubMed, Scopus, and Web of Science databases using the following keywords: deciduous, milk, primary, decidua, teeth, dentition, heavy metal, toxic metals. A total of 134 articles were initially identified, with 95 remaining after duplicate removal. After screening, 75 articles were excluded: 71 did not meet the inclusion criteria, 3 were not available in English, and 1 lacked full-text access. Ultimately, 20 studies were included in the review. Toxic metal concentrations were determined using various analytical techniques, mainly inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Higher levels of metals, especially lead, were observed in the teeth of children residing in industrial areas, near mines, or in regions affected by armed conflict. Although two out of five studies indicated a possible link between fathers’ smoking habits and elevated lead concentrations, no definitive relationship was established between secondhand smoke exposure and the levels of lead and cadmium found in dental tissue. Similarly, no definitive relationship was identified between mercury and lead content and the prevalence of autism. However, lower manganese levels were associated with the presence of autistic traits, weaker verbal performance, and reduced memory capacity. In conclusion, deciduous teeth represent a valuable biological material for assessing chronic prenatal and early postnatal exposure to toxic metals, which may serve as a starting point for further research into diseases of unknown etiology, such as autism, and in the future may have clinical significance in their prevention and treatment. And it is also important for monitoring environmental pollution levels. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

21 pages, 2421 KB  
Article
Biosorption and Regeneration Studies for Cu (II) and Cd (II) Removal from Industrial Effluents Using Orange Peel and Composite Adsorbents
by Ahmed A. Bhran, Srinivas Tadepalli, Kasibatla S. R. Murthy and AbdulAziz A. AlGhamdi
Processes 2025, 13(7), 1972; https://doi.org/10.3390/pr13071972 - 22 Jun 2025
Viewed by 970
Abstract
This study investigates the adsorption and desorption efficiencies of Cu (II) and Cd (II) from industrial effluents using orange peel powder and a newly developed mixed adsorbent composed of equal parts of activated charcoal (AC) and bone charcoal (BC). The mixed adsorbent (AC [...] Read more.
This study investigates the adsorption and desorption efficiencies of Cu (II) and Cd (II) from industrial effluents using orange peel powder and a newly developed mixed adsorbent composed of equal parts of activated charcoal (AC) and bone charcoal (BC). The mixed adsorbent (AC + BC) exhibited significantly higher removal efficiencies for both copper and cadmium metal ions compared to orange peel powder. This can be attributed to the high surface area of AC and the negative surface charge of BC, resulting in a synergistic adsorption effect. Batch adsorption experiments were conducted in an orbital shaker at 150–180 rpm for 60 min, followed by thorough rinsing to remove any residual metal ions. The optimal pH for maximum adsorption of Cu (II) and Cd (II) was found to be 6. The effects of adsorbent dosage (ranging from 0.5 to 5 g/L) and contact time (ranging from 15 min to 4 h) on adsorption performance were systematically studied. Regeneration experiments using 0.2 M HCl demonstrated that the adsorption of Cu (II) and Cd (II) on the mixed adsorbent was highly reversible, achieving desorption efficiencies of 90% and 94%, respectively. Notably, Cd (II) consistently exhibited higher desorption rates across all tested dosages. These results confirm the potential of the proposed adsorbent and regeneration strategy for efficient and economical removal of heavy metals from industrial wastewater. Full article
(This article belongs to the Special Issue New Research on Adsorbent Materials in Environmental Protection)
Show Figures

Figure 1

24 pages, 6924 KB  
Article
Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water
by Alaa M. Younis and Ghada M. Almutairi
Processes 2025, 13(6), 1928; https://doi.org/10.3390/pr13061928 - 18 Jun 2025
Viewed by 588
Abstract
The study examines the biosorption potential of Ulva intestinalis (UI) and calcium oxide-modified Ulva intestinalis (CaO-UI) for the environmentally favorable removal of cadmium (Cd2+), nickel (Ni2+), and lead (Pb2+) from aqueous solutions. This research addresses the critical [...] Read more.
The study examines the biosorption potential of Ulva intestinalis (UI) and calcium oxide-modified Ulva intestinalis (CaO-UI) for the environmentally favorable removal of cadmium (Cd2+), nickel (Ni2+), and lead (Pb2+) from aqueous solutions. This research addresses the critical need for sustainable water treatment solutions by developing a green-synthesized biosorbent that combines renewable biomass with enhanced adsorption properties. The adsorption properties of the biomass were improved by preparing calcium oxide (CaO) using Ulva intestinalis extract by green synthesis. Langmuir, Freundlich, and Temkin isotherms were employed to model the results of adsorption experiments that were conducted under a variety of conditions, such as contact time, biosorbent dose, and initial metal ion concentration. Langmuir (R2 = 0.999) and Freundlich (R2 = 0.999) models both provided an exceptionally well-fitted model for the adsorption isotherms, suggesting a hybrid mechanism that integrates monolayer chemisorption at CaO-active sites and multilayer adsorption on the heterogeneous algal matrix. Key findings demonstrate that the maximum adsorption capacity (qm) of CaO-UI was substantially higher than that of UI, with values of 571.21 mg/g for Cd2+, 665.51 mg/g for Ni2+, and 577.87 mg/g for Pb2+, respectively, in comparison to 432.47 mg/g, 335.75 mg/g, and 446.65 mg/g for UI. The adsorption process was dominated by pseudo-second-order (PSO) chemisorption, as evidenced by kinetic studies (R2 = 0.949–0.993). CaO-UI exhibited substantially higher rate constants (k2 = 9.00–10.15 mg/mg·min) than raw UI (k2 = 4.72–5.71 mg/mg·min). The green synthesis of calcium oxide has resulted in an increase in surface area, porosity, and functional group density, which is responsible for the enhanced performance of CaO-UI. The adsorption efficacy of Pb2+ was the highest, followed by Cd2+ and Ni2+, which was indicative of the differences in metal ion affinity and hydration energy. These results underscore the potential of CaO-UI as a biosorbent that is both cost-effective and sustainable for the removal of heavy metals in wastewater treatment applications. Full article
(This article belongs to the Special Issue Natural Low-Cost Adsorbents in Water Purification Processes)
Show Figures

Figure 1

Back to TopTop