Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,519)

Search Parameters:
Keywords = calcination temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1827 KB  
Article
Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate
by Yi Wei, Jie Xu, Jie Jiang, Tairong Lu and Zuohua Liu
Materials 2025, 18(19), 4589; https://doi.org/10.3390/ma18194589 - 2 Oct 2025
Abstract
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like [...] Read more.
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like morphology owing to limitations in solid-state mass transfer. Researchers have employed various mineralizers to regulate the morphology of α-Al2O3 powders; however, the preparation of micron-sized highly spherical α-Al2O3 powders via solid-state calcination is still a great challenge. In this work, micron-sized near-spherical α-Al2O3 powders were synthesized through high-temperature calcination using hydratable alumina (ρ-Al2O3) as precursor with water-soluble mineralizer ammonium fluoroborate (NH4BF4). ρ-Al2O3 can undergo a hydration reaction with water to form AlO(OH) and Al(OH)3 intermediates, serving as an excellent precursor. With the addition of 0.1 wt% NH4BF4, the product exhibits an optimal near-spherical morphology. Excessive addition (>0.2wt%), however, significantly promotes the transformation of α-Al2O3 from a near-spherical to a plate-like structure. Further studies reveal that the introduction of NH4BF4 not only modulates the crystal morphology but also effectively reduces the content of sodium impurities in the powder through a high-temperature volatilization mechanism, thereby enhancing the thermal conductivity of the powder. It is shown that the thermal conductivity of the micron-sized α-Al2O3/ epoxy resin composites reaches 1.329 ± 0.009 W/(m·K), which is 7.4 times that of pure epoxy resin. Full article
(This article belongs to the Section Metals and Alloys)
26 pages, 2043 KB  
Article
Kinetic and Thermodynamic Study of Vacuum Residue Cracking over Cerium-Modified Metakaolinite Catalyst
by Osamah Basil Al-Ameri, Mohammed Alzuhairi, Zaidoon Shakor, Esther Bailón-García, Francisco Carrasco-Marín and Juan Amaro-Gahete
Processes 2025, 13(10), 3126; https://doi.org/10.3390/pr13103126 - 29 Sep 2025
Abstract
Catalytic upgrading of vacuum residue (VR) is critical for enhancing fuel yield and reducing waste in petroleum refining. This study explores VR cracking over a novel cerium-loaded acidified metakaolinite catalyst (MKA800–20%Ce) prepared via calcination at 800 °C, acid leaching, and wet impregnation with [...] Read more.
Catalytic upgrading of vacuum residue (VR) is critical for enhancing fuel yield and reducing waste in petroleum refining. This study explores VR cracking over a novel cerium-loaded acidified metakaolinite catalyst (MKA800–20%Ce) prepared via calcination at 800 °C, acid leaching, and wet impregnation with 20 wt.% Ce. The catalyst was characterized using FTIR, BET, XRD, TGA, and GC–MS to assess structural, textural, and thermal properties. Catalytic cracking was carried out in a fixed-bed batch reactor at 350 °C, 400 °C, and 450 °C. The MKA800@Ce20% catalyst showed excellent thermal stability and surface activity, especially at higher temperatures. At 450 °C, the catalyst yielded approximately 11.72 g of total liquid product per 20 g of VR (representing a ~61% yield), with ~3.81 g of coke (~19.1%) and the rest as gaseous products (~19.2%). GC-MS analysis revealed enhanced production of light naphtha (LN), heavy naphtha (HN), and kerosene in the 400–450 °C range, with a clear temperature-dependent shift in product distribution. Structural analysis confirmed that cerium incorporation enhanced surface acidity, redox activity, and thermal stability, promoting deeper cracking and better product selectivity. Kinetics were investigated using an eight-lump first-order model comprising 28 reactions, with kinetic parameters optimized through a genetic algorithm implemented in MATLAB. The model demonstrated strong predictive accuracy taking into account the mean relative error (MRE = 9.64%) and the mean absolute error (MAE = 0.015) [MAE: It is the absolute difference between experimental and predicted values; MAE is dimensionless (reported simply as a number, not %. MRE is relative to the experimental value; it is usually expressed as a percentage (%)] across multiple operating conditions. The above findings highlight the potential of Ce-modified kaolinite-based catalysts for efficient atmospheric pressure VR upgrading and provide validated kinetic parameters for process optimization. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
20 pages, 3339 KB  
Article
Green and Sustainable Clay Ceramic Membrane Preparation and Application to Textile Wastewater Treatment for Color Removal
by Jamila Bahrouni, Afef Attia, Fatima Zohra Elberrichi, Lasâad Dammak, Lassaad Baklouti, Mohamed-Ali Ben Aissa, Raja Ben Amar and Andre Deratani
Membranes 2025, 15(10), 292; https://doi.org/10.3390/membranes15100292 - 26 Sep 2025
Abstract
Ceramic membrane technology plays an important role in water and wastewater treatment. Strategic sourcing of various natural mineral resources has contributed to developing low-cost ceramic membranes. The combination with calcination of inorganic and organic wastes from domestic and agricultural activities results in fully [...] Read more.
Ceramic membrane technology plays an important role in water and wastewater treatment. Strategic sourcing of various natural mineral resources has contributed to developing low-cost ceramic membranes. The combination with calcination of inorganic and organic wastes from domestic and agricultural activities results in fully sustainable ceramic membrane materials. In this work, ceramic membranes were developed using 96% clay, 2% almond shells and 2% lime. Sintering at 900, 950, and 1000 °C enabled the production of membranes (MK-900, MK-950, and MK-1000) in a clean, simple, and cost-effective manner. The average pore diameter and porosity decreased slightly from 44 to 42 nm and from about 30% to 26% with increasing sintering temperature, while the flexural strength increased from 25 to 40 MPa. The pure water permeability was 68 and 59 L·m−2·h−1·bar−1 for MK-900 and MK-950, respectively. Effective color (as Indigo blue) removal of 78% and 92% was observed for MK-900 and MK-950, respectively. More than 90% of the initial permeability was recovered after three cycles of dye filtration using water backwashing at each stage, indicating good fouling resistance of the prepared membranes. Full article
Show Figures

Figure 1

17 pages, 3889 KB  
Article
H1.07Ti1.73O4-Derived Porous Plate-like TiO2 as High-Performance Bifunctional Anodes for Lithium- and Sodium-Ion Batteries
by Yabei Su, Juchen Li, Siyuan Liu, Silun Luo, Yuhan Li, Shaowei Zhang, Xingang Kong, Qiaogao Huang and Chengyi Lu
Energies 2025, 18(19), 5077; https://doi.org/10.3390/en18195077 - 24 Sep 2025
Viewed by 103
Abstract
Porous plate-like anatase TiO2 particles were synthesized through a direct calcination approach using layered titanate H1.07Ti1.73O4 as a precursor. By controlling the calcination temperature (400 °C, 500 °C, and 600 °C), the morphology [...] Read more.
Porous plate-like anatase TiO2 particles were synthesized through a direct calcination approach using layered titanate H1.07Ti1.73O4 as a precursor. By controlling the calcination temperature (400 °C, 500 °C, and 600 °C), the morphology and electrochemical properties of the TiO2 samples were effectively tuned. When evaluated as anodes for lithium-ion batteries (LIBs), the porous TiO2 materials demonstrated markedly improved rate performance compared to commercial nano-TiO2 (n-TiO2). Specifically, at a high current density of 5.0 A/g, p-TiO2-500 and p-TiO2-600 delivered discharge capacities of 70.5 mAh/g and 87.5 mAh/g, respectively, far exceeding the 27.7 mAh/g achieved by n-TiO2. The corresponding capacity retention rates at this rate were 30.1% for p-TiO2-500, 41.2% for p-TiO2-600, and only 16.4% for n-TiO2. The enhancement in kinetics is ascribed to the unique porous plate-like architecture, which promotes efficient ion transport and introduces significant pseudocapacitive contributions. When applied as anodes for sodium-ion batteries (SIBs), p-TiO2-600 exhibited the most promising performance. This study underscores the potential of porous plate-like TiO2 as a high-performance bifunctional anode material suitable for both LIBs and SIBs. Full article
Show Figures

Figure 1

16 pages, 1418 KB  
Article
Mesoporous Silica Xerogels Prepared by p-toluenesulfonic Acid-Assisted Synthesis: Piperazine-Modification and CO2 Adsorption
by Stela Grozdanova, Ivalina Trendafilova, Agnes Szegedi, Pavletta Shestakova, Yavor Mitrev, Ivailo Slavchev, Svilen Simeonov and Margarita Popova
Nanomaterials 2025, 15(19), 1459; https://doi.org/10.3390/nano15191459 - 23 Sep 2025
Viewed by 120
Abstract
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction [...] Read more.
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction (XRD), solid-state NMR and thermal analysis. The results demonstrated that both the drying temperature and quantity of the pTSA significantly influenced the pore structure of the xerogels. The utilization of such strong acids like pTSA yielded high surface area and pore volume, as well as narrow pore size distribution. Environmentally friendly template removal by solvent extraction produced materials with superior textural properties compared to traditional calcination, enabling the recovery and reuse of pTSA with over 95% efficiency. A selected mesoporous silica xerogel was modified by a simple two-step post-synthesis procedure with 1-(2-Hydroxyethyl) piperazine (HEP). High CO2 adsorption capacity was determined for the HEP-modified material in dynamic conditions. The isosteric heat of adsorption revealed the stronger interaction between functional groups and CO2 molecules. Total CO2 desorption could be achieved at 60 °C. Leaching of the silica functional groups could not be detected even after four consecutive adsorption cycles. These findings provide valuable insights into the sustainable synthesis of tunable piperazine-modified mesoporous silica xerogels with potential applications in CO2 capture. Full article
Show Figures

Figure 1

16 pages, 4783 KB  
Article
Upcycling Anodic Sludge from Aluminum Anodizing: Leaching Efficiency and Thermal Conversion into Refractory Materials
by Fausto Acosta, Cristhian Feijoo, Alfredo S. Sangurima-Cedillo, Alicia Guevara and Carlos F. Aragón-Tobar
Sustainability 2025, 17(18), 8491; https://doi.org/10.3390/su17188491 - 22 Sep 2025
Viewed by 133
Abstract
Anodic sludges generated in the production of aluminum profiles pose both an environmental and economic problem due to their accumulation in municipal landfills. This study investigates their valorization as a raw material for industry through leaching and calcination processes. The solid residue was [...] Read more.
Anodic sludges generated in the production of aluminum profiles pose both an environmental and economic problem due to their accumulation in municipal landfills. This study investigates their valorization as a raw material for industry through leaching and calcination processes. The solid residue was characterized both physically and chemically. In the leaching process, concentrations of NaOH (1–2.5 M) and solid percentages (10–30%) were evaluated, achieving a 93.7% recovery of aluminum as sodium aluminate with 2 M NaOH and 10% solids. In the calcination process, the sludges were treated at temperatures ranging from 200 to 1600 °C, and different particle sizes (−3 + 1 mm, −1000 + 400 μm, −400 + 200 μm). The best result from calcination was obtained at 1600 °C, producing a refractory material composed of corundum (α-Al2O3) and diaoyudaoite (NaAl11O17). Full article
(This article belongs to the Special Issue Waste Management for Sustainability: Emerging Issues and Technologies)
Show Figures

Figure 1

26 pages, 4522 KB  
Article
Durability Assessment of Cement Mortars with Recycled Ceramic Powders
by Anna Tokareva and Danièle Waldmann
Materials 2025, 18(18), 4420; https://doi.org/10.3390/ma18184420 - 22 Sep 2025
Viewed by 246
Abstract
Although substantial knowledge exists regarding the use of ceramic powders as pozzolanic supplementary cementitious materials, a notable gap remains in the literature concerning the durability properties of cement with ceramics. This research aims to address this gap by evaluating the effects of ceramic [...] Read more.
Although substantial knowledge exists regarding the use of ceramic powders as pozzolanic supplementary cementitious materials, a notable gap remains in the literature concerning the durability properties of cement with ceramics. This research aims to address this gap by evaluating the effects of ceramic powders on mortar durability, specifically focusing on resistance to freeze–thaw, high temperatures, and 1% sulphuric acid. The study also investigates the use of recycled ceramic demolition waste as a replacement for calcined clay in limestone calcined clay (LC3) formulations. This research demonstrates the potential of using ceramic waste to enhance mortar durability. The results show significant improvements in freeze–thaw resistance, with strength losses of 1.91% to 2.61% for modified mortars, compared to 6.31% for the reference mortar. Fire resistance also improves, with strength gains of up to 13.9% at 200 °C for LC3 mortars with ceramic powder. At 500 °C, strength losses ranged from 2.8% to 31.9%, with ceramic-containing mortars showing better performance than the reference. At 900 °C, substantial strength losses occurred across all mixes (72.0% to 90.0%), with mortars containing ultrafine ceramic powder showing the best resistance. Resistance to 1% sulphuric acid is enhanced, with strength losses decreasing from 9.37% in the reference mortar to 1.38% in LC3 mortar with ceramic powder. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

13 pages, 2592 KB  
Article
Reduction Study of Carbon-Bearing Briquettes in the System of Multiple Reductants
by Xiaojun Ning, Zheng Ren, Nan Zhang, Guangwei Wang, Xueting Zhang, Junyi Wu, Jiangbin Liu, Andrey Karasev and Chuan Wang
Materials 2025, 18(18), 4408; https://doi.org/10.3390/ma18184408 - 21 Sep 2025
Viewed by 196
Abstract
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism [...] Read more.
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism and performance differences between biochar (wood char, bamboo char) and conventional reducing agents (semi-coke, coke powder, anthracite) in the direct reduction process of carbon-bearing briquettes. Through reduction experiments simulating rotary kiln conditions, combined with analysis of reducing agent gasification characteristics, carbon-to-oxygen (C/O) molar ratio control, X-ray diffraction (XRD), and microstructural examination, the high-temperature behavior of different reducing agents was systematically evaluated. Results indicate that biochar exhibits superior gasification reactivity due to its high specific surface area and developed pore structure: wood char and bamboo char show significantly enhanced reaction rates above 1073 K, approaching complete conversion at 1173 K. In contrast, anthracite and coke powder, characterized by dense structures and low specific surface areas, failed to achieve complete gasification even at 1273 K. Pellets containing bamboo char achieved the highest metallization rate (90.16%) after calcination at 1373 K. The compressive strength of the pellets first decreased and then increased with rising temperature, consistent with the trend in metallization rate. The mechanism analysis indicates that the high reactivity and porous structure of biochar promote rapid CO diffusion and synergistic gas–solid reactions, significantly accelerating the reduction of iron oxides and the formation of metallic iron. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

14 pages, 7246 KB  
Article
Fabrication of Spinel-Type H4Ti5O12 Ion Sieve for Lithium Recovery from Aqueous Resources: Adsorption Performance and Mechanism
by Weiwei Ma, Hongrong Huang, Guangjin Zhu, Xueqing Wang, Qiaoping Kong and Xueqing Shi
Processes 2025, 13(9), 2981; https://doi.org/10.3390/pr13092981 - 18 Sep 2025
Viewed by 270
Abstract
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological [...] Read more.
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological parameters in the preparation process of Li ion sieve and poor recycling efficiency limit its application. In this study, spinel-type H4Ti5O12 ion sieves (HTO) were successfully prepared through a high-temperature solid-state method for recovering Li+ from aqueous resources. Through the experiment of optimizing the key preparation process parameters of HTO, it was found that the optimum preparation conditions were as follows: lithium ion source of CH3COOLi‧H2O, calcination temperature of 800 °C, and acid (HCl) washing concentration of 0.3 mol/L. The uptake of Li+ by HTO aligned with the pseudo-second-order kinetic model, which was a chemical adsorption process controlled by reversible Li–H ion exchange reaction. HTO exhibited extremely high regeneration cycle characteristics, and after five cycles, it retained 96.06% of its initial adsorption capacity. The present work highlighted that spinel-type HTO has high industrial application potential in the field of Li+ recovery from oilfield brine. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 3634 KB  
Article
Nanoscale Pore Refinement and Hydration Control in Anhydrite-Modified Supersulfated Cement: Role of Calcination-Induced Crystal Phase Transition
by Zeyuan Hu, Cheng Zhang, Yi Wan, Rui Ma, Chunping Gu, Xu Yang, Jianjun Dong and Dong Cui
Nanomaterials 2025, 15(18), 1432; https://doi.org/10.3390/nano15181432 - 18 Sep 2025
Viewed by 223
Abstract
Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree [...] Read more.
Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree and strength of SSC. The experiment used III CaSO4 (high solubility) and II-U CaSO4 (low solubility) as sulfate activators, evaluating the mechanical properties of anhydrite produced at different calcination temperatures through an analysis of pore structure, phase composition, reaction degree of mineral powder, and hydration heat. The results indicate that II-U anhydrite enhances slag hydration, reduces pore size, and significantly improves the compressive strength of SSC. This improvement is attributed to its impact on slag hydration: it reduces gypsum consumption rate, delays ettringite formation, promotes gel product formation, decreases the volume ratio of ettringite to calcium silicate hydrate (C-S-H) gel, fills pores, and decreases porosity. This study reveals the influence of calcined dihydrate gypsum phase changes on the macroscopic properties of SSC and the microstructure of hydration, elucidating the hydration mechanism of anhydrite-based SSC. This work provides a nanomaterial-based strategy for SSC design via crystal phase engineering. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

13 pages, 3747 KB  
Article
High-Entropy Perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3 as a Material for Lithium-Ion Batteries
by Marianna Hodorová, Dávid Csík, Alena Fedoročková, Katarína Gáborová, Róbert Džunda, Gabriel Sučik, František Kromka and Karel Saksl
Appl. Sci. 2025, 15(18), 10171; https://doi.org/10.3390/app151810171 - 18 Sep 2025
Viewed by 175
Abstract
This study addresses the development of advanced anode materials for lithium-ion batteries by investigating the high-entropy perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3. The material was synthesized via spray drying of aqueous metal nitrate solutions, followed [...] Read more.
This study addresses the development of advanced anode materials for lithium-ion batteries by investigating the high-entropy perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3. The material was synthesized via spray drying of aqueous metal nitrate solutions, followed by calcination at various temperatures (800 °C/1 h, 1000 °C/1 h, 1000 °C/2 h, 1100 °C/1 h) to optimize structural properties. Structural analysis using X-ray diffraction confirmed the formation of a single-phase perovskite in the sample calcined at 1100 °C for 1 h, while SEM/EDS revealed homogeneous elemental distribution. Electrochemical testing of the powders as anode materials in coin-type lithium-ion cells revealed a trend of slightly increasing capacity over 150 cycles, with capacity ultimately reaching 617 mAh g−1, indicating progressive electrochemical activation. Although the samples share the same composition, variations in calcination conditions resulted in differences in capacity and cycling behavior. These results demonstrate that synthesis parameters critically influence the electrochemical performance of high-entropy perovskites. The findings suggest that such materials have potential as stable anodes for next-generation lithium-ion batteries, contributing to improved durability and efficiency in energy-storage technologies. Full article
Show Figures

Figure 1

8 pages, 1970 KB  
Proceeding Paper
Investigation of Structural, Morphological, Optical, and Dielectric Properties of Magnesium Chromite (MgCr2O4) Spinel Oxide
by Pavithra Gurusamy, Anitha Gnanasekar and Geetha Deivasigamani
Eng. Proc. 2025, 87(1), 109; https://doi.org/10.3390/engproc2025087109 - 17 Sep 2025
Viewed by 23
Abstract
The citrate–nitrate method was employed to synthesize the magnesium chromite (MgCr2O4) spinel, followed by calcination at 700 °C for 3 h. The synthesized compound was analyzed using techniques including powder XRD, SEM-EDAX, FTIR, UV-DRS, and LCR Meter. The structural [...] Read more.
The citrate–nitrate method was employed to synthesize the magnesium chromite (MgCr2O4) spinel, followed by calcination at 700 °C for 3 h. The synthesized compound was analyzed using techniques including powder XRD, SEM-EDAX, FTIR, UV-DRS, and LCR Meter. The structural analysis was conducted using an X-ray diffractometer, which revealed the formation of the cubic crystal symmetry of the sample with the corresponding Fd-3 m space group. The average crystallite size of the sample was calculated around 15.38 nm. Using tetrahedral and octahedral positions, the lattice vibrations of the associated chemical bonds were identified using Fourier transform infrared (FTIR) spectroscopy. SEM (scanning electron microscopy) micrographs showed that the spherical nature of the particles and the constituent particles were between 10 and 40 nm in size. The optical bandgap value was evaluated using Tauc’s plot. Pellets of the powdered sample were prepared for determining the dielectric aspects, such as the dielectric constant (ε′) and tangent loss (tanδ), in the frequency range of 10 Hz–8 MHz at room temperature. The charge transport mechanism was explored from the complex impedance spectroscopy study. The obtained results indicate that magnesium chromite may be a potential candidate in the fabrication of sensors, micro-electronic devices, etc. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 4456 KB  
Article
Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study
by Feng Tian, Yiwen Wang, Man Qi, Ruyu Sun, Yawen Zhao, Li Wang and Suqing Wu
Water 2025, 17(18), 2699; https://doi.org/10.3390/w17182699 - 12 Sep 2025
Cited by 1 | Viewed by 335
Abstract
In this study, red mud (RM) was utilized as an iron and aluminum source, and reed biomass served as a carbon precursor to prepare red mud-modified biochar beads (RM/CSBC) via the gel-calcination method. Under a pyrolysis temperature of 900 °C and an RM/biomass [...] Read more.
In this study, red mud (RM) was utilized as an iron and aluminum source, and reed biomass served as a carbon precursor to prepare red mud-modified biochar beads (RM/CSBC) via the gel-calcination method. Under a pyrolysis temperature of 900 °C and an RM/biomass dosage of 3 g each, RM/CSBC exhibited an optimal balance between adsorption performance and cost. Within typical pH range of 6–9 in wastewater, RM/CSBC maintained effective adsorption performance, while metal ion leaching (Fe ≤ 0.3 mg·L−1, Al ≤ 0.2 mg·L−1) complied with Class II surface water standards in China. Kinetic data were well fitted by the pseudo second-order model, supported by the Elovich model, indicating the involvement of both chemical and physical adsorption mechanisms. Isotherm results showed that the Langmuir model provided the best fit, indicating monolayer adsorption, with a maximum capacity of 85.16 mg·g−1 at 25 °C. XPS analysis revealed the formation of AlPO4 and FePO4 precipitates, confirming chemical precipitation as a key mechanism, along with electrostatic attraction and physical sorption. This study highlights the feasibility of RM/CSBC as an efficient and low-cost phosphate adsorbent and provides a theoretical basis for phosphorus removal and recovery from wastewater using waste-derived materials. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

18 pages, 946 KB  
Article
Dual-Function Bare Copper Oxide (Photo)Catalysts for Selective Phenol Production via Benzene Hydroxylation and Low-Temperature Hydrogen Generation from Formic Acid
by Antonietta Mancuso, Matteo Diglio, Salvatore Impemba, Vincenzo Venditto, Vincenzo Vaiano, Antonio Buonerba and Olga Sacco
Catalysts 2025, 15(9), 866; https://doi.org/10.3390/catal15090866 - 9 Sep 2025
Viewed by 584
Abstract
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper [...] Read more.
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper acetate precursors and calcined for either 10 min or 2 h. Their structural and surface properties were characterized by wide-angle X-ray diffraction (WAXD), Raman spectroscopy, and BET surface area analysis. FAD was conducted under mild thermal conditions and monitored via 1H NMR spectroscopy. At the same time, benzene hydroxylation was performed under UV irradiation and analyzed by gas chromatography (GC) and high-performance liquid chromatography (HPLC). All synthesized catalysts outperformed commercial CuO in the selective oxidation of benzene. The nitrate-derived sample calcined for 10 min (NCuO 10 min) achieved the best performance, with a phenol yield of ~10% and a selectivity of up to 19%, attributed to improved surface properties and the presence of Cu(I) domains, as indicated by Raman spectroscopy. For FAD, complete conversion of formic acid was achieved at low temperatures, with selective H2 and CO2 evolution and complete suppression of CO, even under short reaction times and low catalyst loadings. These results demonstrate the potential of nitrate-derived CuO catalysts as versatile, dual-function materials for sustainable applications in selective aromatic oxidation and low-temperature hydrogen generation, without the need for noble metals or harsh conditions. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts—Recent Advances in Photocatalysis)
Show Figures

Graphical abstract

15 pages, 2913 KB  
Article
Chemical Deposition Method for Preparing VO2@AlF3 Core–Shell-Structured Nanospheres for Smart Temperature-Control Coating
by Lingfeng Jiang, Yifei Chen, Haiyan Liu, Haoning Zhang and Li Zhao
Coatings 2025, 15(9), 1045; https://doi.org/10.3390/coatings15091045 - 6 Sep 2025
Viewed by 660
Abstract
Vanadium dioxide (VO2) has become one of the most promising smart temperature-controlled thin-film materials due to its reversible phase transition between a metallic and an insulating state at approximately 68 °C, accompanied by negligible volume change and excellent optical modulation properties. [...] Read more.
Vanadium dioxide (VO2) has become one of the most promising smart temperature-controlled thin-film materials due to its reversible phase transition between a metallic and an insulating state at approximately 68 °C, accompanied by negligible volume change and excellent optical modulation properties. However, the practical application of VO2 is still limited by its relatively high phase transition temperature and susceptibility to oxidation. To address these two major shortcomings, this study employed a one-step hydrothermal method to prepare a VO2 nanopowder, followed by a chemical precipitation method to form a VO2@AlF3 core–shell structure. The coated nanoparticles were then dispersed in a PVP ethanol solution, coated onto a glass substrate, and evaluated for performance. The experimental results indicate that when the molar ratio of VO2 to AlF3 reached 1:1, the phase transition temperature of VO2@AlF3 was effectively reduced to 50.3 °C, significantly lower than the original temperature of 68 °C. Additionally, the material exhibited favorable optical properties, with a solar modulation ability (ΔTsol) of 17.2% and a luminous transmittance (Tlum) of 36.3%. After calcination in air at 300 °C for 3–6 h, the VO2 core remained oxidation-resistant and maintained excellent phase-change thermal insulation properties. Full article
(This article belongs to the Special Issue Chemical Vapor Deposition (CVD): Technology and Applications)
Show Figures

Figure 1

Back to TopTop