Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = capacitive transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2058 KB  
Article
Inductive Displacement Sensor Operating in an LC Oscillator System Under High Pressure Conditions—Basic Design Principles
by Janusz Nurkowski and Andrzej Nowakowski
Sensors 2025, 25(19), 6078; https://doi.org/10.3390/s25196078 - 2 Oct 2025
Abstract
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the [...] Read more.
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the pressure chamber, in which it serves as the inductive component. The specimen’s deformation changes the coil’s length and inductance, thereby altering the oscillator’s resonant frequency. Paired with a reference coil, the system achieves strain resolution of ~100 nm at pressures exceeding 400 MPa. Sensor design challenges include both electrical parameters (inductance and resistance of the sensor, capacitance of the resonant circuit) and mechanical parameters (number and diameter of coil turns, their positional stability, wire diameter). The basic requirement is to achieve stable oscillations (i.e., a high Q-factor of the resonant circuit) while maintaining maximum sensor sensitivity. Miniaturization of the sensor and minimizing the tensile force at its mounting points on the specimen are also essential. Improvement of certain sensor parameters often leads to the degradation of others; therefore, the design requires a compromise depending on the specific measurement conditions. This article presents the mathematical interdependencies among key sensor parameters, facilitating optimized sensor design. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

16 pages, 2251 KB  
Article
Matching Network Design for Ultrasonic Guided Wave Interdigital Transducers
by Lorenzo Capineri
Sensors 2025, 25(17), 5401; https://doi.org/10.3390/s25175401 - 1 Sep 2025
Viewed by 352
Abstract
Ultrasonic guided wave interdigital transducers realized with piezoelectric materials are of interest for structural health monitoring systems because of their capability of performing Lamb wave mode selection with respect to single-element transducers. Besides this advantage, the coverage of large areas with a minimum [...] Read more.
Ultrasonic guided wave interdigital transducers realized with piezoelectric materials are of interest for structural health monitoring systems because of their capability of performing Lamb wave mode selection with respect to single-element transducers. Besides this advantage, the coverage of large areas with a minimum number of elements is an important challenge and the problem of efficient excitation with integrated electronics must be solved. This work proposes an electrical matching network topology made of L and C passive components that can be designed for the trade-off between electrical to mechanical conversion efficiency and bandwidth. The network circuit is analyzed considering the equivalent transducer impedance and the output impedance of the driving electronics. The design rules derived by the transfer function analysis are described and a case study for a piezopolymer IDT is presented. Finally, with the implementation of the integrated matching network with the connector of the IDT, the effect of cable capacitance is minimized. In conclusion this article is a contribution to the study of using IDT efficiently and in a versatile mode for different electronic front-ends that usually operate at low power supply voltage. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

14 pages, 3931 KB  
Article
Design and Fabrication of Air-Coupled CMUT for Non-Contact Temperature Measurement Applications
by Xiaobo Rui, Yongshuai Ma, Chenghao He, Chi Zhang, Zhuochen Wang and Hui Zhang
Micromachines 2025, 16(9), 1008; https://doi.org/10.3390/mi16091008 - 31 Aug 2025
Viewed by 574
Abstract
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity [...] Read more.
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity and temperature to achieve non-contact temperature detection, with advantages such as fast response and non-invasiveness. CMUT-based acoustic temperature field measurement can achieve temperature detection in situations with narrow spaces, portability, and high measurement accuracy. This paper investigates an air-coupled CMUT device for acoustic temperature measurement, featuring a resonant frequency of 220 kHz, and composed of 16 × 8 cells. The design and fabrication of the CMUT array were completed, and the device characteristics were tested and characterized. A temperature field measurement method using mechanical scanning was proposed. A temperature measurement experimental system based on CMUT devices was constructed, achieving preliminary measurement of acoustic transmission time in both uniform and non-uniform temperature fields. Using a temperature field reconstruction algorithm, the measurement and imaging of the temperature field above an electric heating wire were accomplished and compared with the thermocouple-based temperature measurement experiment. The experimental results verified the feasibility of CMUT devices for non-contact temperature field measurement. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers, 2nd Edition)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
Silicon Nanowires Sensor Modified with Cu (II) Phthalocyanine Derivative for Phosphate Monitoring
by Milaine Jebali, Zina Fredj, Sameh Daboussi, Mounir Ben Ali and Mohamed Hassen
Chemosensors 2025, 13(8), 297; https://doi.org/10.3390/chemosensors13080297 - 9 Aug 2025
Viewed by 673
Abstract
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated [...] Read more.
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated via metal-assisted chemical etching (MACE) with etching durations of 15, 25, 35, 45, and 60 min. The SiNWs etched for 15 min exhibited the highest sensitivity, showing superior electrochemical performance. Functionalized SiNWs were systematically evaluated for phosphate ion (HPO42−) detection over a wide concentration range (10−10 to 10−6 M) using Mott–Schottky measurements. The surface morphology of the SiNWs was thoroughly characterized before and after Cu (II) Pc-PAA layer functionalization. The sensing material was analyzed using contact angle goniometry and scanning electron microscopy (SEM), confirming both its uniform distribution and effective immobilization. The sensor displayed a Nernstian behavior with a sensitivity of 28.25 mV/Decade and an exceptionally low limit of detection (LOD) of 1.5 nM. Furthermore, the capacitive sensor exhibited remarkable selectivity toward phosphate ions, even in the presence of potentially interfering anions such as Cl, NO3, SO42− and ClO4. These results confirm the sensor’s high sensitivity, selectivity, and fast response, underscoring its suitability for environmental phosphate ion monitoring. Full article
Show Figures

Figure 1

15 pages, 6881 KB  
Article
High-Performance Capacitive Ultrasonic Transducer for Non-Destructive Testing of Concrete Compressive Strength
by Wangyang Zhang, Jiaqian Yang, Lei Ren, Hanjie Dou, Xianglong Chen, Haoliang Jia, Yuchen Mao, Jixuan Zhang, Wanyu Xu, Hong Zhou and Xiaojing Mu
Sensors 2025, 25(16), 4903; https://doi.org/10.3390/s25164903 - 8 Aug 2025
Viewed by 357
Abstract
Ultrasonic non-destructive testing is indispensable for assessing the compressive strength of concrete and is widely utilized in concrete structure health monitoring. However, traditional ultrasonic transducers typically have a large size, narrow bandwidth, and low sensitivity, and often rely on complex circuitry, facing numerous [...] Read more.
Ultrasonic non-destructive testing is indispensable for assessing the compressive strength of concrete and is widely utilized in concrete structure health monitoring. However, traditional ultrasonic transducers typically have a large size, narrow bandwidth, and low sensitivity, and often rely on complex circuitry, facing numerous challenges. These limitations hinder their widespread application in real-world engineering practice. To address these challenges, this study proposes the use of Capacitive Micromachined Ultrasonic Transducer (CMUT) technology for non-destructive evaluation of concrete compressive strength. CMUTs offer key advantages, including compact structure, low cost, and high sensitivity, making them well-suited for integration and real-time field applications. Through the use of COMSOL Multiphysics simulations, a strong correlation was observed between the time of flight of ultrasonic waves and concrete compressive strength. Experimental validation was conducted by performing ultrasonic measurements and standard compressive strength tests on concrete specimens. The time of the first highest-amplitude wave (T_FHAW) was extracted as a characteristic parameter and compared against the measured compressive strengths. The results demonstrate a clear linear inverse relationship between T_FHAW and compressive strength, with a coefficient of determination R2= 0.99, confirming the accuracy and reliability of the method. These findings suggest that CMUT-based ultrasonic testing provides an effective and precise approach for non-destructive prediction of concrete compressive strength. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

15 pages, 5631 KB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 - 31 Jul 2025
Viewed by 2549
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

20 pages, 7725 KB  
Article
Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication
by Paulius Sakalas and Anindya Mukherjee
Electronics 2025, 14(15), 2984; https://doi.org/10.3390/electronics14152984 - 26 Jul 2025
Viewed by 471
Abstract
High-frequency (h. f.) harmonic distortion (HD) of advanced SiGe heterojunction bipolar transistor (HBT)-based power cells (PwCs), featuring optimized metallization interconnections between individual HBTs, was investigated. Single tone input power (Pin) excitations at 1, 2, 5, and 10 GHz frequencies were [...] Read more.
High-frequency (h. f.) harmonic distortion (HD) of advanced SiGe heterojunction bipolar transistor (HBT)-based power cells (PwCs), featuring optimized metallization interconnections between individual HBTs, was investigated. Single tone input power (Pin) excitations at 1, 2, 5, and 10 GHz frequencies were employed. The output power (Pout) of the fundamental tone and its harmonics were analyzed in both the frequency and time domains. A rapid increase in the third harmonic of Pout was observed at input powers exceeding −8 dBm for a fundamental frequency of 10 GHz in two different PwC technologies. This increase in the third harmonic was analyzed in terms of nonlinear current waveforms, the nonlinearity of the HBT p-n junction diffusion capacitances, substrate current behavior versus Pin, and avalanche multiplication current. To assess the RF power performance of the PwCs, scalar and vectorial load-pull (LP) measurements were conducted and analyzed. Under matched conditions, the SiGe PwCs demonstrated good linearity, particularly at high frequencies. The key power performance of the PwCs was measured and simulated as follows: input power 1 dB compression point (Pin_1dB) of −3 dBm, transducer power gain (GT) of 15 dB, and power added efficiency (PAE) of 50% at 30 GHz. All measured data were corroborated with simulations using the compact model HiCuM L2. Full article
Show Figures

Figure 1

18 pages, 16017 KB  
Article
Design and Fabrication of Multi-Frequency and Low-Quality-Factor Capacitive Micromachined Ultrasonic Transducers
by Amirhossein Moshrefi, Abid Ali, Mathieu Gratuze and Frederic Nabki
Micromachines 2025, 16(7), 797; https://doi.org/10.3390/mi16070797 - 8 Jul 2025
Viewed by 809
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for air-coupled applications to address key challenges such as noise, prolonged ringing, and side-lobe interference. This study introduces an optimized CMUT design that leverages the squeeze-film damping effect to achieve a low-quality factor, enhancing resolution [...] Read more.
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for air-coupled applications to address key challenges such as noise, prolonged ringing, and side-lobe interference. This study introduces an optimized CMUT design that leverages the squeeze-film damping effect to achieve a low-quality factor, enhancing resolution and temporal precision for imaging as one of the suggested airborne application. The device was fabricated using the PolyMUMPs process, ensuring high structural accuracy and consistency. Finite element analysis (FEA) simulations validated the optimized parameters, demonstrating improved displacement, reduced side-lobe artifacts, and sharper main lobes for superior imaging performance. Experimental validation, including Laser Doppler Vibrometer (LDV) measurements of membrane displacement and mode shapes, along with ring oscillation tests to assess Q-factor and signal decay, confirmed the device’s reliability and consistency across four CMUT arrays. Additionally, this study explores the implementation of multi-frequency CMUT arrays, enhancing imaging versatility across different air-coupled applications. By integrating multiple frequency bands, the proposed CMUTs enable adaptable imaging focus, improving their suitability for diverse diagnostic scenarios. These advancements highlight the potential of the proposed design to deliver a superior performance for airborne applications, paving the way for its integration into advanced diagnostic systems. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

17 pages, 3712 KB  
Article
Structural Optimization Design of the Dual-Layer CMUT with Low Power Consumption and High Ultrasonic Reception Performance
by Jie Li, Zhaohui Xiao, Zutang Wu, Xiong Hu, Zhikang Li, Yihe Zhao, Min Li, Jiawei Yuan, Shaohui Qin and Libo Zhao
Micromachines 2025, 16(7), 782; https://doi.org/10.3390/mi16070782 - 30 Jun 2025
Viewed by 504
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have been widely applied in fields such as air-coupled ultrasonic nondestructive testing, gesture recognition, and 3D imaging. However, most current CMUTs struggle to simultaneously achieve both low power consumption and high performance, which limits their application in relevant [...] Read more.
Capacitive micromachined ultrasonic transducers (CMUTs) have been widely applied in fields such as air-coupled ultrasonic nondestructive testing, gesture recognition, and 3D imaging. However, most current CMUTs struggle to simultaneously achieve both low power consumption and high performance, which limits their application in relevant fields. In this paper, a dual-layer CMUT is proposed, and its structural optimization design is also analyzed. The dual-layer CMUT consists of a top-layer circular CMUT cell and a bottom-layer annular CMUT cell. A movable pillar connects the top and bottom cells of the double-layer CMUT. This design increases the total deflection and reduces the stiffness, making the membrane more susceptible to deformation under external forces, thereby achieving low power consumption and high reception performance. The finite element method (FEM) results showed that, compared with conventional CMUTs, the structural optimization design of the dual-layer CMUT had a 13.7% reduction in collapse voltage. The improvements in the maximum deflection, average deflection, electromechanical coupling coefficient, transmitting sensitivity, and receiving sensitivity were 41.2%, 68.0%, 84.6%, 17.7%, and 101.6%, respectively. Therefore, the dual-layer CMUT has low power consumption and high reception performance while maintaining transmission performance, and it has potential for applications in portable, low-power devices and air-coupled ultrasonic nondestructive testing. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 9176 KB  
Article
Research on Drive and Detection Technology of CMUT Multi-Array Transducers Based on MEMS Technology
by Chenyuan Li, Jiagen Chen, Chengwei Liu, Yao Xie, Yangyang Cui, Shiwang Zhang, Zhikang Li, Libo Zhao, Guoxing Chen, Shaochong Wei, Yu Gao and Linxi Dong
Micromachines 2025, 16(6), 604; https://doi.org/10.3390/mi16060604 - 22 May 2025
Viewed by 2641
Abstract
This paper presents an ultrasonic driving and detection system based on a CMUT array using MEMS technology. Among them, the core component CMUT array is composed of 8 × 8 CMUT array elements, and each CMUT array element contains 6 × 6 CMUT [...] Read more.
This paper presents an ultrasonic driving and detection system based on a CMUT array using MEMS technology. Among them, the core component CMUT array is composed of 8 × 8 CMUT array elements, and each CMUT array element contains 6 × 6 CMUT units. The collapse voltage of a single CMUT unit obtained through finite element analysis is 95.91 V, and the resonant frequency is 3.16 MHz. The driving section achieves 64-channel synchronous driving, with key parameters including an adjustable excitation signal frequency ranging from 10 kHz to 5.71 MHz, a delay precision of up to 1 ns, and an excitation duration of eight pulse cycles. For the echo reception, a two-stage amplification circuit for high-frequency weak echoes with 32 channels was designed, achieving a gain of 113.72 dB and −3 dB bandwidth of 3.89 MHz. Simultaneously, a 32-channel analog-to-digital conversion based on a self-calibration algorithm was implemented, with a sampling rate of 50 Mbps and a data width of 10 bits. Finally, the experimental results confirm the successful implementation of the driving system’s designed functions, yielding a center frequency of 1.4995 MHz and a relative bandwidth of 127.9%@−6 dB for the CMUT operating in silicone oil. This paper successfully conducted the transmit–receive integrated experiment of the CMUT and applied Butterworth filtering to the echo data, resulting in high-quality ultrasonic echo signals that validate the applicability of the designed CMUT-based system for ultrasonic imaging. Full article
Show Figures

Figure 1

26 pages, 4583 KB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Cited by 1 | Viewed by 3829
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

19 pages, 29431 KB  
Article
Hybrid Magneto-Responsive Composites Made from Recyclable Components: Tunable Electrical Properties Under Magnetic and Mechanical Fields
by Ioan Bica, Eugen Mircea Anitas, Paula Sfirloaga, Liviu Chirigiu and Andrei Mihai Gavrilovici
J. Compos. Sci. 2025, 9(5), 219; https://doi.org/10.3390/jcs9050219 - 29 Apr 2025
Viewed by 701
Abstract
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and [...] Read more.
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and highly tunable method for producing high-performance MMPs. hMRCs are integrated into flat capacitors, and their electrical capacitance (C), resistance (R), dielectric permittivity (ϵ), and electrical conductivity (σ) are investigated under a static magnetic field, uniform force field, and an alternating electric field. The experimental results reveal that the electrical properties of hMRCs are dependent on the volume fractions of MMPs and microfibers in the fabric, as well as the applied magnetic flux density (B) and compression forces (F). C shows an increase with both B and F, while R decreases due to improved conductive pathways formed by alignment of MMPs. σ is found to be highly tunable, with increases of up to 300% under combined field effects. In the same conditions, C increases up to 75%, and R decreases up to 80%. Thus, by employing plasma-synthesized MMPs, and commercially available recyclable lard and cotton fabrics, this study demonstrates an eco-friendly, low-cost approach to designing multifunctional smart materials. The tunable electrical properties of hMRCs open new possibilities for adaptive sensors, energy storage devices, and magnetoelectric transducers. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

40 pages, 1298 KB  
Systematic Review
Systematic Review of Commercially Available Clinical CMUT-Based Systems for Use in Medical Ultrasound Imaging: Products, Applications, and Performance
by Ahmed Sewify, Maria Antico, Laith Alzubaidi, Haider A. Alwzwazy, Jacqueline Roots, Peter Pivonka and Davide Fontanarosa
Sensors 2025, 25(7), 2245; https://doi.org/10.3390/s25072245 - 2 Apr 2025
Cited by 2 | Viewed by 2764
Abstract
An emerging alternative to conventional piezoelectric technologies, which continue to dominate the ultrasound medical imaging (US) market, is Capacitive Micromachined Ultrasonic Transducers (CMUTs). Ultrasound transducers based on this technology offer a wider frequency bandwidth, improved cost-effectiveness, miniaturized size and effective integration with electronics. [...] Read more.
An emerging alternative to conventional piezoelectric technologies, which continue to dominate the ultrasound medical imaging (US) market, is Capacitive Micromachined Ultrasonic Transducers (CMUTs). Ultrasound transducers based on this technology offer a wider frequency bandwidth, improved cost-effectiveness, miniaturized size and effective integration with electronics. These features have led to an increase in the commercialization of CMUTs in the last 10 years. We conducted a review to answer three main research questions: (1) What are the commercially available CMUT-based clinical sonographic devices in the medical imaging space? (2) What are the medical imaging applications of these devices? (3) What is the performance of the devices in these applications? We additionally reported on all the future work expressed by modern studies released in the past 2 years to predict the trend of development in future CMUT device developments and express gaps in current research. The search retrieved 19 commercially available sonographic CMUT products belonging to seven companies. Four of the products were clinically approved. Sonographic CMUT devices have established their niche in the medical US imaging market mainly through the Butterfly iQ and iQ+ for quick preliminary screening, emergency care in resource-limited settings, clinical training, teleguidance, and paramedical applications. There were no commercialized 3D CMUT probes. Full article
Show Figures

Figure 1

18 pages, 1707 KB  
Article
Resonance-Induced Capacitively Coupled Contactless Conductivity Detection (ReC4D) Unit for Nucleic Acid Amplification Testing
by Roberto G. Ramírez-Chavarría, Jorge A. Uc-Martín, Bryan E. Alvarez-Serna and Ramón F. Padilla-Morán
Technologies 2025, 13(4), 138; https://doi.org/10.3390/technologies13040138 - 2 Apr 2025
Viewed by 857
Abstract
Nucleic acid amplification (NAA) is a technique that increases the number of copies of a gene, making it possible to detect microorganisms. This technique is often used in clinical tests, biochemical analysis, and environmental assays, to mention only a few. However, developing portable, [...] Read more.
Nucleic acid amplification (NAA) is a technique that increases the number of copies of a gene, making it possible to detect microorganisms. This technique is often used in clinical tests, biochemical analysis, and environmental assays, to mention only a few. However, developing portable, robust, and low-cost measurement platforms to evaluate NAA products remains a technological challenge. Therefore, in this work, we introduce an attractive unit for detecting and quantifying nucleic acids based on the capacitively coupled contactless conductivity detection (C4D) principle. The proposed unit, ReC4D, combines electrical resonance with C4D to enhance sensitivity when evaluating an NAA reaction. The ReC4D units advantages are twofold: (i) the transducer is electrically isolated to allow its reuse, and (ii) the induced electrical resonance in the ReC4D unit minimizes the stray capacitances of the conventional C4D assays, which enhances sensitivity, increases the linear operating range, and improves the limit of detection (LoD). Furthermore, we evaluated the proposed device for quantifying different concentrations of SARS-CoV-2 genetic material and compared it with measurements from a conventional C4D unit. Thus, we demonstrate that the ReC4D unit can measure concentrations of NAA products with an LoD of 0.24 copyμL and a sensitivity of 5.618 kHzlog(copyμL). These results position the ReC4D unit close to the state-of-the-art NAA testing platforms, with the added value of a low cost, robustness, reusability, and affordability. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
Show Figures

Graphical abstract

11 pages, 3387 KB  
Communication
Smart Capacitive Transducer for High-Frequency Vibration Measurement
by Vygantas Augutis, Gintautas Balčiūnas, Pranas Kuzas, Darius Gailius and Edita Raudienė
Sensors 2025, 25(6), 1639; https://doi.org/10.3390/s25061639 - 7 Mar 2025
Cited by 1 | Viewed by 2297
Abstract
A smart capacitive transducer (SCT) for high-frequency vibration (HFV) measurements was developed, featuring self-calibration for the improvement of measurement accuracy. Measurements using this transducer are performed by positioning it over a thin (10 µm) dielectric layer on a conductive surface. This method was [...] Read more.
A smart capacitive transducer (SCT) for high-frequency vibration (HFV) measurements was developed, featuring self-calibration for the improvement of measurement accuracy. Measurements using this transducer are performed by positioning it over a thin (10 µm) dielectric layer on a conductive surface. This method was shown to be a non-contact vibration measurement technique for solid surfaces at frequencies over 10 kHz. Auto-calibration is performed every time the SCT is placed on the object being measured. This reduces the influence of positioning and the object’s surface properties on the measurement results. For the transducer’s auto-calibration, a predefined vibration of the measurement electrode is induced. This is achieved using a waveguide excited by a piezo element. The diameter of the developed SCT is 5 mm, with a frequency range of 10 kHz to 1 MHz, an object HFV amplitude measurement resolution of several picometers, and a repeatability error of several percent. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop