Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,301)

Search Parameters:
Keywords = cell–cell adhesion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7302 KB  
Article
circRNA Profiling Reveals Regulatory Networks Underlying Gonadal Differentiation in Nile Tilapia (Oreochromis niloticus)
by Mengfan Wu, Shangqi Li, Shen Huang, Wenzheng Sun, Xingxing Guo, Yanbin Zhang, Yiyun Du, You Wu, Linyan Zhou and Jian Xu
Fishes 2025, 10(10), 493; https://doi.org/10.3390/fishes10100493 (registering DOI) - 2 Oct 2025
Abstract
The Nile tilapia (Oreochromis niloticus), a key aquaculture species, displays marked sexual growth dimorphism, with males growing faster than females. This process is governed by intricate interactions between antagonistic regulators, including transcription factors, growth factors, and steroid hormones, operating through sex-specific [...] Read more.
The Nile tilapia (Oreochromis niloticus), a key aquaculture species, displays marked sexual growth dimorphism, with males growing faster than females. This process is governed by intricate interactions between antagonistic regulators, including transcription factors, growth factors, and steroid hormones, operating through sex-specific developmental pathways. While circular RNAs (circRNAs) are known to modulate gene expression by sponging microRNAs (miRNAs), their role in teleost sex differentiation remains poorly understood. To address this gap, we profiled circRNA expression in tilapia gonads by constructing six circRNA libraries from testes and ovaries of 180 days after hatching (dah) fish, followed by high-throughput sequencing. We identified 6564 gonadal circRNAs distributed across all 22 linkage groups, including 226 differentially expressed circRNAs (DECs; 108 testis-biased, 118 ovary-biased). Functional enrichment analysis linked their host genes to critical pathways such as cAMP signaling, cell adhesion molecules, and—notably—sexual differentiation processes (e.g., estrogen signaling, oocyte meiosis, and steroid hormone biosynthesis). Furthermore, we deciphered competing endogenous RNA (ceRNA) networks, uncovering circRNA–miRNA–mRNA interactions targeting germ cell determinants, sex-specific transcription factors, and steroidogenic enzymes. This study provides the first systematic exploration of circRNA involvement in tilapia sex differentiation and gonadal differentiation, offering novel insights into the post-transcriptional regulation of sexual dimorphism. Our findings advance the understanding of circRNA biology in fish and establish a framework for future studies on aquaculture species with similar reproductive strategies. Full article
Show Figures

Figure 1

28 pages, 1629 KB  
Article
Molecular Adaptations to Repeated Radiation Exposure in Triple-Negative Breast Cancer: Dysregulation of Cell Adhesion, Mitochondrial Function, and Epithelial–Mesenchymal Transition
by Noah Dickinson, Alyssa Murray, Megan Davis, Kaitlyn Marshall-Bergeron, Jessica Dougherty, Wuroud Al-Khayyat, Ramya Narendrula, Maggie Lavoie, Emma Mageau, Ronan Derbowka, A. Thomas Kovala, Douglas R. Boreham, Natalie Lefort, Christopher Thome, Tze Chun Tai and Sujeenthar Tharmalingam
Int. J. Mol. Sci. 2025, 26(19), 9611; https://doi.org/10.3390/ijms26199611 - 1 Oct 2025
Abstract
Radiation resistance presents a significant challenge in the treatment of triple-negative breast cancer (TNBC). To investigate the molecular adaptations associated with radiation therapy resistance, MDA-MB-231 cells were subjected to a repeated radiation (RR) regimen totaling 57 Gy over 11 weeks, followed by clonal [...] Read more.
Radiation resistance presents a significant challenge in the treatment of triple-negative breast cancer (TNBC). To investigate the molecular adaptations associated with radiation therapy resistance, MDA-MB-231 cells were subjected to a repeated radiation (RR) regimen totaling 57 Gy over 11 weeks, followed by clonal selection. The resulting radiation-adapted cells (MDA-MB-231RR) were analyzed using whole-transcriptome RNA sequencing, revealing substantial dysregulation of pathways related to cell adhesion, mitochondrial function, and epithelial–mesenchymal transition (EMT). These transcriptional changes were corroborated by functional assays. MDA-MB-231RR cells exhibited reduced expression of adhesion receptors (ITGB1, ITGA2, ITGA6) and extracellular matrix proteins (fibronectin, collagen, laminins), accompanied by significantly impaired cell adhesion to fibronectin, collagen, and laminin substrates. Mitochondrial dysfunction was supported by downregulation of oxidative phosphorylation genes (MTCO1, MTND1) and confirmed by JC-1 dye assays demonstrating a marked reduction in mitochondrial membrane potential. EMT-associated changes included increased mesenchymal markers and loss of epithelial markers (CTNNB1, SNAI2, CK19), consistent with enhanced migratory potential. Taken together, this study delineates key molecular features of radiation adaptation in TNBC, providing a foundation for the development of targeted therapies to overcome treatment resistance. Full article
(This article belongs to the Special Issue Cancer Progression and Therapeutic Resistance Mechanisms)
16 pages, 3434 KB  
Article
Transcriptomic Analysis of the Effects of Hydroxysafflor Yellow A on hUC-MSC Senescence via the ECM–Receptor Interaction Pathway
by Siyun Wang, Qi Zhu, Xueer Feng, Xinghua Chou and Tao Lu
Int. J. Mol. Sci. 2025, 26(19), 9579; https://doi.org/10.3390/ijms26199579 - 1 Oct 2025
Abstract
This study investigated the mechanism of hydroxysafflor yellow A (HSYA) on senescent human umbilical cord mesenchymal stem cells (hUC-MSCs) through transcriptome sequencing. HSYA treatment identified 2377 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed [...] Read more.
This study investigated the mechanism of hydroxysafflor yellow A (HSYA) on senescent human umbilical cord mesenchymal stem cells (hUC-MSCs) through transcriptome sequencing. HSYA treatment identified 2377 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that these DEGs were primarily enriched in cell adhesion regulation and the extracellular matrix (ECM)–receptor interaction pathway. Gene Set Enrichment Analysis (GSEA) and protein–protein interaction (PPI) network analysis corroborated the central role of ECM–receptor interaction signaling, and Key Driver Analysis (KDA) revealed 10 core regulatory genes (e.g., ID1, SMAD3, TGFB3). SA-β-gal staining showed that HSYA significantly reduced senescence-associated β-galactosidase activity. Flow cytometry showed no significant changes in cell cycle distribution. Western blot analysis indicated that HSYA treatment reduced the protein expression level of p16 without significantly altering p53 levels. Furthermore, HSYA significantly attenuated intracellular reactive oxygen species (ROS) accumulation. qPCR validation demonstrated that HSYA significantly upregulated ID1, GDF5, SMAD3, and TGFB3 while downregulating BMP4, TGFB2, and CCN2. These findings indicate that HSYA modulates genes associated with the ECM–receptor interaction pathway, potentially contributing to improved ECM homeostasis in senescent hUC-MSCs. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

14 pages, 10805 KB  
Article
Non-Competitive Binding of Isatuximab and Daratumumab to CD38: Implications for Targeted Therapy in Multiple Myeloma
by Rubén Osuna-Gómez, Jordi López-Pardo, Maria Mulet, Josep Nomdedéu, Elisabet Cantó, Rosa Ortin, Ángela Sánchez Cayuela, Ma Àngels Ortiz, Albert Guinart-Cuadra and Silvia Vidal
Pharmaceutics 2025, 17(10), 1278; https://doi.org/10.3390/pharmaceutics17101278 - 30 Sep 2025
Abstract
Background/Objectives: CD38-targeting monoclonal antibodies isatuximab and daratumumab have revolutionized multiple myeloma (MM) treatment, but a deeper understanding of their distinct mechanisms is crucial for therapeutic optimization. Methods: We used flow cytometry to assess isatuximab and daratumumab binding competition in MM cell [...] Read more.
Background/Objectives: CD38-targeting monoclonal antibodies isatuximab and daratumumab have revolutionized multiple myeloma (MM) treatment, but a deeper understanding of their distinct mechanisms is crucial for therapeutic optimization. Methods: We used flow cytometry to assess isatuximab and daratumumab binding competition in MM cell lines and patient-derived bone marrow cells. The dynamics of CD38 expression were evaluated at different time points before and after antibody-mediated removal. The effects of IMiDs (pomalidomide, lenalidomide) on CD38 expression and isatuximab-induced apoptosis, either alone or in combination with IMiDs, were also examined. Moreover, MM cell migration was assessed through CXCR4-mediated assays, and cell adhesion was evaluated via CD49d-dependent assays. Results: Isatuximab and daratumumab did not compete for CD38 binding, confirming distinct epitope recognition. Following depletion with either antibody, CD38 expression on the MM cell surface began to recover within 2 h, suggesting a dynamic regulation of CD38 availability. While daratumumab lacked direct apoptosis, isatuximab induced significant direct cell death. Pomalidomide enhanced isatuximab-induced apoptosis by increasing CD38 expression, whereas lenalidomide had no significant effect. Additionally, both antibodies effectively inhibited MM cell migration and significantly reduced cell adhesion. Conclusions: Their non-competitive binding and shared impact on cell dynamics suggest opportunities for optimizing treatment strategies through combinatorial or sequential approaches in MM therapy. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

13 pages, 1734 KB  
Article
Chimeric Fimbrial Multiepitope Antigen Fused to Double-Mutant LT (dmLT) Induces Antibodies That Inhibit Enterotoxigenic E. coli Adhesion in Porcine IPEC-J2 Cells
by Jinxin He, Hongrui Liu, Yuexin Li, Jiashu Chang, Yayun Yang and Shaopeng Gu
Animals 2025, 15(19), 2858; https://doi.org/10.3390/ani15192858 - 30 Sep 2025
Abstract
This study focused on utilizing the double-mutant heat-labile toxin (R192G/L211A) (dmLT) as a backbone protein, into which neutralizing epitopes of ETEC (FaeG, FedF, FanC, FasA, and Fim41a) were embedded. A combination of computational modeling and immunogenicity analysis was conducted to evaluate the dmLT [...] Read more.
This study focused on utilizing the double-mutant heat-labile toxin (R192G/L211A) (dmLT) as a backbone protein, into which neutralizing epitopes of ETEC (FaeG, FedF, FanC, FasA, and Fim41a) were embedded. A combination of computational modeling and immunogenicity analysis was conducted to evaluate the dmLT(R192G/L211A) multiepitope fusion antigen (MEFA). Both the computational modeling and experimental results confirmed that all relevant epitopes were clearly exposed on the surface of the MEFA. Subcutaneous immunizations of rabbits with the MEFA protein yielded the development of IgG antibodies that targeted all five fimbriae. Furthermore, these antibodies demonstrated significant inhibition of adhesion for K88+, K99+, 987P+, F18+, and F41+ ETEC strains to porcine small intestinal epithelial cell line IPEC-J2 cells. These results indicated that the dmLT toxoid-based MEFA protein effectively elicits high-titer, functional antibodies capable of neutralizing the attachment of multiple prevalent ETEC fimbrial types, highlighting its potential as a broad-spectrum vaccine candidate. Consequently, it shows promising potential as a broad and effective vaccine against ETEC. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 2676 KB  
Article
The Dual Effect of Hematite-Amended Constructed Wetlands: Reducing the Toxicity of SMX Degradation Products and Increasing the Dissemination of Antibiotic Resistance Genes
by Shiwen Zhang, Xin Zhang, Fengkai Sun, Chaoyu Li, Zhen Hu, Shuang Liang and Huijun Xie
Water 2025, 17(19), 2850; https://doi.org/10.3390/w17192850 - 30 Sep 2025
Abstract
Iron ore may enhance the treatment performance of antibiotics within constructed wetlands (CWs), but its effects on the toxicity of degradation products and antibiotic resistance genes require further investigation. This study investigated the sulfamethoxazole (SMX) removal efficiency, SMX degradation pathway, and dissemination of [...] Read more.
Iron ore may enhance the treatment performance of antibiotics within constructed wetlands (CWs), but its effects on the toxicity of degradation products and antibiotic resistance genes require further investigation. This study investigated the sulfamethoxazole (SMX) removal efficiency, SMX degradation pathway, and dissemination of antibiotic resistance genes (sul1 and sul2) linked to SMX in hematite-amended CW microcosms. Hematite, due to its large specific surface area and formation of high redox potential, promoted SMX removal (99.05–99.26%) by adsorption, thus enhancing microbial biodegradation. The addition of hematite increased SMX degradation pathways and simultaneously attenuated the ecotoxicity of intermediate products. However, hematite also stimulated the production of extracellular polymeric substances by microorganisms, enhancing cell–cell adhesion and increasing membrane permeability, ultimately leading to a rise in the abundance of sul1 and sul2. Therefore, although iron ore provides benefits in practical applications, the potential environmental risks it poses deserve serious consideration. Full article
(This article belongs to the Special Issue Impacts of Climate Change & Human Activities on Wetland Ecosystems)
Show Figures

Figure 1

30 pages, 1346 KB  
Review
Electrospun Bio-Scaffolds for Mesenchymal Stem Cell-Mediated Neural Differentiation: Systematic Review of Advances and Future Directions
by Luigi Ruccolo, Aleksandra Evangelista, Marco Benazzo, Bice Conti and Silvia Pisani
Int. J. Mol. Sci. 2025, 26(19), 9528; https://doi.org/10.3390/ijms26199528 - 29 Sep 2025
Abstract
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly [...] Read more.
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly through the combination of electrospun nanofibrous scaffolds and mesenchymal stem cells (MSCs). Electrospun fibers mimic the neural extracellular matrix, providing topographical and mechanical cues that enhance MSC adhesion, viability, and neural differentiation. MSCs are multipotent stem cells with robust paracrine and immunomodulatory activity, capable of supporting regeneration and, under proper stimuli, acquiring neural-like phenotypes. This systematic review, following the PRISMA 2020 method, analyzes 77 selected articles from the last ten years to assess the potential of electrospun biopolymer scaffolds for MSC-mediated neural repair. We critically examine the scaffold’s composition (synthetic and natural polymers), fiber architecture (alignment and diameter), structural and mechanical properties (porosity and stiffness), and biofunctionalization strategies. The influence of MSC tissue sources (bone marrow, adipose, and dental pulp) on neural differentiation outcomes is also discussed. The results of a literature search show both in vitro and in vivo enhanced neural marker expression, neurite extension, and functional recovery when MSCs are seeded onto optimized electrospun scaffolds. Therefore, integrating stem cell therapy with advanced biomaterials offers a promising route to bridge the gap between neural injury and functional regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

24 pages, 4152 KB  
Article
Feasibility Study of Strontium-Containing Calcium Phosphate Coatings on Micro-Arc Oxidized AZ31
by Satish S. Singh, John Ohodnicki, Abhijit Roy, Mitali Patil, Boeun Lee and Prashant N. Kumta
Materials 2025, 18(19), 4509; https://doi.org/10.3390/ma18194509 - 28 Sep 2025
Abstract
Calcium phosphate coatings are known for their osteoconductive prowess. In this work, calcium phosphate coatings were studied on a model biodegradable magnesium alloy of AZ31, primarily to provide improved corrosion protection and, more importantly, to confer in vitro cytocompatibility to the AZ31 alloy. [...] Read more.
Calcium phosphate coatings are known for their osteoconductive prowess. In this work, calcium phosphate coatings were studied on a model biodegradable magnesium alloy of AZ31, primarily to provide improved corrosion protection and, more importantly, to confer in vitro cytocompatibility to the AZ31 alloy. Correspondingly, an aqueous-based approach was developed to deposit Sr2+-substituted calcium phosphates on micro-arc oxidized AZ31. Micro-arc oxidation was used mainly as a pretreatment technique due to improved homogeneity and adhesion strength in comparison to the coatings formed by the traditionally used alkaline and acidic pretreatment. Calcium phosphate coatings with up to 11.5 mol. % Sr were formed on micro-arc oxidized AZ31 substrates. Despite observation of greater than the intended 10 mol. % Sr to the calcium phosphate coatings as measured within the measurement error, biphasic mixtures of dicalcium phosphate dihydrate and poorly crystalline hydroxyapatite were formed. Micro-arc oxidation treatment, nevertheless, provided a slight improvement in corrosion protection compared to uncoated AZ31. However, much-improved corrosion protection was provided by the calcium phosphate coatings prepared either with or without Sr2+. The calcium phosphate coatings prepared with Sr2+ were also observed to support improved MC3T3-E1 murine pre-osteoblast cell proliferation compared to the calcium phosphate coated substrates prepared without Sr2+. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Graphical abstract

30 pages, 3375 KB  
Article
Pro-Inflammatory Protein PSCA Is Upregulated in Neurological Diseases and Targets β2-Subunit-Containing nAChRs
by Mikhail A. Shulepko, Yuqi Che, Alexander S. Paramonov, Milita V. Kocharovskaya, Dmitrii S. Kulbatskii, Anisia A. Ivanova, Anton O. Chugunov, Maxim L. Bychkov, Artem V. Kirichenko, Zakhar O. Shenkarev, Mikhail P. Kirpichnikov and Ekaterina N. Lyukmanova
Biomolecules 2025, 15(10), 1381; https://doi.org/10.3390/biom15101381 - 28 Sep 2025
Abstract
Prostate stem cell antigen (PSCA) is a Ly6/uPAR protein that targets neuronal nicotinic acetylcholine receptors (nAChRs). It exists in membrane-tethered and soluble forms, with the latter upregulated in Alzheimer’s disease. We hypothesize that PSCA may be linked to a wider spectrum of neurological [...] Read more.
Prostate stem cell antigen (PSCA) is a Ly6/uPAR protein that targets neuronal nicotinic acetylcholine receptors (nAChRs). It exists in membrane-tethered and soluble forms, with the latter upregulated in Alzheimer’s disease. We hypothesize that PSCA may be linked to a wider spectrum of neurological diseases and could induce neuroinflammation. Indeed, PSCA expression is significantly upregulated in the brain of patients with multiple sclerosis, Huntington’s disease, Down syndrome, bipolar disorder, and HIV-associated dementia. To investigate PSCA’s structure, pharmacology, and inflammatory function, we produced a correctly folded water-soluble recombinant analog (ws-PSCA). In primary hippocampal neurons and astrocytes, ws-PSCA differently regulates secretion of inflammatory factors and adhesion molecules and induces pro-inflammatory responses by increasing TNFβ secretion. Heteronuclear NMR and 15N relaxation measurements reveal a classical β-structural three-finger fold with conformationally disordered loops II and III. Positive charge clustering on the molecular surface suggests the functional importance of ionic interactions by these loops. Electrophysiological studies in Xenopus oocytes point on ws-PSCA inhibition of α3β2-, high-, and low-sensitive variants of α4β2- (IC50 ~50, 27, and 15 μM, respectively) but not α4β4-nAChRs, suggesting targeting of the β2 subunit. Ensemble docking and molecular dynamics simulations predict PSCA binding to high-sensitive α4β2-nAChR at α4/β2 and β2/β2 interfaces. Complexes are stabilized by ionic and hydrogen bonds between PSCA’s loops II and III and the primary and complementary receptor subunits, including glycosyl groups. This study gives new structural and functional insights into PSCA’s interaction with molecular targets and provides clues to understand its role in the brain function and mental disorders. Full article
Show Figures

Figure 1

26 pages, 4161 KB  
Article
Effect of Organic Acid Selection on the Physicochemical Properties, Bioadhesion, and Stability of Chitosan Hydrogels
by Muhammet Davut Arpa, Ümit Can Erim, Ebrar Elif Kesmen Salik, Sevde Nur Biltekin Kaleli and Ismail Erol
Gels 2025, 11(10), 778; https://doi.org/10.3390/gels11100778 - 28 Sep 2025
Abstract
Chitosan is a promising biopolymer for drug delivery due to its biocompatibility, biodegradability, and low toxicity. However, its limited dispersibility in water restricts applications, which can be improved through organic acid salts. This study examined how acetic, lactic, glutamic, and citric acids influence [...] Read more.
Chitosan is a promising biopolymer for drug delivery due to its biocompatibility, biodegradability, and low toxicity. However, its limited dispersibility in water restricts applications, which can be improved through organic acid salts. This study examined how acetic, lactic, glutamic, and citric acids influence the physicochemical, rheological, swelling, bioadhesive, stability, and cytotoxicity properties of chitosan hydrogels. Gels were prepared using varying chitosan-to-acid molar ratios (1:1; 1:1.2 for citrate) and characterized by NMR, FTIR, TGA, and XRD. Despite identical chitosan concentrations (2%, 3%, 3.5%), gels displayed distinct viscosity, swelling, and adhesion profiles depending on the acid. Lactate gels exhibited the most favorable overall performance, combining high viscosity (1555–6665 mPa·s), structural stability, and strong bioadhesion. Citrate gels showed the lowest viscosity (825–3550 mPa·s), cell viability, and stability but the highest bioadhesiveness, likely due to multivalent ionic interactions. Short-term stability tests revealed that low pH accelerated chitosan degradation, leading to viscosity loss up to ~90–95% within 30 days, particularly in citrate hydrogels. Cytotoxicity tests confirmed high biocompatibility, with all formulations maintaining cell viability above 80%. Overall, the findings highlight that organic acid selection is a critical determinant of chitosan gel behavior, offering guidance for tailoring safe, stable, and bioadhesive drug delivery systems. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels (2nd Edition))
Show Figures

Figure 1

14 pages, 537 KB  
Article
Enhancing Tetradesmus sp. Biomass Recovery: The Influence of Culture Media on Surface Physicochemical Properties
by Ana Carolina Anzures-Mendoza, Ulises Páramo-García, Nohra Violeta Gallardo-Rivas, Luciano Aguilera-Vázquez and Ana María Mendoza-Martínez
Processes 2025, 13(10), 3099; https://doi.org/10.3390/pr13103099 - 27 Sep 2025
Abstract
Efficient biomass harvesting remains one of the primary barriers to the commercial feasibility of large-scale microalgal production. This study investigates the effect of different culture media on the surface physicochemical properties of Tetradesmus sp., with emphasis on their role in natural aggregation. Cultures [...] Read more.
Efficient biomass harvesting remains one of the primary barriers to the commercial feasibility of large-scale microalgal production. This study investigates the effect of different culture media on the surface physicochemical properties of Tetradesmus sp., with emphasis on their role in natural aggregation. Cultures were grown for 30 days under controlled light and temperature conditions using Blue Green 11 (BG11), Tris–acetate–phosphate (TAP), and deionized water supplemented with Bayfolan® fertilizer. Surface hydrophobicity was assessed through microbial adhesion to solvents (MATS) and contact angle analysis, electrokinetic properties were evaluated by zeta potential measurements, and cell surface chemistry was characterized by attenuated total reflectance (ATR) sampling methodology for Fourier Transform Infrared (FTIR) spectroscopy. Across all treatments, Tetradesmus sp. exhibited inherent hydrophobicity, but Bayfolan® supplementation yielded the highest contact angle (49.0 ± 0.9°) and the least negative free energy of interaction (ΔGsws = −26.36 mJ·m−2), indicating a stronger tendency toward self-aggregation. Zeta potential values remained consistently negative (−10 to −14 mV), with no significant variation among media, suggesting that hydrophobic interactions rather than electrostatic forces govern aggregation. ATR-FTIR spectra confirmed the presence of lipids, proteins, and carbohydrates, with changes in peak intensities reflecting metabolic adjustments to media composition. These results demonstrate that low-cost Bayfolan® supplementation enhances surface hydrophobicity and aggregation, providing a sustainable strategy to facilitate biomass recovery and reduce harvesting costs in microalgal biorefineries. Full article
(This article belongs to the Special Issue Advances in Bioprocess Technology, 2nd Edition)
15 pages, 7925 KB  
Article
DNA Hypermethylation at the Invasive Front of Oral Squamous Cell Carcinoma Confers Poorly Differentiated Characteristics and Promotes Migration of Cancer Cells
by Li-Po Wang, Chien-Ya Li, Yu-Hsueh Wu, Meng-Yen Chen, Yi-Ping Hsieh, Tze-Ta Huang, Tse-Ming Hong and Yuh-Ling Chen
Diagnostics 2025, 15(19), 2477; https://doi.org/10.3390/diagnostics15192477 - 27 Sep 2025
Abstract
Background/Objectives: Oral squamous cell carcinoma (OSCC) is a common and aggressive oral cancer with high recurrence and mortality rates, largely due to late diagnosis and metastasis. Epigenetic regulation, particularly aberrant DNA methylation, plays a critical role in cancer progression. Altered methylation patterns disrupt [...] Read more.
Background/Objectives: Oral squamous cell carcinoma (OSCC) is a common and aggressive oral cancer with high recurrence and mortality rates, largely due to late diagnosis and metastasis. Epigenetic regulation, particularly aberrant DNA methylation, plays a critical role in cancer progression. Altered methylation patterns disrupt cancer-related gene regulation. Our previous study found that oral cancer patients exhibit increased synthesis of S-adenosyl-L-methionine, a key methyl donor for cytosine methylation. Therefore, the aim of this study was to explore the relationship between global DNA methylation and OSCC progression and to evaluate the impact of DNA methylation heterogeneity on oral cancer cells. Methods: Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to examine 5-methylcytosine (5-mC) expression in OSCC clinical specimens and oral cancer cells. The DNA methyltransferase inhibitor 5-Aza-dC was used to assess the effects of DNA methylation on cell function and gene expression. RNA sequencing was used to identify key differentially expressed genes affected by 5-Aza-dC treatment. Cell migration was assessed using a wound closure assay. Protein and gene expression were analyzed using Western blotting and quantitative PCR. Results: An inverse relationship was found between 5-mC levels and cancer differentiation—poorly differentiated OSCC exhibited higher 5-mC levels. Additionally, higher 5-mC staining was observed at the invasion front of oral cancer tissues. In OSCC cells, 5-mC content correlated with migration ability. Furthermore, conditioned medium from cancer-associated fibroblasts enhanced both methylation levels and migration of OSCC cells. Treatment with 5-Aza-dC significantly increased epithelial differentiation, reduced epithelial-to-mesenchymal transition and cell adhesion-related genes, and inhibited OSCC cell migration. Conclusions: The findings highlight the critical role of DNA hypermethylation in OSCC progression, particularly in regulating differentiation, migration, and EMT. The interplay between the tumor microenvironment and epigenetic modifications underscores the complexity of OSCC biology and opens avenues for innovative therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Oral Pathology of Basic and Clinical Cancer Research)
Show Figures

Figure 1

23 pages, 18324 KB  
Article
Tissue Regression-Related Alterations in the Expression of Adherens and Tight Junction Proteins in the Hen Oviduct
by Karolina Frydrych and Anna Hrabia
Int. J. Mol. Sci. 2025, 26(19), 9451; https://doi.org/10.3390/ijms26199451 - 27 Sep 2025
Abstract
Intercellular junctions are involved in the regulation of epithelial function and remodeling in the female reproductive system; however, their importance in the avian oviduct is poorly known. The aim of this study was: first, to provide information on the expression and localization of [...] Read more.
Intercellular junctions are involved in the regulation of epithelial function and remodeling in the female reproductive system; however, their importance in the avian oviduct is poorly known. The aim of this study was: first, to provide information on the expression and localization of key tight (occludin, claudin 1, 4, 5, junctional adhesion molecule [JAM] 2, 3) and adherens (E-cadherin, β-catenin) junction proteins in the hen oviduct, and second, to compare expression and localization of these molecules between laying and subjected to fasting-induced pause in laying hens. Tissue samples from all oviductal segments, i.e., infundibulum, magnum, isthmus, shell gland, and vagina were collected on the sixth day of the experiment from the control hens and hens that had been fasted for five consecutive days. Specific oviductal part-dependent expression patterns of examined genes (by quantitative real-time polymerase chain reaction [qRT-PCR]) and/or proteins (by Western blotting) were found, with the highest mRNA transcript and protein abundances in the infundibulum, shell gland, and vagina, and the lowest in the magnum. Fasting-induced partial regression of the oviduct was accompanied by alterations in mRNA transcript and protein abundances of examined molecules. Reduced staining intensity of immunoreaction (analyzed by immunofluorescence) for occludin, E-cadherin, and β-catenin proteins was observed in the oviduct of non-laying hens. Our results indicate the potential involvement of these proteins in controlling intercellular communication, cell signaling, paracellular permeability, and mucosal barrier functionality, which impact the functioning of the hen oviduct. Furthermore, our observations provide novel insights into the molecular composition of tight and adherens junctions and its contribution to the remodeling of the oviduct during its regression induced by fasting. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

43 pages, 3650 KB  
Review
Snake Toxins Affecting Blood Vessel Walls: Mode of Action and Biological Significance
by Alexey V. Osipov and Yuri N. Utkin
Int. J. Mol. Sci. 2025, 26(19), 9439; https://doi.org/10.3390/ijms26199439 - 26 Sep 2025
Abstract
One of the main targets for snake venoms in animal and human organisms is the circulatory system. Mechanisms of circulatory system injury within the victim’s body include, among others, the direct effect of snake toxins on structures in blood vessel walls. The interaction [...] Read more.
One of the main targets for snake venoms in animal and human organisms is the circulatory system. Mechanisms of circulatory system injury within the victim’s body include, among others, the direct effect of snake toxins on structures in blood vessel walls. The interaction of a toxin with cells and the extracellular matrix of the vessel wall may manifest as cytotoxicity, leading to cell death by necrosis or apoptosis, and damage to vascular wall structures. Such interactions may increase capillary permeability, promoting hemorrhage or edema, and may also induce alterations in vascular tone, resulting in changes in blood pressure. Snake toxins may also affect the growth, function, and regenerative ability of the endothelium, thus modulating angiogenesis; some toxins exert protective or anti-atherosclerotic effects. Toxins interacting with the vasculature may be classified as enzymes (phospholipases A2, metalloproteinases, L-amino acid oxidases, and hyaluronidases), proteins without enzymatic activity (vascular endothelial growth factors, disintegrins, C-type lectins and snaclecs, three-finger toxins, etc.), peptides (bradykinin-potentiating peptides, natriuretic peptides, sarafotoxins), and low-molecular-weight substances. This review summarizes the data on the vascular effects, particularly on the blood vessel wall, exhibited by various classes and groups of snake toxins. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Animal Toxins, Venoms and Antivenoms 2.0)
Show Figures

Figure 1

16 pages, 912 KB  
Article
Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia
by Minja Miličić Lazić, Nataša Jović Orsini, Miloš Lazarević, Vukoman Jokanović, Vanja Marjanović and Branimir N. Grgur
Biomedicines 2025, 13(10), 2361; https://doi.org/10.3390/biomedicines13102361 - 26 Sep 2025
Abstract
Background: To overcome the esthetic limitations of dental monolithic zirconia restorations, multichromatic systems were developed to combine improved structural integrity with a natural shade gradient that mimics the optical properties of natural teeth. In response to the clinical demand for time-efficient, i.e., chairside [...] Read more.
Background: To overcome the esthetic limitations of dental monolithic zirconia restorations, multichromatic systems were developed to combine improved structural integrity with a natural shade gradient that mimics the optical properties of natural teeth. In response to the clinical demand for time-efficient, i.e., chairside fabrication of zirconia restorations, rapid sintering protocols have become necessary to adjust clinical efficiency along with material performance. This study addresses the challenges of a rapid sintering protocol related to optical performance and phase transformation of the final restoration and the zirconia–cell interaction. Methods: The influence of a rapid sintering protocol on the color stability of the final dental restoration was evaluated by the CIE L*a*b* color space. Phase transformation was assessed through X-ray diffraction analysis. Cellular behavior was evaluated by measuring wettability, the material’s surface energy, and a cell mitochondrial activity assay on human gingival fibroblasts. Results: Optical measurements demonstrated that the total color change in all layers after rapid sintering was above the perceptibility threshold (ΔE* > 1.2), while only the polished enamel layer (ΔE* = 3.01) exceeded the acceptability threshold (ΔE* > 2.7), resulting in a clinically perceptible mismatch. Results of X-ray diffraction analysis, performed for fixed occupancy at Z0.935Y0.065O0.984, revealed that rapid sintering caused a decrease in the cubic (C-) phase and an increase in the total amount of tetragonal (T-) phases. Conventionally sintered zirconia consists of 54% tetragonal (T-) and 46% cubic (C-) phase, whereas in the speed-sintered specimens, an additional T1 phase was detected (T = 49%; T1 = 27%), along with a reduced cubic fraction (C = 24%). Additionally, a small amount of the monoclinic (M) phase is noticed. Although glazing as a surface finishing procedure resulted in increased hydrophilicity, both polished and glazed surface-treated specimens showed statistically comparable cell adhesion and proliferation (p > 0.05). Conclusions: Rapid sintering induced perceptible color changes only in the enamel layer of multichromatic zirconia, suggesting that even layer-specific alterations may have an impact on the overall esthetic outcome of the final prosthetic restoration. Five times higher heating and cooling rates caused difficulty in reaching equilibrium, leading to changes in lattice parameters and the formation of the metastable T1 phase. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

Back to TopTop