Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,773)

Search Parameters:
Keywords = cell autophagy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3121 KB  
Review
The Emerging Role of Mitochondrial Dysfunction in Thyroid Cancer: Mediating Tumor Progression, Drug Resistance, and Reshaping of the Immune Microenvironment
by Yating Zhang, Hengtong Han, Tingting Zhang, Tianying Zhang, Libin Ma, Ze Yang and Yongxun Zhao
Biomolecules 2025, 15(9), 1292; https://doi.org/10.3390/biom15091292 - 8 Sep 2025
Abstract
As the hub of energy metabolism and the cell’s fate arbiter, mitochondria are essential for preserving cellular homeostasis and converting it from pathological states. Therefore, through mechanisms that drive metabolic reprogramming, oxidative stress, and apoptosis resistance, mitochondrial dysfunction (including mitochondrial DNA mutations, mitochondrial [...] Read more.
As the hub of energy metabolism and the cell’s fate arbiter, mitochondria are essential for preserving cellular homeostasis and converting it from pathological states. Therefore, through mechanisms that drive metabolic reprogramming, oxidative stress, and apoptosis resistance, mitochondrial dysfunction (including mitochondrial DNA mutations, mitochondrial dynamics imbalance, mitochondrial autophagy abnormalities, mitochondrial permeability abnormalities, and metabolic disorder) can promote the progression of thyroid cancer (TC), resistance to treatment, and reshaping of the immune microenvironment. This article reviews the molecular mechanisms and characteristic manifestations of mitochondrial dysfunction in TC. It focuses on providing a summary of the main strategies currently used to target the mitochondria, such as dietary intervention and targeted medications like curcumin, as well as the clinical translational value of these medications when used in conjunction with current targeted therapies for TC and radioactive iodine (RAI) therapy in patients with advanced or RAI-refractory TC who rely on targeted therapies. The application prospects and existing challenges of emerging therapeutic methods, such as mitochondrial transplantation, are also discussed in depth, aiming to provide new perspectives for revealing the molecular mechanisms by which mitochondrial dysfunction drives the progression of TC, drug resistance, and the reshaping of its immune microenvironment, as well as providing new diagnostic and therapeutic strategies for patients with advanced or RAI-refractory TC who are reliant on targeted therapies. Full article
Show Figures

Figure 1

26 pages, 7167 KB  
Article
Transcriptomic Analysis Reveals the Molecular Relationship Between Common Respiratory Infections and Parkinson’s Disease
by Abdulaziz Albeshri, Ahmed Bahieldin and Hani Mohammed Ali
Curr. Issues Mol. Biol. 2025, 47(9), 727; https://doi.org/10.3390/cimb47090727 (registering DOI) - 7 Sep 2025
Abstract
Parkinson’s disease (PD) is one of the most rapidly growing neurological disorders globally. The molecular relationship between common respiratory infections (RIs) and idiopathic Parkinson’s disease (iPD) remains a controversial issue. Multiple studies have linked acute respiratory infections to PD, but the molecular mechanism [...] Read more.
Parkinson’s disease (PD) is one of the most rapidly growing neurological disorders globally. The molecular relationship between common respiratory infections (RIs) and idiopathic Parkinson’s disease (iPD) remains a controversial issue. Multiple studies have linked acute respiratory infections to PD, but the molecular mechanism behind this connection is not significantly defined. Therefore, the aim of our study was to investigate potential molecular interactions between RIs and PD. We retrieved eight publicly available RNA-seq datasets from the NCBI Gene Expression Omnibus (NCBI GEO) and performed extensive bioinformatics analysis, including differential gene expression (DGE) analysis, the identification of overlapped differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), pathway and functional enrichment analysis, the construction of protein–protein networks, and the identification of hub genes. Additionally, we applied a machine learning method, a Random Forest model (RF), to external RIs datasets to identify the most important genes. We found that ribosomal subunits, mitochondrial complex proteins, proteasome subunits, and proteins encoding ubiquitin are simultaneously downregulated and co-expressed in RIs and PD. Dysregulation of these proteins may disturb multiple pathways, such as those responsible for ribosome biogenesis, protein synthesis, autophagy, and apoptosis; the ubiquitin–proteasome system (UPS); and the mitochondrial respiratory chain. These processes have been implicated in PD’s pathology, namely in the aggregation of α-synuclein, mitochondrial dysfunction, and the death of dopaminergic neuron cells. Our findings suggest that there are significant similarities in transcriptional responses and dysfunctional molecular mechanisms between RIs, PD, and aging. RIs may modulate PD-relevant pathways in an age- or immune-dependent manner; longitudinal studies are needed to examine the RIs risk factor. Therefore, future studies should experimentally investigate the influence of age, vaccination status, infection type, and severity to clarify the role of RIs in PD’s pathogenesis. Full article
(This article belongs to the Special Issue Omics Analysis for Personalized Medicine)
Show Figures

Figure 1

16 pages, 592 KB  
Review
Connections Between Cellular Senescence and Alzheimer’s Disease—A Narrative Review
by Julia Kuźniar, Patrycja Kozubek, Magdalena Czaja, Hanna Sitka, Urszula Kochman and Jerzy Leszek
Int. J. Mol. Sci. 2025, 26(17), 8638; https://doi.org/10.3390/ijms26178638 - 5 Sep 2025
Viewed by 259
Abstract
Alzheimer’s disease, a neurodegenerative brain disorder leading to the progressive decline in cognitive functions, is the most common type of dementia. The main risk factor for its development is aging. Recent studies indicate that cellular senescence mechanisms are among the major factors in [...] Read more.
Alzheimer’s disease, a neurodegenerative brain disorder leading to the progressive decline in cognitive functions, is the most common type of dementia. The main risk factor for its development is aging. Recent studies indicate that cellular senescence mechanisms are among the major factors in a heterogeneous aging process. Cellular senescence is characterized by a permanent proliferative arrest. Many factors might initiate senescence, for example, damage of DNA, shortening of telomeres, dysfunction of mitochondria, and oncogene activation. These processes lead to alterations in the morphology and function of senescent cells. Research is still ongoing to identify one universal marker that could detect senescent cells and distinguish them from other non-proliferating cells. Those cells are involved in age-related pathologies through many heterogeneous processes, including secretion of pro-inflammatory senescence-associated secretory phenotype factors, which affect the brain differently. Alzheimer’s disease is an example of a neurodegenerative condition connected to cellular senescence. Senescent cells have been demonstrated to accumulate near Aβ plaques and neurofibrillary tangles. In this review, the multifactorial connection between Alzheimer’s disease and cellular senescence is discussed, including topics such as senescence of astrocytes, defective mitochondria, dysregulation of cellular autophagy, and the role of senescent microglia. Full article
Show Figures

Figure 1

24 pages, 919 KB  
Review
Micro RNA in Colorectal Cancer—Potential Diagnostic and Prognostic Markers—An Updated Review
by Weronika Pająk, Jakub Kleinrok, Joanna Pec, Karolina Michno, Jan Wojtas, Miłosz Badach, Barbara Teresińska and Jacek Baj
Int. J. Mol. Sci. 2025, 26(17), 8615; https://doi.org/10.3390/ijms26178615 - 4 Sep 2025
Viewed by 305
Abstract
Colorectal cancer (CRC) is one of the deadliest and most frequently occurring cancers worldwide. Often diagnosed in advanced stages, it requires more challenging treatment. However, emerging studies highlight the possible role of microRNAs (miRNAs) in the screening, diagnosis, and prognosis of CRC. MiRNAs [...] Read more.
Colorectal cancer (CRC) is one of the deadliest and most frequently occurring cancers worldwide. Often diagnosed in advanced stages, it requires more challenging treatment. However, emerging studies highlight the possible role of microRNAs (miRNAs) in the screening, diagnosis, and prognosis of CRC. MiRNAs modulate gene expression and can play both roles in tumor suppressors and oncogenes. In CRC, they influence epithelial–mesenchymal transition (EMT), cell proliferation and migration, apoptosis, autophagy, and patients’ treatment response. In clinical applications, they can be used as predictive and prognostic biomarkers as well as for matching the most suitable treatments. Despite its growing popularity, there is still much to discover about their potential usage in medicine. Full article
Show Figures

Figure 1

21 pages, 6817 KB  
Article
Prepubertal Diabetes Stagnates Testicular Development by Skewing Autophagy Homeostasis in Leydig Cells
by Zonghao Tang and Youkun Zheng
Cells 2025, 14(17), 1376; https://doi.org/10.3390/cells14171376 - 4 Sep 2025
Viewed by 244
Abstract
The maturation of testicular Leydig cells during the prepubertal stage is crucial for establishing male fertility. While diabetes is recognized as a significant detrimental factor affecting male testicular function, its impact specifically during the prepubertal period remains largely unknown. We hypothesized that prepubertal [...] Read more.
The maturation of testicular Leydig cells during the prepubertal stage is crucial for establishing male fertility. While diabetes is recognized as a significant detrimental factor affecting male testicular function, its impact specifically during the prepubertal period remains largely unknown. We hypothesized that prepubertal diabetes may impair testicular development by disrupting Leydig cell maturation. Using streptozotocin (STZ) administration, we established a prepubertal diabetic rat model and investigated the effects of diabetes on testicular development 2 and 4 weeks post-STZ treatment. Diabetes significantly hampered testicular development, manifesting as a decreased testicular weight, structural abnormalities, reduced testosterone levels, and increased inflammatory responses. As anticipated, prepubertal diabetes stagnated Leydig cell maturation and increased Leydig cell apoptosis. Mechanistic studies revealed that autophagy is essential for maintaining homeostasis and facilitating differentiation in immature Leydig cells but is significantly inhibited by hyperglycemia. Dysregulation of autophagy impaired the mitochondrial network, triggering inflammatory responses, suppressing steroidogenic capacity, and accumulating reactive oxygen species (ROS). Elevated ROS levels exacerbated the inflammatory response in the Leydig cells in an NLRP3-dependent manner. Inhibition of NLRP3 ameliorated the hyperglycemia-induced inflammation and decline in steroidogenic ability. Collectively, these findings demonstrate that hyperglycemia suppresses autophagy induction and enhances ROS accumulation in Leydig cells. This cascade promotes inflammation and inhibits steroidogenesis, thereby impeding testicular development in prepubertal diabetic rats. Full article
Show Figures

Figure 1

28 pages, 987 KB  
Review
Vanadium, a Promising Element for Cancer Treatment
by Nelly López-Valdez, Adriana Gonzalez-Villalva, Marcela Rojas-Lemus, Patricia Bizarro-Nevares, Brenda Casarrubias-Tabarez, María Eugenia Cervantes-Valencia, Martha Ustarroz-Cano, Gabriela Guerrero-Palomo, Guadalupe Morales-Ricardes, José Ángel Salgado-Hernández and Teresa I. Fortoul
Inorganics 2025, 13(9), 298; https://doi.org/10.3390/inorganics13090298 - 3 Sep 2025
Viewed by 288
Abstract
In this century, cancer is one of the most important causes of death worldwide, and the need for the development of new treatment options is imperative. The use of metal-based compounds in cancer treatment has increased significantly due to certain properties of these [...] Read more.
In this century, cancer is one of the most important causes of death worldwide, and the need for the development of new treatment options is imperative. The use of metal-based compounds in cancer treatment has increased significantly due to certain properties of these elements, and vanadium has been one of the most studied transition metals in recent decades. Vanadium compounds are being explored as an option for cancer treatment because of their wide range of action mechanisms such as the induction of oxidative stress, DNA damage, cell cycle arrest, induction of apoptosis and regulation of the autophagy process, among the most important mechanisms. Their compounds have been demonstrated to be effective against the cancer types with the highest incidence and mortality rates worldwide, such as lung and breast cancer, with promising results. This review discusses a variety of new vanadium compounds, indicating their mechanisms of action and the neoplasms in which they have shown effectiveness. Full article
Show Figures

Graphical abstract

33 pages, 1036 KB  
Review
Present and Future Perspectives in the Treatment of Liver Fibrosis
by Lucia Cerrito, Linda Galasso, Jacopo Iaccarino, Alessandro Pizzi, Fabrizio Termite, Giorgio Esposto, Raffaele Borriello, Maria Elena Ainora, Antonio Gasbarrini and Maria Assunta Zocco
Pharmaceuticals 2025, 18(9), 1321; https://doi.org/10.3390/ph18091321 - 3 Sep 2025
Viewed by 220
Abstract
Background/Objectives: Liver fibrosis is a progressive consequence of chronic liver injury that can evolve into cirrhosis, liver failure, or hepatocellular carcinoma, representing a major global health burden. Fibrogenesis is driven by hepatic stellate cell (HSC) activation, excessive extracellular matrix deposition, and structural disruption [...] Read more.
Background/Objectives: Liver fibrosis is a progressive consequence of chronic liver injury that can evolve into cirrhosis, liver failure, or hepatocellular carcinoma, representing a major global health burden. Fibrogenesis is driven by hepatic stellate cell (HSC) activation, excessive extracellular matrix deposition, and structural disruption of liver tissue, with transforming growth factor-β (TGF-β) signaling and inflammatory mediators as central pathways. Current therapies primarily target the underlying causes, which may halt disease progression but rarely reverse established fibrosis. This review aims to outline current and emerging therapeutic strategies for liver fibrosis, informing both clinical practice and future research directions. Methods: A narrative synthesis of preclinical and clinical evidence was conducted, focusing on pharmacological interventions, microbiota-directed strategies, and innovative modalities under investigation for antifibrotic activity. Results: Bile acids, including ursodeoxycholic acid and derivatives, modulate HSC activity and autophagy. Farnesoid X receptor (FXR) agonists, such as obeticholic acid, reduce fibrosis but are limited by adverse effects. Fatty acid synthase inhibitors, exemplified by denifanstat, show promise in metabolic dysfunction-associated steatohepatitis (MASH). Additional strategies include renin–angiotensin system inhibitors, omega-3 fatty acids, and agents targeting the gut–liver axis. Microbiota-directed interventions—probiotics, prebiotics, symbiotics, antibiotics (e.g., rifaximin), and fecal microbiota transplantation—are emerging as potential modulators of barrier integrity, inflammation, and fibrogenesis, though larger clinical trials are required. Reliable non-invasive biomarkers and innovative trial designs, including adaptive platforms, are essential to improve patient selection and efficiently evaluate multiple agents and combinations. Conclusions: Novel modalities such as immunotherapy, gene editing, and multi-targeted therapies hold additional potential for fibrosis reversal. Continued translational efforts are critical to establish safe, effective, and accessible treatments for patients with liver fibrosis. Full article
(This article belongs to the Special Issue Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances)
Show Figures

Graphical abstract

27 pages, 12231 KB  
Review
Mitochondria-Associated Membrane Dysfunction in Neurodegeneration and Its Effects on Lipid Metabolism, Calcium Signaling, and Cell Fate
by Thi Thuy Truong, Alka Ashok Singh, Nguyen Van Bang, Nguyen Minh Hung Vu, Sungsoo Na, Jaeyeop Choi, Junghwan Oh and Sudip Mondal
Membranes 2025, 15(9), 263; https://doi.org/10.3390/membranes15090263 - 31 Aug 2025
Viewed by 573
Abstract
Mitochondria-associated membranes (MAMs) are essential for cellular homeostasis. MAMs are specialized contact sites located between the endoplasmic reticulum (ER) and mitochondria and control apoptotic pathways, lipid metabolism, autophagy initiation, and calcium signaling, processes critical to the survival and function of neurons. Although this [...] Read more.
Mitochondria-associated membranes (MAMs) are essential for cellular homeostasis. MAMs are specialized contact sites located between the endoplasmic reticulum (ER) and mitochondria and control apoptotic pathways, lipid metabolism, autophagy initiation, and calcium signaling, processes critical to the survival and function of neurons. Although this area of membrane biology remains understudied, increasing evidence links MAM dysfunction to the etiology of major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). MAMs consist of a network of protein complexes that mediate molecular exchange and ER–mitochondria tethering. MAMs regulate lipid flow in the brain, including phosphatidylserine and cholesterol; disruption of this process causes membrane instability and impaired synaptic function. Inositol 1,4,5-trisphosphate receptor—voltage-dependent anion channel 1 (IP3R-VDAC1) interactions at MAMs maintain calcium homeostasis, which is required for mitochondria to produce ATP; dysregulation promotes oxidative stress and neuronal death. An effective therapeutic approach for altering neurodegenerative processes is to restore the functional integrity of MAMs. Improving cell-to-cell interactions and modulating MAM-associated proteins may contribute to the restoration of calcium homeostasis and lipid metabolism, both of which are key for neuronal protection. MAMs significantly contribute to the progression of neurodegenerative diseases, making them promising targets for future therapeutic research. This review emphasizes the increasing importance of MAMs in the study of neurodegeneration and their potential as novel targets for membrane-based therapeutic interventions. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

19 pages, 4565 KB  
Article
Mortalin Represents a Promising Therapeutic Target for Oral Cancers: Clinical Relevance and Experimental Evidence for the Activation of Akt/mTOR Signaling
by Sosmitha Girisa, Mangala Hegde, Choudhary Harsha, Nafiseh Manteghi, Imliwati Longkumer, Gazi Naseem Ahmed, Munindra Narayan Baruah, Sunil C. Kaul, Renu Wadhwa and Ajaikumar B. Kunnumakkara
Cancers 2025, 17(17), 2860; https://doi.org/10.3390/cancers17172860 - 30 Aug 2025
Viewed by 432
Abstract
Background: Oral cancer remains a significant global health concern due to its high incidence and mortality, as highlighted by GLOBOCAN 2022, and is characterized by poor survival rates despite available therapies. Therefore, there is an imperative need for developing novel therapeutic targets for [...] Read more.
Background: Oral cancer remains a significant global health concern due to its high incidence and mortality, as highlighted by GLOBOCAN 2022, and is characterized by poor survival rates despite available therapies. Therefore, there is an imperative need for developing novel therapeutic targets for this disease. Methods: This study investigates the oncogenic role of mortalin in oral cancer. We have used The Cancer Genome Atlas (TCGA) dataset, samples from North Eastern Region of India and tissue microarray to examine the expression of this gene/protein in patient samples. siRNA related knock down studies were carried out to determine the role of mortalin on oral cancer cell proliferation, survival, metastases, EMT, autophagy etc. Results: Analysis of TCGA dataset revealed increased mortalin expression in head and neck squamous cell carcinoma (HNSCC), which correlated with tumor grade and stage, and was associated with diminished overall survival. These findings were validated in oral cancer patient tissue samples obtained from the North East Region of India and oral cancer cell lines. Functional assays showed that mortalin knockdown via siRNA reduced cancer cell proliferation, migration, invasion, and angiogenesis while inducing apoptosis, disrupting mitochondrial membrane potential, and modulating autophagy. These effects were linked to altered expression of regulatory molecules, including p53, p21WAF1, cyclins, caspases, MMPs, Survivin, and components of the Akt/mTOR pathway, thereby alleviating key hallmarks of oral cancer. Conclusion: Collectively, these data support mortalin as a potential therapeutic target for oral cancer and warrant further studies for the development of mortalin-targeting drugs in both laboratory and clinical settings. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

29 pages, 12918 KB  
Review
Impaired Efferocytosis of Pericytes and Vascular Smooth Muscle Cells in Diabetic Retinopathy
by Tom A. Gardiner, Karis Little and Alan W. Stitt
Cells 2025, 14(17), 1349; https://doi.org/10.3390/cells14171349 - 30 Aug 2025
Viewed by 532
Abstract
During diabetic retinopathy (DR), cell death has been characterized in all of the major retinal cell types, but was observed initially in the microvasculature, particularly the mural cells: pericytes and vascular smooth muscle cells (VSMCs). Indeed, our ability to identify the mural cell [...] Read more.
During diabetic retinopathy (DR), cell death has been characterized in all of the major retinal cell types, but was observed initially in the microvasculature, particularly the mural cells: pericytes and vascular smooth muscle cells (VSMCs). Indeed, our ability to identify the mural cell corpses called “ghost cells” within the vascular basement membranes (BMs) in eyes of diabetic patients and animal models is indicative that removal of dead cells, or efferocytosis (EF), is dysfunctional during this disease. EF is the process whereby apoptotic cells are eliminated through phagocytic engulfment and digestion and is essential to maintain tissue integrity and immune homeostasis. The process occurs in three distinct phases: finding and recognition, engulfment, and digestion, under the direction of “find me” and “eat me” signals and a large array of their cognate receptors and bridging molecules. Efferocytosis can be performed by many cell types, but most efficiently by professional phagocytes, and with such rapidity that the process is extremely difficult to detect in healthy tissues. As delayed EF is a recognized cause of autoimmune and inflammatory disease, mural cell death in DR may create inflammatory foci in the neurovascular unit (NVU). Here we discuss the basic mechanisms of EF in the context of DR and the impact of diabetic metainflammation on EF effector cell dysfunction. Full article
Show Figures

Figure 1

21 pages, 2295 KB  
Article
Discovery of a Promising Hydroxyamino-Piperidine HDAC6 Inhibitor via Integrated Virtual Screening and Experimental Validation in Multiple Myeloma
by Federica Chiera, Antonio Curcio, Roberta Rocca, Ilenia Valentino, Massimo Gentile, Stefano Alcaro, Nicola Amodio and Anna Artese
Pharmaceuticals 2025, 18(9), 1303; https://doi.org/10.3390/ph18091303 - 29 Aug 2025
Viewed by 397
Abstract
Background: Histone deacetylase 6 (HDAC6) is a unique class IIb HDAC isozyme characterized by two catalytic domains and a zinc finger ubiquitin-binding domain. It plays critical roles in various cellular processes, including protein degradation, autophagy, immune regulation, and cytoskeletal dynamics. Due to its [...] Read more.
Background: Histone deacetylase 6 (HDAC6) is a unique class IIb HDAC isozyme characterized by two catalytic domains and a zinc finger ubiquitin-binding domain. It plays critical roles in various cellular processes, including protein degradation, autophagy, immune regulation, and cytoskeletal dynamics. Due to its multifunctional nature and overexpression in several cancer types, HDAC6 has emerged as a promising therapeutic target. Methods: In this study, we employed a ligand-based pharmacophore modeling approach using a structurally diverse set of known HDAC6 inhibitors. This was followed by the virtual screening of over 140,000 commercially available compounds from both the MolPort and Asinex databases. The screening workflow incorporated pharmacophore filtering, molecular docking, and molecular dynamic (MD) simulations. Binding free energies were estimated using Molecular Mechanics Generalized Born Surface Area (MM-GBSA) analysis to prioritize top candidates. A fluorometric enzymatic assay was used to measure HDAC6 activity, while cell viability assay by Cell Titer Glo was used to assess the anti-tumor activity against drug-sensitive and -resistant multiple myeloma (MM) cells. Western blotting was used to evaluate the acetylation of tubulin or histone H4 after treatment with selected compounds. Results: Three promising compounds were identified based on stable binding conformations and favorable interactions within the HDAC6 catalytic pocket. Among them, Molecular Mechanics Generalized Born Surface Area (MM-GBSA) analysis identified Compound 10 (AKOS030273637) as the top theoretical binder, with a ΔGbind value of −45.41 kcal/mol. In vitro enzymatic assays confirmed its binding to the HDAC6 catalytic domain and inhibitory activity. Functional studies on MM cell lines, including drug-resistant variants, showed that Compound 10 reduced cell viability. Increased acetylation of α-tubulin, a substrate of HDAC6, likely suggested on-target mechanism of action. Conclusions: Compound 10, featuring a benzyl 4-[4-(hydroxyamino)-4-oxobutylidene] piperidine-1-carboxylate scaffold, demonstrates potential drug-like properties and a predicted bidentate zinc ion coordination, supporting its potential as an HDAC6 inhibitor for further development in hematologic malignancies. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

24 pages, 1495 KB  
Review
Beyond Support Cells: Astrocytic Autophagy as a Central Regulator of CNS Homeostasis and Neurodegenerative Diseases
by Jung Ho Lee, Wonseok Chang, Sun Seek Min, Dae Yong Song and Hong Il Yoo
Cells 2025, 14(17), 1342; https://doi.org/10.3390/cells14171342 - 29 Aug 2025
Viewed by 438
Abstract
Autophagy is a fundamental catabolic pathway critical for maintaining cellular homeostasis in the central nervous system (CNS). While neuronal autophagy has been extensively studied, growing evidence highlights the crucial roles of astrocytic autophagy in CNS physiology and pathology. Astrocytes regulate metabolic support, redox [...] Read more.
Autophagy is a fundamental catabolic pathway critical for maintaining cellular homeostasis in the central nervous system (CNS). While neuronal autophagy has been extensively studied, growing evidence highlights the crucial roles of astrocytic autophagy in CNS physiology and pathology. Astrocytes regulate metabolic support, redox balance, and neuroinflammatory responses. These functions are closely linked to autophagic activity. The disruption of astrocytic autophagy contributes to synaptic dysfunction, chronic inflammation, myelin impairment, and blood–brain barrier instability. Dysregulation of astrocytic autophagy has been implicated in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. This review summarizes the molecular mechanisms of autophagy in astrocytes and delineates its role in intercellular communication with neurons, microglia, oligodendrocytes, and endothelial cells. Furthermore, we will discuss current pharmacological approaches targeting astrocytic autophagy, with particular attention to repurposed agents such as rapamycin, lithium, and caloric restriction mimetics. Although promising in preclinical models, therapeutic translation is challenged by the complexity of autophagy’s dual roles and cell-type specificity. A deeper understanding of astrocytic autophagy and its crosstalk with other CNS cell types may facilitate the development of targeted interventions for neurodegenerative diseases. Full article
(This article belongs to the Special Issue The Role Glial Cells in Neurodegenerative Disorders)
Show Figures

Figure 1

25 pages, 1489 KB  
Article
EGFR-Targeted Photodynamic Treatment of Triple Negative Breast Cancer Cell Lines Using Porphyrin–Peptide Conjugates: Synthesis and Mechanistic Insight
by Miryam Chiara Malacarne, Federica Randisi, Emanuela Marras, Stefano Giovannardi, Paolo Dognini, Alan Mark Simm, Francesca Giuntini, Marzia Bruna Gariboldi and Enrico Caruso
Molecules 2025, 30(17), 3533; https://doi.org/10.3390/molecules30173533 - 29 Aug 2025
Viewed by 431
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, limiting the efficacy of conventional targeted therapies. As a result, novel therapeutic strategies are urgently needed. [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, limiting the efficacy of conventional targeted therapies. As a result, novel therapeutic strategies are urgently needed. Photodynamic therapy (PDT), which relies on the activation of photosensitizers (PSs) by light to induce cytotoxic effects, has emerged as a promising alternative for TNBC treatment. Furthermore, the conjugation of PSs with targeting peptides has demonstrated enhanced selectivity and therapeutic efficacy, particularly for porphyrin-based photosensitizers. In this study, we report the synthesis of novel porphyrin–peptide conjugates designed to selectively target the epidermal growth factor receptor (EGFR), which is frequently overexpressed in TNBC. The conjugates were prepared via thiol displacement of the meso-nitro group in a 5,15-diarylporphyrin scaffold using EGFR-binding peptides. Photodynamic activity was evaluated in two EGFR-overexpressing TNBC cell lines. Cellular uptake of the conjugates correlated with EGFR expression levels, and PDT treatment resulted in differential induction of necrosis, apoptosis, and autophagy. Notably, the conjugates significantly inhibited EGFR-expressing cell line migration, a critical hallmark of metastatic progression. These findings underscore the potential of EGFR-targeted porphyrin–peptide conjugates as promising PDT agents for the treatment of TNBC. Full article
(This article belongs to the Special Issue Porphyrin-Based Compounds: Synthesis and Application, 2nd Edition)
Show Figures

Figure 1

17 pages, 2848 KB  
Article
Zileuton Attenuates Acute Kidney Injury in Glycerol-Induced Rhabdomyolysis by Regulating Myeloid-Derived Suppressor Cells in Mice
by Tae Won Lee, Eunjin Bae, Jin Hyun Kim, Myeong Hee Jung and Dong Jun Park
Int. J. Mol. Sci. 2025, 26(17), 8353; https://doi.org/10.3390/ijms26178353 - 28 Aug 2025
Viewed by 312
Abstract
Rhabdomyolysis is characterized by the breakdown of skeletal muscle tissue, frequently leading to acute kidney injury (AKI). Traditional conservative treatments have shown limited effectiveness in modifying the disease course, thereby necessitating targeted pharmacological approaches. Zileuton (Z), a selective inhibitor of 5-lipoxygenase (5-LOX), has [...] Read more.
Rhabdomyolysis is characterized by the breakdown of skeletal muscle tissue, frequently leading to acute kidney injury (AKI). Traditional conservative treatments have shown limited effectiveness in modifying the disease course, thereby necessitating targeted pharmacological approaches. Zileuton (Z), a selective inhibitor of 5-lipoxygenase (5-LOX), has demonstrated efficacy in enhancing renal function recovery in animal models of AKI induced by agents such as cisplatin, aminoglycosides, and polymyxins. The present study aimed to evaluate the therapeutic potential of a single dose of Z in mitigating rhabdomyolysis-induced AKI (RI-AKI) via modulation of myeloid-derived suppressor cells (MDSCs). Male C57BL/6 mice were assigned to four experimental groups: Sham (intraperitoneal administration of 0.9% saline), Z (single intraperitoneal injection of Z at 30 mg/kg body weight), glycerol (Gly; single intramuscular dose of 50% glycerol at 8 mL/kg), and glycerol plus Z (Z + Gly; concurrent administration of glycerol intramuscularly and Z intraperitoneally). Animals were sacrificed 24 h post-glycerol injection for analysis. Zileuton administration significantly improved renal function, as indicated by reductions in blood urea nitrogen (BUN) levels (129.7 ± 17.9 mg/dL in the Gly group versus 101.7 ± 6.8 mg/dL in the Z + Gly group, p < 0.05) and serum creatinine (Cr) levels (2.2 ± 0.3 mg/dL in the Gly group versus 0.9 ± 0.3 mg/dL in the Gly + Z group p < 0.05). Histopathological assessment revealed a marked decrease in tubular injury scores in the Z + Gly group compared to the Gly group. Molecular analyses demonstrated that Z treatment downregulated mRNA expression of macrophage-inducible C-type lectin (mincle) and associated macrophage infiltration-related factors, including Areg-1, Cx3cl1, and Cx3CR1, which were elevated 24 h following glycerol administration. Furthermore, the expression of NLRP-3, significantly upregulated post-glycerol injection, was attenuated by concurrent Z treatment. Markers of mitochondrial biogenesis, such as mitochondrial DNA (mtDNA), transcription factor A mitochondrial (TFAM), and carnitine palmitoyltransferase 1 alpha (CPT1α), were diminished 24 h after glycerol injection; however, their expression was restored upon simultaneous Z administration. Additionally, Z reduced protein levels of BNIP3, a marker of mitochondrial autophagy, while enhancing the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), suggesting that Z ameliorates RI-AKI severity through the regulation of mitochondrial quality control mechanisms. Zileuton also decreased infiltration of CD11b(+) Gr-1(+) MDSCs and downregulated mRNA levels of MDSC-associated markers, including transforming growth factor-beta (TGF-β), arginase-1 (Arg-1), inducible nitric oxide synthase (iNOS), and iron regulatory protein 4 (Irp4), in glycerol-injured kidneys relative to controls. These markers were elevated 24 h post-glycerol injection but were normalized following concurrent Z treatment. Collectively, these findings suggest that Zileuton confers reno-protective effects in a murine model of RI-AKI, potentially through modulation of mitochondrial dynamics and suppression of MDSC-mediated inflammatory pathways. Further research is warranted to elucidate the precise mechanisms by which Z regulates MDSCs and to assess its therapeutic potential in clinical contexts. Full article
Show Figures

Figure 1

16 pages, 533 KB  
Perspective
The Future of Oncology in Psychiatric Medications
by Napoleon Waszkiewicz
J. Clin. Med. 2025, 14(17), 6003; https://doi.org/10.3390/jcm14176003 - 25 Aug 2025
Viewed by 463
Abstract
Recent years have provided numerous reports on the mechanisms of action of psychiatric medications (antidepressants, antipsychotics, mood stabilizers, and antidementia drugs) that directly inhibit the growth of cancer cells, as well as on their indirect effects on the psyche and immune system, and [...] Read more.
Recent years have provided numerous reports on the mechanisms of action of psychiatric medications (antidepressants, antipsychotics, mood stabilizers, and antidementia drugs) that directly inhibit the growth of cancer cells, as well as on their indirect effects on the psyche and immune system, and their supportive effects on chemotherapeutic agents. The mechanisms of the anticancer activity of psychiatric drugs include inhibition of dopamine and N-methyl-D-aspartate receptors that work via signaling pathways (PI3K/AKT/mTOR/NF-κB, ERK, Wnt/ß-catenin, and bcl2), metabolic pathways (ornithine decarboxylase, intracellular cholesterol transport, lysosomal enzymes, and glycolysis), autophagy, Ca2+-dependent signaling cascades, and various other proteins (actin-related protein complex, sirtuin 1, p21, p53, etc.). The anticancer potential of psychiatric drugs seems to be extremely broad, and the most extensive anticancer literature has been reported on antidepressants (fluoxetine, amitriptyline, imipramine, mirtazapine, and St John’s Wort) and antipsychotics (chlorpromazine, pimozide, thioridazine, and trifluoperazine). Among mood stabilizers, lithium and valproates have the largest body of literature. Among antidementia drugs, memantine has documented anticancer effects, while there is limited evidence for galantamine. Of the new psychiatric substances, the antipsychotic drug brexpiprazole and the antidepressant vortioxetine have a very interesting body of literature regarding glioblastoma, based on in vitro and in vivo animal survival studies. Their use in brain tumors and metastases is particularly compelling, as these substances readily cross the blood–brain barrier (BBB). Moreover, the synergistic effect of psychiatric drugs with traditional cancer treatment seems to be extremely important in the fight against chemo- and radio-resistance of tumors. Although there are some studies describing the possible carcinogenic effects of psychiatric drugs in animals, the anticancer effect seems to be extremely significant, especially in combination treatment with radio/chemotherapy. The emerging evidence supporting the anticancer properties of psychiatric drugs presents an exciting frontier in oncology. The anticancer properties of psychiatric drugs may prove particularly useful in the period between chemotherapy and radiotherapy sessions to maintain the tumor-inhibitory effect. While further research is necessary to elucidate the mechanisms, clinical implications, dose-dependence of the effect, and clear guidelines for the use of psychiatric medications in cancer therapy, the potential for these commonly prescribed medications to contribute to cancer treatment enhances their value in the management of patients facing the dual challenges of mental health and cancer. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

Back to TopTop