Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = centromeric transcription

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 886 KiB  
Review
Emerging Roles for Transcription Factors During Mitosis
by Samuel Flashner and Jane Azizkhan-Clifford
Cells 2025, 14(4), 263; https://doi.org/10.3390/cells14040263 - 12 Feb 2025
Viewed by 529
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G [...] Read more.
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids. Full article
(This article belongs to the Special Issue Chromosomal Instability in Health and Disease)
Show Figures

Graphical abstract

31 pages, 3300 KiB  
Review
The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy
by Urszula Oleksiewicz, Monika Kuciak, Anna Jaworska, Dominika Adamczak, Anna Bisok, Julia Mierzejewska, Justyna Sadowska, Patrycja Czerwinska and Andrzej A. Mackiewicz
Int. J. Mol. Sci. 2024, 25(21), 11466; https://doi.org/10.3390/ijms252111466 - 25 Oct 2024
Cited by 2 | Viewed by 6089
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular [...] Read more.
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 15708 KiB  
Article
Transcriptome-Wide N6-Methyladenosine Alternations in Pulmonary Arteries of Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats and Novel Therapeutic Targets
by Yilu Feng, Zaixin Yu, Mi Tang, Jiang Li, Baohua Peng, Mukamengjiang Juaiti, Yiyang Tang, Benhui Liang, Mingqi Ouyang, Qingqing Liu and Jie Song
Biomedicines 2024, 12(2), 364; https://doi.org/10.3390/biomedicines12020364 - 4 Feb 2024
Viewed by 2104
Abstract
N6-methyladenosine (m6A) is a post-transcriptional epigenetic change with transcriptional stability and functionality regulated by specific m6A-modifying enzymes. However, the significance of genes modified by m6A and enzymes specific to m6A regulation in the context of [...] Read more.
N6-methyladenosine (m6A) is a post-transcriptional epigenetic change with transcriptional stability and functionality regulated by specific m6A-modifying enzymes. However, the significance of genes modified by m6A and enzymes specific to m6A regulation in the context of pulmonary arterial hypertension (PAH) remains largely unexplored. MeRIP-seq and RNA-seq were applied to explore variances in m6A and RNA expression within the pulmonary artery tissues of control and monocrotaline-induced PAH rats. Functional enrichments were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. To screen candidate m6A-related genes, the STRING and Metascape databases were used to construct a protein–protein interaction network followed by a real-time PCR validation of their expression. The expression level of an m6A regulator was further investigated using immunohistochemical staining, immunofluorescence, and Western blot techniques. Additionally, proliferation assays were conducted on primary rat pulmonary artery smooth muscle cells (PASMCs). We identified forty-two differentially expressed genes that exhibited either hypermethylated or hypomethylated m6A. These genes are predominantly related to the extracellular matrix structure, MAPK, and PI3K/AKT pathways. A candidate gene, centromere protein F (CENPF), was detected with increased expression in the PAH group. Additionally, we first identified an m6A reader, leucine rich pentatricopeptide repeat containing (LRPPRC), which was downregulated in the PAH rat model. The in vitro downregulation of Lrpprc mediated by siRNA resulted in the enhanced proliferation and elevated expression of Cenpf mRNA in primary rat PASMCs. Our study revealed a modified transcriptome-wide m6A landscape and associated regulatory mechanisms in the pulmonary arteries of PAH rats, potentially offering a novel target for therapeutic strategies in the future. Full article
Show Figures

Figure 1

14 pages, 968 KiB  
Review
Answering the Cell Stress Call: Satellite Non-Coding Transcription as a Response Mechanism
by Marisa Fonseca-Carvalho, Gabriela Veríssimo, Mariana Lopes, Daniela Ferreira, Sandra Louzada and Raquel Chaves
Biomolecules 2024, 14(1), 124; https://doi.org/10.3390/biom14010124 - 17 Jan 2024
Cited by 1 | Viewed by 2352
Abstract
Organisms are often subjected to conditions that promote cellular stress. Cell responses to stress include the activation of pathways to defend against and recover from the stress, or the initiation of programmed cell death to eliminate the damaged cells. One of the processes [...] Read more.
Organisms are often subjected to conditions that promote cellular stress. Cell responses to stress include the activation of pathways to defend against and recover from the stress, or the initiation of programmed cell death to eliminate the damaged cells. One of the processes that can be triggered under stress is the transcription and variation in the number of copies of satellite DNA sequences (satDNA), which are involved in response mechanisms. Satellite DNAs are highly repetitive tandem sequences, mainly located in the centromeric and pericentromeric regions of eukaryotic chromosomes, where they form the constitutive heterochromatin. Satellite non-coding RNAs (satncRNAs) are important regulators of cell processes, and their deregulation has been associated with disease. Also, these transcripts have been associated with stress-response mechanisms in varied eukaryotic species. This review intends to explore the role of satncRNAs when cells are subjected to adverse conditions. Studying satDNA transcription under various stress conditions and deepening our understanding of where and how these sequences are involved could be a key factor in uncovering important facts about the functions of these sequences. Full article
(This article belongs to the Special Issue The Evolution and Function of Repetitive DNA)
Show Figures

Figure 1

23 pages, 7556 KiB  
Article
Telomere-to-Telomere Genome Assembly of Tibetan Medicinal Mushroom Ganoderma leucocontextum and the First Copia Centromeric Retrotransposon in Macro-Fungi Genome
by Miao Wang, Guoliang Meng, Ying Yang, Xiaofang Wang, Rong Xie and Caihong Dong
J. Fungi 2024, 10(1), 15; https://doi.org/10.3390/jof10010015 - 27 Dec 2023
Cited by 4 | Viewed by 2021
Abstract
A complete telomere-to-telomere (T2T) genome has been a longstanding goal in the field of genomic research. By integrating high-coverage and precise long-read sequencing data using multiple assembly strategies, we present here the first T2T gap-free genome assembly of Ganoderma leucocontextum strain GL72, a [...] Read more.
A complete telomere-to-telomere (T2T) genome has been a longstanding goal in the field of genomic research. By integrating high-coverage and precise long-read sequencing data using multiple assembly strategies, we present here the first T2T gap-free genome assembly of Ganoderma leucocontextum strain GL72, a Tibetan medicinal mushroom. The T2T genome, with a size of 46.69 Mb, consists 13 complete nuclear chromosomes and typical telomeric repeats (CCCTAA)n were detected at both ends of 13 chromosomes. The high mapping rate, uniform genome coverage, a complete BUSCOs of 99.7%, and base accuracy exceeding 99.999% indicate that this assembly represents the highest level of completeness and quality. Regions characterized by distinct structural attributes, including highest Hi-C interaction intensity, high repeat content, decreased gene density, low GC content, and minimal or no transcription levels across all chromosomes may represent potential centromeres. Sequence analysis revealed the first Copia centromeric retrotransposon in macro-fungi genome. Phylogenomic analysis identified that G. leucocontextum and G. tsugae diverged from the other Ganoderma species approximately 9.8–17.9 MYA. The prediction of secondary metabolic clusters confirmed the capability of this fungus to produce a substantial quantity of metabolites. This T2T gap-free genome will contribute to the genomic ‘dark matter’ elucidation and server as a great reference for genetics, genomics, and evolutionary studies of G. leucocontextum. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

34 pages, 2351 KiB  
Review
The Clinical Impact of Death Domain-Associated Protein and Holliday Junction Recognition Protein Expression in Cancer: Unmasking the Driving Forces of Neoplasia
by Alexandros Pergaris, Ioannis Genaris, Ioanna E. Stergiou, Jerzy Klijanienko, Stavros P. Papadakos and Stamatios Theocharis
Cancers 2023, 15(21), 5165; https://doi.org/10.3390/cancers15215165 - 26 Oct 2023
Cited by 1 | Viewed by 2116
Abstract
Death domain-associated protein (DAXX) and Holliday junction recognition protein (HJURP) act as chaperones of H3 histone variants H3.3 and centromere protein A (CENPA), respectively, and are implicated in many physiological processes, including aging and epigenetic regulation, by controlling various genes’ transcription and subsequently [...] Read more.
Death domain-associated protein (DAXX) and Holliday junction recognition protein (HJURP) act as chaperones of H3 histone variants H3.3 and centromere protein A (CENPA), respectively, and are implicated in many physiological processes, including aging and epigenetic regulation, by controlling various genes’ transcription and subsequently protein expression. Research has highlighted both these biomolecules as participants in key procedures of tumorigenesis, including cell proliferation, chromosome instability, and oncogene expression. As cancer continues to exert a heavy impact on patients’ well-being and bears substantial socioeconomic ramifications, the discovery of novel biomarkers for timely disease detection, estimation of prognosis, and therapy monitoring remains of utmost importance. In the present review, we present data reported from studies investigating DAXX and HJURP expression, either on mRNA or protein level, in human tissue samples from various types of neoplasia. Of note, the expression of DAXX and HJURP has been associated with a multitude of clinicopathological parameters, including disease stage, tumor grade, patients’ overall and disease-free survival, as well as lymphovascular invasion. The data reveal the tumor-promoting properties of DAXX and HJURP in a number of organs as well as their potential use as diagnostic biomarkers and underline the important association between aberrations in their expression and patients’ prognosis, rendering them as possible targets of future, personalized and precise therapeutic interventions. Full article
(This article belongs to the Special Issue Monitoring Treatment Response of Biomarkers in Cancer)
Show Figures

Figure 1

28 pages, 3119 KiB  
Review
Biomarkers in Systemic Sclerosis: An Overview
by Giuseppe Di Maggio, Paola Confalonieri, Francesco Salton, Liliana Trotta, Luca Ruggero, Metka Kodric, Pietro Geri, Michael Hughes, Mattia Bellan, Michele Gilio, Selene Lerda, Elisa Baratella, Marco Confalonieri, Lucrezia Mondini and Barbara Ruaro
Curr. Issues Mol. Biol. 2023, 45(10), 7775-7802; https://doi.org/10.3390/cimb45100490 - 25 Sep 2023
Cited by 8 | Viewed by 4644
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood [...] Read more.
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood perfusion. Several studies have reported more than 240 pathways and numerous dysregulation proteins, giving insight into how the field of biomarkers in SSc is still extremely complex and evolving. Antinuclear antibodies (ANA) are present in more than 90% of SSc patients, and anti-centromere and anti-topoisomerase I antibodies are considered classic biomarkers with precise clinical features. Recent studies have reported that trans-forming growth factor β (TGF-β) plays a central role in the fibrotic process. In addition, interferon regulatory factor 5 (IRF5), interleukin receptor-associated kinase-1 (IRAK-1), connective tissue growth factor (CTGF), transducer and activator of transcription signal 4 (STAT4), pyrin-containing domain 1 (NLRP1), as well as genetic factors, including DRB1 alleles, are implicated in SSc damage. Several interleukins (e.g., IL-1, IL-6, IL-10, IL-17, IL-22, and IL-35) and chemokines (e.g., CCL 2, 5, 23, and CXC 9, 10, 16) are elevated in SSc. While adiponectin and maresin 1 are reduced in patients with SSc, biomarkers are important in research but will be increasingly so in the diagnosis and therapeutic approach to SSc. This review aims to present and highlight the various biomarker molecules, pathways, and receptors involved in the pathology of SSc. Full article
Show Figures

Figure 1

12 pages, 2069 KiB  
Article
Unique Features of Satellite DNA Transcription in Different Tissues of Caenorhabditis elegans
by Juan A. Subirana and Xavier Messeguer
Int. J. Mol. Sci. 2023, 24(3), 2970; https://doi.org/10.3390/ijms24032970 - 3 Feb 2023
Cited by 2 | Viewed by 1817
Abstract
A large part of the genome is known to be transcribed as non-coding DNA including some tandem repeats (satellites) such as telomeric/centromeric satellites in different species. However, there has been no detailed study on the eventual transcription of the interspersed satellites found in [...] Read more.
A large part of the genome is known to be transcribed as non-coding DNA including some tandem repeats (satellites) such as telomeric/centromeric satellites in different species. However, there has been no detailed study on the eventual transcription of the interspersed satellites found in many species. In the present paper, we studied the transcription of the abundant DNA satellites in the nematode Caenorhabditis elegans using available RNA-Seq results. We found that many of them have been transcribed, but usually in an irregular manner; different regions of a satellite have been transcribed with variable efficiency. Satellites with a similar repeat sequence also have a different transcription pattern depending on their position in the genome. We also describe the peculiar features of satellites associated with Helitron transposons in C. elegans. Our demonstration that some satellite RNAs are transcribed adds a new family of non-coding RNAs, a new element in the world of RNA interference, with new paths for the control of mRNA translation. This is a field that requires further investigation and will provide a deeper understanding of gene expression and control. Full article
(This article belongs to the Special Issue Structure, Dynamics, and Function of Nucleic Acids)
Show Figures

Figure 1

17 pages, 3580 KiB  
Article
The Bph45 Gene Confers Resistance against Brown Planthopper in Rice by Reducing the Production of Limonene
by Charng-Pei Li, Dong-Hong Wu, Shou-Horng Huang, Menghsiao Meng, Hsien-Tzung Shih, Ming-Hsin Lai, Liang-Jwu Chen, Kshirod K. Jena, Sherry Lou Hechanova, Ting-Jyun Ke, Tai-Yuan Chiu, Zong-Yuan Tsai, Guo-Kai Chen, Kuan-Chieh Tsai and Wei-Ming Leu
Int. J. Mol. Sci. 2023, 24(2), 1798; https://doi.org/10.3390/ijms24021798 - 16 Jan 2023
Cited by 12 | Viewed by 3624
Abstract
Brown planthopper (BPH), a monophagous phloem feeder, consumes a large amount of photoassimilates in rice and causes wilting. A near-isogenic line ‘TNG71-Bph45’ was developed from the Oryza sativa japonica variety ‘Tainung 71 (TNG71) carrying a dominant BPH-resistance locus derived from [...] Read more.
Brown planthopper (BPH), a monophagous phloem feeder, consumes a large amount of photoassimilates in rice and causes wilting. A near-isogenic line ‘TNG71-Bph45’ was developed from the Oryza sativa japonica variety ‘Tainung 71 (TNG71) carrying a dominant BPH-resistance locus derived from Oryza nivara (IRGC 102165) near the centromere of chromosome 4. We compared the NIL (TNG71-Bph45) and the recurrent parent to explore how the Bph45 gene confers BPH resistance. We found that TNG71-Bph45 is less attractive to BPH at least partially because it produces less limonene. Chiral analysis revealed that the major form of limonene in both rice lines was the L-form. However, both L- and D-limonene attracted BPH when applied exogenously to TNG71-Bph45 rice. The transcript amounts of limonene synthase were significantly higher in TNG71 than in TNG71-Bph45 and were induced by BPH infestation only in the former. Introgression of the Bph45 gene into another japonica variety, Tainan 11, also resulted in a low limonene content. Moreover, several dominantly acting BPH resistance genes introduced into the BPH-sensitive IR24 line compromised its limonene-producing ability and concurrently decreased its attractiveness to BPH. These observations suggest that reducing limonene production may be a common resistance strategy against BPH in rice. Full article
(This article belongs to the Special Issue Molecular Research in Rice)
Show Figures

Figure 1

15 pages, 3326 KiB  
Article
Global Repeat Map (GRM) Application: Finding All DNA Tandem Repeat Units
by Matko Glunčić, Ines Vlahović, Leo Mršić and Vladimir Paar
Algorithms 2022, 15(12), 458; https://doi.org/10.3390/a15120458 - 5 Dec 2022
Cited by 6 | Viewed by 2449
Abstract
Tandem repeats (TRs) are important components of eukaryotic genomes; they have both structural and functional roles: (i) they form essential chromosome structures such as centromeres and telomeres; (ii) they modify chromatin structure and affect transcription, resulting in altered gene expression and protein abundance. [...] Read more.
Tandem repeats (TRs) are important components of eukaryotic genomes; they have both structural and functional roles: (i) they form essential chromosome structures such as centromeres and telomeres; (ii) they modify chromatin structure and affect transcription, resulting in altered gene expression and protein abundance. There are established links between variations in TRs and incompatibilities between species, evolutionary development, chromosome mis-segregation, aging, cancer outcomes and different diseases. Given the importance of TRs, it seemed essential to develop an efficient, sensitive and automated application for the identification of all kinds of TRs in various genomic sequences. Here, we present our new GRM application for identifying TRs, which is designed to overcome all the limitations of the currently existing algorithms. Our GRM algorithm provides a straightforward identification of TRs using the frequency domain but avoiding the mapping of the symbolic DNA sequence into numerical sequence, and using key string matching, but avoiding the statistical methods of locally optimizing individual key strings. Using the GRM application, we analyzed human, chimpanzee and mouse chromosome 19 genome sequences (RefSeqs), and showed that our application was very fast, efficient and simple, with a powerful graphical user interface. It can identify all types of TRs, from the smallest (2 bp) to the very large, as large as tens of kilobasepairs. It does not require any prior knowledge of sequence structure and does not require any user-defined parameters or thresholds. In this way, it ensures that a full spectrum of TRs can be detected in just one step. Furthermore, it is robust to all types of mutations in repeat copies and can identify TRs with various complexities in the sequence pattern. From this perspective, we can conclude that the GRM application is an efficient, sensitive and automated method for the identification of all kinds of TRs. Full article
(This article belongs to the Special Issue Space-Efficient Algorithms and Data Structures)
Show Figures

Figure 1

19 pages, 4704 KiB  
Article
Comprehensive Characterization of the Regulatory Landscape of Adrenocortical Carcinoma: Novel Transcription Factors and Targets Associated with Prognosis
by João C. D. Muzzi, Jéssica M. Magno, Jean S. Souza, Larissa M. Alvarenga, Juliana F. de Moura, Bonald C. Figueiredo and Mauro A. A. Castro
Cancers 2022, 14(21), 5279; https://doi.org/10.3390/cancers14215279 - 27 Oct 2022
Cited by 6 | Viewed by 2496
Abstract
We reconstructed a transcriptional regulatory network for adrenocortical carcinoma (ACC) using transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)-ACC cohort. We investigated the association of transcriptional regulatory units (regulons) with overall survival, molecular phenotypes, and immune signatures. We annotated the ACC [...] Read more.
We reconstructed a transcriptional regulatory network for adrenocortical carcinoma (ACC) using transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)-ACC cohort. We investigated the association of transcriptional regulatory units (regulons) with overall survival, molecular phenotypes, and immune signatures. We annotated the ACC regulons with cancer hallmarks and assessed single sample regulon activities in the European Network for the Study of Adrenal Tumors (ENSAT) cohort. We found 369 regulons associated with overall survival and subdivided them into four clusters: RC1 and RC2, associated with good prognosis, and RC3 and RC4, associated with worse outcomes. The RC1 and RC3 regulons were highly correlated with the ‘Steroid Phenotype,’ while the RC2 and RC4 regulons were highly correlated with a molecular proliferation signature. We selected two regulons, NR5A1 (steroidogenic factor 1, SF-1) and CENPA (Centromeric Protein A), that were consistently associated with overall survival for further downstream analyses. The CENPA regulon was the primary regulator of MKI-67 (a marker of proliferation KI-67), while the NR5A1 regulon is a well-described transcription factor (TF) in ACC tumorigenesis. We also found that the ZBTB4 (Zinc finger and BTB domain-containing protein 4) regulon, which is negatively associated with CENPA in our transcriptional regulatory network, is also a druggable anti-tumorigenic TF. We anticipate that the ACC regulons may be used as a reference for further investigations concerning the complex molecular interactions in ACC tumors. Full article
Show Figures

Graphical abstract

13 pages, 2419 KiB  
Article
GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere
by Hwei Ling Tan and Ee Sin Chen
Genes 2022, 13(10), 1697; https://doi.org/10.3390/genes13101697 - 22 Sep 2022
Cited by 2 | Viewed by 1980
Abstract
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by [...] Read more.
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast. Full article
(This article belongs to the Special Issue Genome Maintenance and Cancer Predisposition)
Show Figures

Figure 1

9 pages, 711 KiB  
Communication
Multi-Omic Investigations of a 17–19 Translocation Links MINK1 Disruption to Autism, Epilepsy and Osteoporosis
by Jesper Eisfeldt, Jakob Schuy, Eva-Lena Stattin, Malin Kvarnung, Anna Falk, Lars Feuk and Anna Lindstrand
Int. J. Mol. Sci. 2022, 23(16), 9392; https://doi.org/10.3390/ijms23169392 - 20 Aug 2022
Cited by 7 | Viewed by 2684
Abstract
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes [...] Read more.
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient’s cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient’s cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations. Full article
Show Figures

Figure 1

12 pages, 658 KiB  
Review
The Chromatin Remodeler HELLS: A New Regulator in DNA Repair, Genome Maintenance, and Cancer
by Estanislao Peixoto, Asad Khan, Zachary A. Lewis, Rafael Contreras-Galindo and Wioletta Czaja
Int. J. Mol. Sci. 2022, 23(16), 9313; https://doi.org/10.3390/ijms23169313 - 18 Aug 2022
Cited by 12 | Viewed by 4370
Abstract
Robust, tightly regulated DNA repair is critical to maintaining genome stability and preventing cancer. Eukaryotic DNA is packaged into chromatin, which has a profound, yet incompletely understood, regulatory influence on DNA repair and genome stability. The chromatin remodeler HELLS (helicase, lymphoid specific) has [...] Read more.
Robust, tightly regulated DNA repair is critical to maintaining genome stability and preventing cancer. Eukaryotic DNA is packaged into chromatin, which has a profound, yet incompletely understood, regulatory influence on DNA repair and genome stability. The chromatin remodeler HELLS (helicase, lymphoid specific) has emerged as an important epigenetic regulator of DNA repair, genome stability, and multiple cancer-associated pathways. HELLS belongs to a subfamily of the conserved SNF2 ATP-dependent chromatin-remodeling complexes, which use energy from ATP hydrolysis to alter nucleosome structure and packaging of chromatin during the processes of DNA replication, transcription, and repair. The mouse homologue, LSH (lymphoid-specific helicase), plays an important role in the maintenance of heterochromatin and genome-wide DNA methylation, and is crucial in embryonic development, gametogenesis, and maturation of the immune system. Human HELLS is abundantly expressed in highly proliferating cells of the lymphoid tissue, skin, germ cells, and embryonic stem cells. Mutations in HELLS cause the human immunodeficiency syndrome ICF (Immunodeficiency, Centromeric instability, Facial anomalies). HELLS has been implicated in many types of cancer, including retinoblastoma, colorectal cancer, hepatocellular carcinoma, and glioblastoma. Here, we review and summarize accumulating evidence highlighting important roles for HELLS in DNA repair, genome maintenance, and key pathways relevant to cancer development, progression, and treatment. Full article
(This article belongs to the Special Issue DNA Repair in Cancers 2.0)
Show Figures

Figure 1

11 pages, 1164 KiB  
Article
Localization of Epigenetic Markers in Leishmania Chromatin
by Jacquelyn R. McDonald, Bryan C. Jensen, Aakash Sur, Iris L. K. Wong, Stephen M. Beverley and Peter J. Myler
Pathogens 2022, 11(8), 930; https://doi.org/10.3390/pathogens11080930 - 18 Aug 2022
Cited by 7 | Viewed by 2612
Abstract
Eukaryotes use histone variants and post-translation modifications (PTMs), as well as DNA base modifications, to regulate DNA replication/repair, chromosome condensation, and gene expression. Despite the unusual organization of their protein-coding genes into large polycistronic transcription units (PTUs), trypanosomatid parasites also employ a “histone [...] Read more.
Eukaryotes use histone variants and post-translation modifications (PTMs), as well as DNA base modifications, to regulate DNA replication/repair, chromosome condensation, and gene expression. Despite the unusual organization of their protein-coding genes into large polycistronic transcription units (PTUs), trypanosomatid parasites also employ a “histone code” to control these processes, but the details of this epigenetic code are poorly understood. Here, we present the results of experiments designed to elucidate the distribution of histone variants and PTMs over the chromatin landscape of Leishmania tarentolae. These experiments show that two histone variants (H2A.Z and H2B.V) and three histone H3 PTMs (H3K4me3, H3K16ac, and H3K76me3) are enriched at transcription start sites (TSSs); while a histone variant (H3.V) and the trypanosomatid-specific hyper-modified DNA base J are located at transcription termination sites (TTSs). Reduced nucleosome density was observed at all TTSs and TSSs for RNA genes transcribed by RNA polymerases I (RNAPI) or RNAPIII; as well as (to a lesser extent) at TSSs for the PTUs transcribed by RNAPII. Several PTMs (H3K4me3, H3K16ac H3K20me2 and H3K36me3) and base J were enriched at centromeres, while H3K50ac was specifically associated with the periphery of these centromeric sequences. These findings significantly expand our knowledge of the epigenetic markers associated with transcription, DNA replication and/or chromosome segregation in these early diverging eukaryotes and will hopefully lay the groundwork for future studies to elucidate how they control these fundamental processes. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

Back to TopTop