Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = caulogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5747 KB  
Article
Comparative Transcriptome Analysis of Non-Organogenic and Organogenic Tissues of Gaillardia pulchella Revealing Genes Regulating De Novo Shoot Organogenesis
by Yashika Bansal, A. Mujib, Mahima Bansal, Mohammad Mohsin, Afeefa Nafees and Yaser Hassan Dewir
Horticulturae 2024, 10(11), 1138; https://doi.org/10.3390/horticulturae10111138 - 25 Oct 2024
Cited by 1 | Viewed by 1486
Abstract
Gaillardia pulchella is an important plant species with pharmacological and ornamental applications. It contains a wide array of phytocompounds which play roles against diseases. In vitro propagation requires callogenesis and differentiation of plant organs, which offers a sustainable, alternative synthesis of compounds. The [...] Read more.
Gaillardia pulchella is an important plant species with pharmacological and ornamental applications. It contains a wide array of phytocompounds which play roles against diseases. In vitro propagation requires callogenesis and differentiation of plant organs, which offers a sustainable, alternative synthesis of compounds. The morphogenetic processes and the underlying mechanisms are, however, known to be under genetic regulation and are little understood. The present study investigated these events by generating transcriptome data, with de novo assembly of sequences to describe shoot morphogenesis molecularly in G. pulchella. The RNA was extracted from the callus of pre- and post-shoot organogenesis time. The callus induction was optimal using leaf segments cultured onto MS medium containing α-naphthalene acetic acid (NAA; 2.0 mg/L) and 6-benzylaminopurine (BAP; 0.5 mg/L) and further exhibited a high shoot regeneration/caulogenesis ability. A total of 68,366 coding sequences were obtained using Illumina150bpPE sequencing and transcriptome assembly. Differences in gene expression patterns were noted in the studied samples, showing opposite morphogenetic responses. Out of 10,108 genes, 5374 (53%) were downregulated, and there were 4734 upregulated genes, representing 47% of the total genes. Through the heatmap, the top 100 up- and downregulating genes’ names were identified and presented. The up- and downregulated genes were identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Important pathways, operative during G. pulchella shoot organogenesis, were signal transduction (13.55%), carbohydrate metabolism (8.68%), amino acid metabolism (5.11%), lipid metabolism (3.75%), and energy metabolism (3.39%). The synthesized proteins displayed phosphorylation, defense response, translation, regulation of DNA-templated transcription, carbohydrate metabolic processes, and methylation activities. The genes’ product also exhibited ATP binding, DNA binding, metal ion binding, protein serine/threonine kinase -, ATP hydrolysis activity, RNA binding, protein kinase, heme and GTP binding, and DNA binding transcription factor activity. The most abundant proteins were located in the membrane, nucleus, cytoplasm, ribosome, ribonucleoprotein complex, chloroplast, endoplasmic reticulum membrane, mitochondrion, nucleosome, Golgi membrane, and other organellar membranes. These findings provide information for the concept of molecular triggers, regulating programming, differentiation and reprogramming of cells, and their uses. Full article
(This article belongs to the Special Issue Plant Tissue and Organ Cultures for Crop Improvement in Omics Era)
Show Figures

Figure 1

17 pages, 10831 KB  
Article
An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug
by Mahima Bansal, A. Mujib, Yashika Bansal, Yaser Hassan Dewir and Nóra Mendler-Drienyovszki
Horticulturae 2024, 10(7), 728; https://doi.org/10.3390/horticulturae10070728 - 11 Jul 2024
Cited by 8 | Viewed by 2088
Abstract
Gaillardia pulchella Foug. is a widely studied plant because of its high pharmacological and ornamental value. The leaves of G. pulchella were used for inducing callus and subsequent plant regeneration as it is the primary source of phytocompounds. The purpose of the present [...] Read more.
Gaillardia pulchella Foug. is a widely studied plant because of its high pharmacological and ornamental value. The leaves of G. pulchella were used for inducing callus and subsequent plant regeneration as it is the primary source of phytocompounds. The purpose of the present investigation was to formulate an in vitro propagation method for Gaillardia by using leaf explants in MS (Murashige and Skoog) medium. The best callus induction was observed on high (2.0 mg/L) α-naphthalene acetic acid (NAA) and a low (0.5 mg/L) 6-benzylaminopurine (BAP) with callus induction frequency of 91.66%. The leaf callus also demonstrated high caulogenesis ability (95.83%), with an average 5.2 shoots/callus mass at 0.5 mg/L BAP and 2.0 mg/L NAA. Indole Acetic acid (IAA) at 1.0 mg/L had the maximum rooting percentage (79.17%) with 12.4 roots per shoot. Rooted plantlets were later transferred to greenhouse conditions, showing a survivability rate of 75–80%. The physiological parameters, i.e., phenolic compounds and the flavonoids’ level, in the DPPH assay were higher in leaves obtained in vitro compared to callus formed from leaves and field-obtained (mother) leaves. Gas chromatography–mass spectrometry (GC–MS) analysis of methanol extracts of leaves (in vivo and in vitro) and leaf callus presented a wide array of compounds. In callus extract, some 34 phytocompounds were identified. Some of them were 3-hydroxy-2,3-dihydromaltol (25.39%), isoamyl acetate (11.63%), palmitic acid (11.55%), 4-methyloxazole (7.54%), and 5-methoxypyrrolidin-2-one (7.49%). Leaves derived in vivo and in vitro had 45 and 28 phytocompounds, respectively, belonging to different classes like lignans, phenols, terpenoids, alkaloids and fatty acids, etc. Those findings demonstrated that the leaf derived callus and the leaves are the potential stable source of several compounds with medicinal importance. The developed protocol may provide an alternative source of compounds without affecting wild flora. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Figure 1

16 pages, 3635 KB  
Article
Micropropagation Protocols for Three Elite Genotypes of Stevia rebaudiana Bertoni
by Luis Alfonso Rodriguéz-Páez, Yirlis Yadeth Pineda-Rodriguez, Marcelo F. Pompelli, Ana Melisa Jimenez-Ramirez, Osmin José Genes-Avilez, Juan de Dios Jaraba-Navas, Alfredo Jarma-Orozco, Enrique Combatt-Caballero, Luis Eliécer Oviedo Zumaqué, Isidro Elias Suarez-Padron, Maria Ileana Oloriz-Ortega and Novisel Veitía Rodríguez
Horticulturae 2024, 10(4), 404; https://doi.org/10.3390/horticulturae10040404 - 16 Apr 2024
Cited by 9 | Viewed by 3317
Abstract
The Stevia rebaudiana Germplasm Bank at the University of Cordoba, Colombia, plays a pivotal role in conserving and efficiently utilizing the genetic variability of this species. Despite safeguarding promising genotypes with valuable traits, such as late flowering or a significant diterpenoid glycoside content, [...] Read more.
The Stevia rebaudiana Germplasm Bank at the University of Cordoba, Colombia, plays a pivotal role in conserving and efficiently utilizing the genetic variability of this species. Despite safeguarding promising genotypes with valuable traits, such as late flowering or a significant diterpenoid glycoside content, there is a need for an efficient mass propagation protocol for elite genotypes. This study aims to develop efficient in vitro micropropagation protocols for three elite S. rebaudiana genotypes (L020, L102, and Morita II). The methods employed various combinations of cytokinins and auxins following organogenesis protocols. The results showed that optimal shoot multiplication (17.3 shoots per explant) for L020 was achieved when cultures were grown on a basal medium MS supplemented with 1 μM 6-benzylaminopurine (BAP). For L102, optimal shoot multiplication (18.5 shoots per explant) was achieved in MS supplemented with 1 μM BAP and 0.5 μM naphthalene acetic acid (NAA), while for Morita II, the best treatment was an MS supplemented with 2 μM BAP and 0.5 μM NAA, producing 16.4 shoots per explant. This study successfully achieved micropropagation for promising S. rebaudiana genotypes, highlighting the significant impact of genotype on tissue culture, particularly in shoot multiplication. Developing a successful micropropagation system is crucial for the conservation and improvement of S. rebaudiana, with significant implications for its future use and performance. Full article
Show Figures

Figure 1

12 pages, 1516 KB  
Review
Thin Cell Layer Tissue Culture Technology with Emphasis on Tree Species
by Vikas Sharma, Tanvi Magotra, Ananya Chourasia, Divye Mittal, Ujjwal Prathap Singh, Saksham Sharma, Shivika Sharma, Yudith García Ramírez, Judit Dobránszki and Marcos Edel Martinez-Montero
Forests 2023, 14(6), 1212; https://doi.org/10.3390/f14061212 - 12 Jun 2023
Cited by 7 | Viewed by 6728
Abstract
An increased dependency on plant-based resources for food, shelter, and medicinal usage has increased their sustainable and unsustainable exploitation. To use this resource sustainably, plant tissue culture (PTC) is one important technology. Among different PTC techniques, thin cell layer (TCL) technology is a [...] Read more.
An increased dependency on plant-based resources for food, shelter, and medicinal usage has increased their sustainable and unsustainable exploitation. To use this resource sustainably, plant tissue culture (PTC) is one important technology. Among different PTC techniques, thin cell layer (TCL) technology is a relatively simple and easily adaptable technique for in vitro cultures of plants. This technique uses small explants about 0.5–2 mm in thickness excised from different plant organs. It has been successfully used in the large-scale propagation of vegetables, legumes, and plants with medicinal benefits. TCL technology has proven to be effective in stimulating various organogenic responses when combined with various new methods such as nanotechnology or microtome-based explantation, especially in tree species. It is considered an important tool in plant biotechnology. Although the morphogenetic response per explant is usually higher in conventional explants, the appropriate use of plant growth regulators and geometric factors in TCL has the potential to make it more efficient and beneficial. This article provides an overview of the concept of TCL as applied to different plant species, particularly trees, since there are few, if any, summaries of TCL technology, especially in trees. This review will certainly revitalize this important technology so that it can be used effectively for successful mass propagation in the field of plant tissue culture. Full article
(This article belongs to the Special Issue Somatic Embryogenesis and Organogenesis on Tree Species)
Show Figures

Figure 1

34 pages, 646 KB  
Review
Application of In Vitro Plant Tissue Culture Techniques to Halophyte Species: A Review
by Luísa Custódio, Gilbert Charles, Christian Magné, Gregorio Barba-Espín, Abel Piqueras, José A. Hernández, Karim Ben Hamed, Viana Castañeda-Loaiza, Eliana Fernandes and Maria João Rodrigues
Plants 2023, 12(1), 126; https://doi.org/10.3390/plants12010126 - 27 Dec 2022
Cited by 28 | Viewed by 18181
Abstract
Halophytes are plants able to thrive in environments characterized by severe abiotic conditions, including high salinity and high light intensity, drought/flooding, and temperature fluctuations. Several species have ethnomedicinal uses, and some are currently explored as sources of food and cosmetic ingredients. Halophytes are [...] Read more.
Halophytes are plants able to thrive in environments characterized by severe abiotic conditions, including high salinity and high light intensity, drought/flooding, and temperature fluctuations. Several species have ethnomedicinal uses, and some are currently explored as sources of food and cosmetic ingredients. Halophytes are considered important alternative cash crops to be used in sustainable saline production systems, due to their ability to grow in saline conditions where conventional glycophyte crops cannot, such as salt-affected soils and saline irrigation water. In vitro plant tissue culture (PTC) techniques have greatly contributed to industry and agriculture in the last century by exploiting the economic potential of several commercial crop plants. The application of PTC to selected halophyte species can thus contribute for developing innovative production systems and obtaining halophyte-based bioactive products. This work aimed to put together and review for the first time the most relevant information on the application of PTC to halophytes. Several protocols were established for the micropropagation of different species. Various explant types have been used as starting materials (e.g., basal shoots and nodes, cotyledons, epicotyls, inflorescence, internodal segments, leaves, roots, rhizomes, stems, shoot tips, or zygotic embryos), involving different micropropagation techniques (e.g., node culture, direct or indirect shoot neoformation, caulogenesis, somatic embryogenesis, rooting, acclimatization, germplasm conservation and cryopreservation, and callogenesis and cell suspension cultures). In vitro systems were also used to study physiological, biochemical, and molecular processes in halophytes, such as functional and salt-tolerance studies. Thus, the application of PTC to halophytes may be used to improve their controlled multiplication and the selection of desired traits for the in vitro production of plants enriched in nutritional and functional components, as well as for the study of their resistance to salt stress. Full article
(This article belongs to the Special Issue Micropropagation and Cryopreservation of Plants)
Show Figures

Figure 1

16 pages, 1508 KB  
Article
Drought Stress Study on Nicotiana tabacum L., “Baladi”, an In Vitro Experimental Model
by Maria-Mihaela Antofie and Camelia Sava Sand
Agriculture 2021, 11(9), 845; https://doi.org/10.3390/agriculture11090845 - 2 Sep 2021
Cited by 3 | Viewed by 3206
Abstract
Crops drought tolerance is a trait of outmost importance for agriculture especially today when climate change is affecting more the production for food and feed. The scope of this article is to evaluate in vitro drought stress response of Nicotiana tabacum L., “Baladi”. [...] Read more.
Crops drought tolerance is a trait of outmost importance for agriculture especially today when climate change is affecting more the production for food and feed. The scope of this article is to evaluate in vitro drought stress response of Nicotiana tabacum L., “Baladi”. The experiment was set up for four successive stages starting with in vitro seedling development, hypocotyl cultivation, three generations of micropropagation, pre-acclimatization and acclimatization. The effect of abscisic acid (ABA) and/or polyethylene-glycol 6000 (PEG) on tobacco hypocotyl caulogenesis and micropropagation were investigated. Superoxide-dismutases (SODs) and peroxidases (POXs) are more active and different isoforms patterns have been identified compared to the control for cualogenesis. A decrease of internodes length and a higher shoots multiplication rate were observed. However, under PEG treatment plantlets expressed hyperhydration and ceased rooting. Pre-treatments effects study of ABA and/or PEG were finalized in acclimatization phase for 18 tobacco clones. A summary of our results revealed that ABA and/or PEG induce among others a higher oxidative stress compared to the control in the first stage that is not maintained for all clones until acclimatization. Certain clones expressed a lower SOD activity compared to the control during acclimatization but maintaining higher POX activity. Full article
Show Figures

Figure 1

Back to TopTop