15th Anniversary of Catalysts—Recent Advances in Photocatalysis

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Photocatalysis".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 1110

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Engineering, University Salerno, Via Giovanni Paolo 2 132, I-84084 Fisciano, Salerno, Italy
Interests: photocatalysis for sustainable chemistry; photocatalytic and photo-Fenton processes for pollutants removal in wastewater; catalytic combustion of sewage sludge; decomposition and oxidative decomposition of H2S; hydrolysis of COS in the liquid phase
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Laboratory of Industrial Chemistry, Department of Chemistry, University of Ioannina, 45500 Ioannina, Greece
Interests: photocatalysis; photolytic processes in the environment; photodegradation pathways; identification of phototransformation products
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Interests: photocatalysis; electron transfer; water treatment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As we commemorate the 15th anniversary of Catalysts, this Special Issue is dedicated to highlighting recent advancements in the vibrant field of photocatalysis. Over the past fifteen years, Catalysts has established itself as a leader in publishing groundbreaking research, and this milestone provides an opportunity to reflect on past achievements while paving the way for future developments. Photocatalysis, a transformative technology with applications ranging from environmental cleanup to renewable energy production and synthetic chemistry, has gained increasing attention for its potential to deliver sustainable and efficient solutions to global challenges. Recent advancements in material design, reaction mechanisms, and application strategies have significantly enhanced the efficiency and adaptability of photocatalytic systems. This Special Issue invites high-quality contributions that showcase the latest breakthroughs, challenges, and future directions in photocatalysis. Topics of interest include, but are not limited to the following:

  • Design and synthesis of innovative photocatalytic materials;
  • Advances in photocatalytic processes for environmental remediation;
  • Photocatalysis in hydrogen generation and CO2 reduction;
  • Mechanistic studies of photocatalytic reactions;
  • Hybrid and composite photocatalytic systems;
  • Emerging industrial and technological applications of photocatalysis;
  • Photocatalysts for organic synthesis.

We welcome original research articles, reviews, and short communications that provide a comprehensive overview of the field and offer valuable insights into its future trajectory. By bringing together contributions from leading researchers, this Special Issue aims to foster further innovation and collaboration in photocatalysis. We look forward to your contributions as we celebrate 15 years of Catalysts making an impact in the scientific community.

Dr. Vincenzo Vaiano
Prof. Dr. Ioannis Konstantinou
Prof. Dr. Shujuan Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalysis
  • sustainable chemistry
  • photocatalytic materials
  • environmental remediation
  • renewable energy
  • hydrogen generation
  • CO2 reduction
  • reaction mechanisms
  • hybrid photocatalysts
  • photocatalytic applications
  • photocatalysts for organic synthesis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3176 KB  
Article
Photocatalytic Mineralization of Emerging Organic Contaminants Using Real and Simulated Effluents in Batch and Membrane Photoreactors
by Cristina Lavorato, Angela Severino, Pietro Argurio, Raffaele Molinari, Beatrice Russo, Alberto Figoli and Teresa Poerio
Catalysts 2025, 15(9), 904; https://doi.org/10.3390/catal15090904 - 18 Sep 2025
Viewed by 221
Abstract
Conventional wastewater treatment plants (WWTPs) have limited efficiency in removing emerging pollutants (EPs), meaning these pollutants persist and lead to widespread ecological contamination. In this study, real effluents from a WWTP were characterized using TOC and Py-GC/MS, which indicated the presence of various [...] Read more.
Conventional wastewater treatment plants (WWTPs) have limited efficiency in removing emerging pollutants (EPs), meaning these pollutants persist and lead to widespread ecological contamination. In this study, real effluents from a WWTP were characterized using TOC and Py-GC/MS, which indicated the presence of various organic compounds that could be indicative of micro-nanoplastics (MNPs) or plastics additives. To address this challenge, we propose the use of a photocatalytic membrane reactor (PMR) as an advanced treatment system capable of achieving high degradation efficiency under mild operating conditions. Preliminary experimental tests were conducted using various commercial photocatalysts (TiO2, WO3, Nb2O5), four UV lamps, and oxidants (air, O2) using added Gemfibrozil (GEM) as a drug model compound. Real effluent samples collected from WWTP were tested with and without pretreatment to remove coarse particles prior to photocatalysis. Mineralization was achieved in both cases, but it occurred at a higher rate for the pretreated effluent. The mineralization of GEM and EPs in real effluent was achieved within five hours under UV irradiation using titanium dioxide (TiO2) as a low-cost photocatalyst in a PMR. The results highlight the potential of photocatalytic systems, and particularly PMRs, as a promising technology for removing recalcitrant pollutants in real effluents offering a viable solution for improved environmental protection. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts—Recent Advances in Photocatalysis)
Show Figures

Figure 1

18 pages, 946 KB  
Article
Dual-Function Bare Copper Oxide (Photo)Catalysts for Selective Phenol Production via Benzene Hydroxylation and Low-Temperature Hydrogen Generation from Formic Acid
by Antonietta Mancuso, Matteo Diglio, Salvatore Impemba, Vincenzo Venditto, Vincenzo Vaiano, Antonio Buonerba and Olga Sacco
Catalysts 2025, 15(9), 866; https://doi.org/10.3390/catal15090866 - 9 Sep 2025
Viewed by 576
Abstract
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper [...] Read more.
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper acetate precursors and calcined for either 10 min or 2 h. Their structural and surface properties were characterized by wide-angle X-ray diffraction (WAXD), Raman spectroscopy, and BET surface area analysis. FAD was conducted under mild thermal conditions and monitored via 1H NMR spectroscopy. At the same time, benzene hydroxylation was performed under UV irradiation and analyzed by gas chromatography (GC) and high-performance liquid chromatography (HPLC). All synthesized catalysts outperformed commercial CuO in the selective oxidation of benzene. The nitrate-derived sample calcined for 10 min (NCuO 10 min) achieved the best performance, with a phenol yield of ~10% and a selectivity of up to 19%, attributed to improved surface properties and the presence of Cu(I) domains, as indicated by Raman spectroscopy. For FAD, complete conversion of formic acid was achieved at low temperatures, with selective H2 and CO2 evolution and complete suppression of CO, even under short reaction times and low catalyst loadings. These results demonstrate the potential of nitrate-derived CuO catalysts as versatile, dual-function materials for sustainable applications in selective aromatic oxidation and low-temperature hydrogen generation, without the need for noble metals or harsh conditions. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts—Recent Advances in Photocatalysis)
Show Figures

Graphical abstract

Back to TopTop