Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = carboxymethylated inulin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1601 KB  
Article
Physiological and Genomic Analysis of Bacillus pumilus UAMX Isolated from the Gastrointestinal Tract of Overweight Individuals
by José Luis Reyes-Cortes, Alejandro Azaola-Espinosa, Luis Lozano-Aguirre and Edith Ponce-Alquicira
Microorganisms 2021, 9(5), 1076; https://doi.org/10.3390/microorganisms9051076 - 17 May 2021
Cited by 8 | Viewed by 3145
Abstract
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and [...] Read more.
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2–0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation. Full article
(This article belongs to the Special Issue The Genetic and Biochemical Diversity of Gut Microbiota)
Show Figures

Figure 1

18 pages, 5653 KB  
Article
Formation of Nanocomplexes between Carboxymethyl Inulin and Bovine Serum Albumin via pH-Induced Electrostatic Interaction
by Guiying Huang, Jun Liu, Weiping Jin, Zihao Wei, Chi-Tang Ho, Suqing Zhao, Kun Zhang and Qingrong Huang
Molecules 2019, 24(17), 3056; https://doi.org/10.3390/molecules24173056 - 22 Aug 2019
Cited by 20 | Viewed by 4578
Abstract
As a functional polysaccharide, inulin was carboxymethylated and it formed nanocomplexes with bovine serum albumin (BSA). The success of obtaining carboxymethyl inulin (CMI) was confirmed by a combination of Fourier transform Infrared (FT-IR), Raman spectroscopy, gel permeation chromatography (GPC), and titration. The effects [...] Read more.
As a functional polysaccharide, inulin was carboxymethylated and it formed nanocomplexes with bovine serum albumin (BSA). The success of obtaining carboxymethyl inulin (CMI) was confirmed by a combination of Fourier transform Infrared (FT-IR), Raman spectroscopy, gel permeation chromatography (GPC), and titration. The effects of pH and ionic strength on the formation of CMI/BSA nanocomplexes were investigated. Our results showed that the formation of complex coacervate (pHφ1) and dissolution of CMI/BSA insoluble complexes (pHφ2) appeared in pH near 4.85 and 2.00 respectively. FT-IR and Raman data confirmed the existence of electrostatic interaction and hydrogen bonding between CMI and BSA. The isothermal titration calorimetry (ITC) results suggested that the process of complex formation was spontaneous and exothermic. The complexation was dominated by enthalpy changes (∆Η < 0, ∆S < 0) at pH 4.00, while it was contributed by enthalpic and entropic changes (∆Η < 0, ∆S > 0) at pH 2.60. Irregularly shaped insoluble complexes and globular soluble nanocomplexes (about 150 nm) were observed in CMI/BSA complexes at pH 4.00 and 2.60 while using optical microscopy and atomic force microscopy, respectively. The sodium chloride suppression effect on CMI/BSA complexes was confirmed by the decrease of incipient pH for soluble complex formation (or pHc) and pHφ1 under different sodium chloride concentrations. This research presents a new functional system with the potential for delivering bioactive food ingredients. Full article
Show Figures

Figure 1

Back to TopTop