Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = casuarine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 12226 KB  
Article
Annona muricata Leaf as an Anti-Cryptosporidial Agent: An In Silico Molecular Docking Analysis and In Vivo Studies
by Eman S. El-Wakil, Hagar F. Abdelmaksoud, Majed H. Wakid, Muslimah N. Alsulami, Olfat Hammam, Haleema H. Albohiri and Marwa M. I. Ghallab
Pharmaceuticals 2023, 16(6), 878; https://doi.org/10.3390/ph16060878 - 14 Jun 2023
Cited by 6 | Viewed by 2514
Abstract
Cryptosporidiosis is a serious parasitic diarrheal disease linked to the occurrence of colorectal cancer in immunocompromised patients. The FDA-approved drug nitazoxanide (NTZ) achieved a temporary effect, and relapses occur. Annona muricata leaf is widely used in traditional medicine to treat a wide range [...] Read more.
Cryptosporidiosis is a serious parasitic diarrheal disease linked to the occurrence of colorectal cancer in immunocompromised patients. The FDA-approved drug nitazoxanide (NTZ) achieved a temporary effect, and relapses occur. Annona muricata leaf is widely used in traditional medicine to treat a wide range of disorders, including antiparasitic and anticancer effects. So, this study aimed to investigate Annona muricata leaf antiparasitic and anticancer properties compared to NTZ in Cryptosporidium parvum (C. parvum) acutely and chronically infected immunosuppressed mice. A molecular docking analysis was performed to evaluate the effectiveness of some biologically active compounds that represented the pharmacological properties of Annona muricata leaf-rich extract toward C. parvum lactate dehydrogenase compared to NTZ. For the in vivo study, eighty immunosuppressed albino mice were classified into four groups as follows: group I: infected and treated with A. muricata; group II: infected and treated with nitazoxanide; group III: infected and received no treatment; and group IV: were neither infected nor treated. Furthermore, half of the mice in groups I and II received the drugs on the 10th day post-infection (dpi), and the other half received treatment on the 90th day post-infection. Parasitological, histopathological, and immunohistochemical evaluations were performed. The docking analysis showed that the lowest estimated free energy of binding of annonacin, casuarine, L-epigallocatechin, P-coumaric acid, and ellagic acid toward C. parvum LDH, were −6.11, −6.32, −7.51, −7.81, and −9.64 kcal/mol, respectively, while NTZ was −7.03 kcal/mol. Parasitological examination displayed a significantly high difference in C. parvum oocyst mean counts in groups I and II compared to group III (p-value < 0.001), with group I demonstrating the highest efficacy. The analyses of histopathological and immunohistochemical results revealed that group I showed restoration of the normal villous pattern without evidence of dysplasia or malignancy. A. muricata leaf has proved to be a reliable agent for Cryptosporidium treatment. This paper argues for its promising use as an antiparasitic agent and for the prevention of neoplastic sequels of Cryptosporidium infection. Full article
(This article belongs to the Special Issue Drug Discovery of Antiprotozoal Agents)
Show Figures

Figure 1

21 pages, 4985 KB  
Article
Anopheles gambiae Trehalase Inhibitors for Malaria Vector Control: A Molecular Docking and Molecular Dynamics Study
by Eunice O. Adedeji, Gbolahan O. Oduselu, Olubanke O. Ogunlana, Segun Fatumo, Rainer Koenig and Ezekiel Adebiyi
Insects 2022, 13(11), 1070; https://doi.org/10.3390/insects13111070 - 19 Nov 2022
Cited by 12 | Viewed by 3270
Abstract
Trehalase inhibitors are considered safe alternatives for insecticides and fungicides. However, there are no studies testing these compounds on Anopheles gambiae, a major vector of human malaria. This study predicted the three-dimensional structure of Anopheles gambiae trehalase (AgTre) and identified potential [...] Read more.
Trehalase inhibitors are considered safe alternatives for insecticides and fungicides. However, there are no studies testing these compounds on Anopheles gambiae, a major vector of human malaria. This study predicted the three-dimensional structure of Anopheles gambiae trehalase (AgTre) and identified potential inhibitors using molecular docking and molecular dynamics methods. Robetta server, C-I-TASSER, and I-TASSER were used to predict the protein structure, while the structural assessment was carried out using SWISS-MODEL, ERRAT, and VERIFY3D. Molecular docking and screening of 3022 compounds was carried out using AutoDock Vina in PyRx, and MD simulation was carried out using NAMD. The Robetta model outperformed all other models and was used for docking and simulation studies. After a post-screening analysis and ADMET studies, uniflorine, 67837201, 10406567, and Compound 2 were considered the best hits with binding energies of −6.9, −8.9, −9, and −8.4 kcal/mol, respectively, better than validamycin A standard (−5.4 kcal/mol). These four compounds were predicted to have no eco-toxicity, Brenk, or PAINS alerts. Similarly, they were predicted to be non-mutagenic, carcinogenic, or hepatoxic. 67837201, 10406567, and Compound 2 showed excellent stability during simulation. The study highlights uniflorine, 67837201, 10406567, and Compound 2 as good inhibitors of AgTre and possible compounds for malaria vector control. Full article
Show Figures

Figure 1

Back to TopTop