Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = chalk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4232 KB  
Review
Toward Health-Oriented Indoor Air Quality in Sports Facilities: A Narrative Review of Pollutant Dynamics, Smart Control Strategies, and Energy-Efficient Solutions
by Xueli Cao, Haizhou Fang and Xiaolei Yuan
Buildings 2025, 15(17), 3168; https://doi.org/10.3390/buildings15173168 - 3 Sep 2025
Viewed by 217
Abstract
Indoor sports facilities face distinctive indoor air quality (IAQ) challenges due to high occupant density, elevated metabolic emissions, and diverse pollutant sources associated with physical activity. This review presents a narrative synthesis of multidisciplinary evidence concerning IAQ in sports environments. It explores major [...] Read more.
Indoor sports facilities face distinctive indoor air quality (IAQ) challenges due to high occupant density, elevated metabolic emissions, and diverse pollutant sources associated with physical activity. This review presents a narrative synthesis of multidisciplinary evidence concerning IAQ in sports environments. It explores major pollutant categories, including carbon dioxide (CO2), particulate matter (PM), volatile organic compounds (VOCs), and airborne microbial agents, highlighting their sources, behavior during exercise, and associated health risks. Research shows that physical activity can increase PM concentrations by up to 300%, and CO2 levels frequently exceed 1000 ppm in inadequately ventilated spaces. The presence of semi-volatile organics and bioaerosols further complicates pollutant dynamics, especially in humid and densely occupied areas. Measurement technologies such as optical sensors, chromatographic methods, and molecular techniques are reviewed and compared for their applicability to dynamic indoor settings. Existing IAQ standards across China, the USA, the EU, the UK, and WHO are examined, revealing a lack of activity-specific thresholds and insufficient responsiveness to real-time conditions. Mitigation strategies (e.g., including demand-controlled ventilation, use of low-emission materials, liquid chalk substitutes, and integrated HEPA-UVGI purification systems) are evaluated, many demonstrating pollutant removal efficiencies over 80%. The integration of intelligent building management systems is emphasized for enabling real-time monitoring and adaptive control. This review concludes by identifying research priorities, including the development of activity-sensitive IAQ control frameworks and long-term health impact assessments for athletes and vulnerable users. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 6840 KB  
Article
Impact Assessment of Mining Dewatering on Vegetation Based on Satellite Image Analysis and the NDVI Index—A Case Study of a Chalk Mine
by Kamil Gromnicki and Krzysztof Chudy
Resources 2025, 14(9), 134; https://doi.org/10.3390/resources14090134 - 26 Aug 2025
Viewed by 699
Abstract
The exploitation of mineral resources often necessitates groundwater drainage, which may impact surrounding ecosystems, particularly vegetation. In this study, the effects of passive drainage in the Kornica-Popówka chalk mine in eastern Poland were analyzed using Sentinel-2 satellite images and the NDVI vegetation index. [...] Read more.
The exploitation of mineral resources often necessitates groundwater drainage, which may impact surrounding ecosystems, particularly vegetation. In this study, the effects of passive drainage in the Kornica-Popówka chalk mine in eastern Poland were analyzed using Sentinel-2 satellite images and the NDVI vegetation index. Groundwater monitoring wells were used to delineate the extent of the depression cone, representing areas of potentially altered hydrological conditions. NDVI values were analyzed across multiple time points between 2023 and 2024 to assess the condition of vegetation both inside and outside the depression cone. The results indicate no significant difference in NDVI values during the 2023–2024 study period for this specific chalk mine case between areas affected and unaffected by the depression cone, suggesting that vegetation in this region is not experiencing stress due to lowered groundwater levels. This outcome highlights the influence of other environmental factors, such as rainfall and land use, and suggests that the local geological structure allows plants to maintain sufficient access to water despite hydrological alterations. This study confirms the utility of integrating remote sensing with hydrogeological data in environmental monitoring and underlines the need for continued observation to assess long-term trends in vegetation response to mining-related groundwater changes. Full article
Show Figures

Figure 1

14 pages, 1615 KB  
Article
Climate Changes Can Restore Allopatry Between Two Congeneric Birds in the Atlantic Forest
by Vitor Araujo-Lima, Rayane dos Santos Oliveira, Marcio Mageski, Rodrigo Barbosa Ferreira and Charles Duca
Birds 2025, 6(3), 42; https://doi.org/10.3390/birds6030042 - 13 Aug 2025
Viewed by 355
Abstract
The climate is expected to change substantially by the end of the current century. In response to climate change, species may disperse, adapt, or become locally extinct. We aim to assess how the climate changes predicted to occur by 2060 may affect the [...] Read more.
The climate is expected to change substantially by the end of the current century. In response to climate change, species may disperse, adapt, or become locally extinct. We aim to assess how the climate changes predicted to occur by 2060 may affect the potential distribution of Tropical Mockingbird (Mimus gilvus antelius) and Chalk-browed Mockingbird (Mimus saturninus frater) within the Atlantic Forest domain, Brazil. Occurrence data for both species were compiled from the scientific literature and online biodiversity databases. A total of 118 georeferenced records were obtained for Tropical Mockingbird and 1080 for Chalk-browed Mockingbird. Species distribution models predicted that the two species would respond differently to the ongoing climatic changes. The Tropical Mockingbird will slightly expand its suitable habitat by 3.5% (3871 km2) under the optimistic scenario (minimum temperature increase by 2060; Representative Concentration Pathways-RCP 2.6) and 2.5% (2765 km2) in the pessimistic scenario (maximum temperature increase by 2060; RPC 8.5), relative to the 1960–1990 baseline. Chalk-browed Mockingbird will reduce its suitable habitat by 64% (70,780 km2) under RPC 2.6 and 65% (71,886 km2) under RPC 8.5. The two future climate scenarios suggest that sympatry between the two species will become increasingly rare, with a shift toward allopatry due to emerging climatically unsuitable areas separating their distributions. Our results highlighted the importance of environmental policies that incorporate local ecological contexts and species-specific traits to mitigate biodiversity loss under future climate conditions. Full article
Show Figures

Figure 1

18 pages, 1290 KB  
Article
The Impact of Substituting Chalk with Fly Ash in Formulating a Two-Component Polyurethane Adhesive on Its Physicochemical and Mechanical Properties
by Edyta Pęczek, Renata Pamuła, Żaneta Ciastowicz, Paweł Telega, Łukasz Bobak and Andrzej Białowiec
Materials 2025, 18(15), 3591; https://doi.org/10.3390/ma18153591 - 30 Jul 2025
Viewed by 538
Abstract
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a [...] Read more.
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a chalk-to-fly ash ratio as a filler. The study evaluated rheological, mechanical, thermal, and environmental parameters. Mechanical tests confirmed cohesive failure within the bonded material, indicating that the bond strength at the adhesive–substrate interface exceeded the internal strength of the substrate. The highest contaminant elution levels recorded were 0.62 mg/kg for molybdenum and 0.20 mg/kg for selenium, which represent only 6.2% and 40% of the regulatory limits, respectively. Dissolved organic carbon (DOC) and total dissolved solids (TDS) did not exceed 340 mg/kg and 4260 mg/kg, respectively. GC-MS analysis did not reveal the presence of prominent volatile organic compound emissions. Initial screening suggests possible compatibility with low-emission certification schemes (e.g., A+, AgBB, EMICODE®), though confirmation requires further quantitative testing. The results demonstrate that fly ash can be an effective substitute for chalk in polyurethane adhesives, ensuring environmental compliance and maintaining functional performance while supporting the principles of the circular economy. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

21 pages, 1471 KB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 1153
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

28 pages, 22195 KB  
Article
Investigating Attributes of Oil Source Rocks by Combining Geochemical Approaches and Basin Modelling (Central Gulf of Suez, Egypt)
by Moataz Barakat, Mohamed Reda, Dimitra E. Gamvroula, Robert Ondrak and Dimitrios E. Alexakis
Resources 2025, 14(7), 114; https://doi.org/10.3390/resources14070114 - 16 Jul 2025
Cited by 1 | Viewed by 1192
Abstract
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and [...] Read more.
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and reefal limestone intercalated with clastic shale. This study integrated various datasets, including total organic carbon (TOC), Rock-Eval pyrolysis, visual kerogen examination, vitrinite reflectance (%Ro), and bottom-hole temperature measurements. The main objective of this study is to delineate the source rock characteristics of these strata regarding organic richness, thermal maturity, kerogen type, timing of hydrocarbon transformation and generation. The Upper Cretaceous Brown Limestone Formation is represented by 135 samples from four wells and is considered to be a fair to excellent source rock, primarily containing type I and II kerogen. It is immature to early mature, generating oil with a low to intermediate level of hydrocarbon conversion. The Eocene Thebes Formation is represented by 105 samples from six wells and is considered to be a good to fair oil source rock with some potential for gas, primarily containing type II and II/III kerogen. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. The Middle Miocene Lower Rudeis Formation is represented by 8 samples from two wells and considered to be a fair but immature source rock, primarily containing type III kerogen with a low level of conversion representing a potential source for gas. The Middle Miocene Belayim Formation is represented by 29 samples from three wells and is considered to be a poor to good source rock, primarily containing kerogen type II and III. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. 1D basin model A-5 well shows that the Upper Cretaceous Brown Limestone source rock entered the early oil window at 39 Ma, progressed to the main oil window by 13 Ma, and remains in this stage today. The Eocene Thebes source rock began generating hydrocarbons at 21.3 Ma, advanced to the main oil window at 11 Ma, and has been in the late oil window since 1.6 Ma. The Middle Miocene Lower Rudeis source rock entered the early oil window at 12.6 Ma, transitioned to the main oil window at 5.7 Ma, where it remains active. In contrast, the Middle Miocene Belayim source rock has not yet reached the early oil window and remains immature, with values ranging from 0.00 to 0.55 % Ro. The transformation ratio plot shows that the Brown Limestone Formation began transforming into the Upper Cretaceous (73 Ma), reaching 29.84% by the Miocene (14.3 Ma). The Thebes Formation initiated transformation in the Late Eocene (52.3 Ma) and reached 6.42% by 16.4 Ma. The Lower Rudeis Formation began in the Middle Miocene (18.7 Ma), reaching 3.59% by 9.2 Ma. The Belayim Formation started its transformation at 11.2 Ma, reaching 0.63% by 6.8 Ma. Full article
Show Figures

Figure 1

18 pages, 325 KB  
Article
Chalk Yeasts Cause Gluten-Free Bread Spoilage
by Michela Pellegrini, Lucilla Iacumin, Francesca Coppola, Federica Barbieri, Chiara Montanari, Fausto Gardini and Giuseppe Comi
Microorganisms 2025, 13(6), 1385; https://doi.org/10.3390/microorganisms13061385 - 14 Jun 2025
Viewed by 782
Abstract
Four different yeast strains were isolated from industrial gluten-free bread (GFB) purchased from a local supermarket. These strains, including Hyphopichia burtonii, Wickerhamomyces anomalus, Saccharomycopsis fibuligera, and Cyberlindnera fabianii, are responsible for spoilage, which consists of white powdery and filamentous [...] Read more.
Four different yeast strains were isolated from industrial gluten-free bread (GFB) purchased from a local supermarket. These strains, including Hyphopichia burtonii, Wickerhamomyces anomalus, Saccharomycopsis fibuligera, and Cyberlindnera fabianii, are responsible for spoilage, which consists of white powdery and filamentous colonies due to the fragmentation of hyphae into short-length fragments (dust-type spots) that is typical of the spoilage produced by chalk yeasts. The isolated strains were identified using genomic analysis. Among them, C. fabianii was also isolated, which is a rare ascomycetous opportunistic yeast species with low virulence attributes, uncommonly implicated in bread spoilage. The yeast growth was studied in vitro on Malt Extract Agar (MEA) at two temperatures (20 and 25 °C) and at different Aws (from 0.99 to 0.90). It was inferred that the temperature did not influence the growth. On the contrary, different Aws reduced the growth, but all the yeast strains could grow until a minimum Aw of about 0.90. Different preservatives (ethanol, hop extract, and sorbic and propionic acids) were used to prevent the growth. In MEA, the growth was reduced but not inhibited. In addition, the vapor-phase antimicrobial activity of different preservatives such as ethanol and hop extract was studied in MEA. Both preservatives completely inhibited the yeast growth either at 20 or at 25 °C. Both preservatives were found in GFB slices. Contrary to hop extract, 2% (v/w) ethanol completely inhibited all the strains. The spoilage was also confirmed by the presence of various compounds typically present in yeasts, derived from sugar fermentation and amino acid degradation. These compounds included alcohols, ketones, organic acids, and esters, and they were identified at higher concentrations in the spoiled samples than in the unspoiled samples. The concentration of acetic acid was low only in the spoiled samples, as this compound was consumed by yeasts, which are predominately present in the spoiled samples, to produce acetate esters. Full article
18 pages, 2169 KB  
Article
Chemical Composition and Mixing States of Individual Particles in Indoor and Outdoor Atmospheres
by Yan Huang, Qingcheng Li, Jingjing Wang, Linlin Ye, Linfeng Zhang, Panya Xu and Mingjin Wang
Atmosphere 2025, 16(6), 707; https://doi.org/10.3390/atmos16060707 - 11 Jun 2025
Viewed by 1100
Abstract
Understanding the chemical composition and mixing states of individual particles in indoor/outdoor environments is important for assessing daily human exposure. In this study, the chemical composition and mixing states of micron-sized individual particles in university classrooms, dwellings, and corresponding outdoor atmospheres collected between [...] Read more.
Understanding the chemical composition and mixing states of individual particles in indoor/outdoor environments is important for assessing daily human exposure. In this study, the chemical composition and mixing states of micron-sized individual particles in university classrooms, dwellings, and corresponding outdoor atmospheres collected between November 2024 and January 2025 were analyzed using micro-Raman spectroscopy. Inorganics and carbonaceous matter were identified in the individual particles; inorganics included CaCO3, CaMg(CO3)2, Ca(NO3)2, CaSO4, CaSO4•2H2O, Mg(NO3)2, Na2SO4, SiO2, NH4NO3, and (NH4)2SO4, and carbonaceous matter included soot and organics. This study found significant differences in the chemical composition of indoor and outdoor particles. For example, the percentage of particles containing CaSO4 was higher in university classrooms than in corresponding outdoor atmospheres, which may be related to the use of chalk. Particles containing organics in the dwelling accounted for more than 80% of the total, which was significantly higher than those found in the corresponding outdoor atmospheres. This may be due to indoor cooking and cleaning activities. Internally mixed CaSO4/NH4NO3 particles and internally mixed CaSO4•2H2O/NH4NO3/(NH4)2SO4 particles were identified in the indoor atmospheres, indicating the complexity of indoor particle formation. In addition, soot and organics were primarily internally mixed with inorganics in individual particles in both indoor and outdoor atmospheres. This study offers new insights for understanding the formation mechanisms and sources of individual atmospheric particles. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 8192 KB  
Article
Comparison of Main Agronomic Traits and Identification of Important Genes in Japonica Rice Cultivars Grown in the Jianghuai Region
by Edwin Afriyie Owusu, Zhanglun Sun, Shengqin Liu, Dachao Xu, Huailin Fan, Hao Ai and Xianzhong Huang
Agronomy 2025, 15(6), 1409; https://doi.org/10.3390/agronomy15061409 - 8 Jun 2025
Viewed by 641
Abstract
An exploration and understanding of cultivar adaptability to specific environmental conditions are critical in rice breeding. This study aimed to compare the agro-morphological data of 36 japonica rice cultivars (Oryza sativa L.) from Chinese rice accessions grown under two different environments (Fengyang [...] Read more.
An exploration and understanding of cultivar adaptability to specific environmental conditions are critical in rice breeding. This study aimed to compare the agro-morphological data of 36 japonica rice cultivars (Oryza sativa L.) from Chinese rice accessions grown under two different environments (Fengyang and Hexian) and to identify important genes associated with key traits in the cultivars. Higher significant differences were observed between Fengyang and Hexian in traits like, grain width, grain length, yield per plot, plant height, and tiller number with cultivars grown in Hexian having the greatest values. This revealed that the environment in Hexian favored these traits, and most cultivars performed better in Hexian than in Fengyang. Correlation analysis also showed strong positive correlations between tiller number and yield per plot in both environments, indicating the influence of tiller number on rice yield potential. The PCR analysis showed the amplification of DEP1, Ghd7, Wx, Chalk5, COLD1, DST, Xa13, and Bph6 in most japonica cultivars, indicating presence of these genes in the cultivars. This study suggests that differences in agronomic performance between the cultivars grown in Fengyang and Hexian might be caused by differences in environmental conditions. This finding could be valuable for future breeding of high-yielding and climate-resilient cultivars. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

27 pages, 11167 KB  
Article
Integrating In Situ Non-Destructive Techniques and Colourimetric Analysis to Evaluate Pigment Ageing and Environmental Effects on Tibetan Buddhist Murals
by Xiyao Li, Erdong She, Jingqi Wen, Yan Huang and Jianrui Zha
Chemosensors 2025, 13(6), 202; https://doi.org/10.3390/chemosensors13060202 - 2 Jun 2025
Viewed by 1795
Abstract
The colour degradation of murals presents a significant challenge in the conservation of architectural heritage. Previous research has often concentrated on localized pigment changes while paying insufficient attention to the interaction between colour variation and indoor environmental conditions. Although non-destructive analytical techniques are [...] Read more.
The colour degradation of murals presents a significant challenge in the conservation of architectural heritage. Previous research has often concentrated on localized pigment changes while paying insufficient attention to the interaction between colour variation and indoor environmental conditions. Although non-destructive analytical techniques are widely used in heritage studies, their integrated application in combination with colourimetry has been limited, particularly in the context of Tibetan Buddhist murals in highland continental climates. This study investigates the murals of Liuli Hall in Meidai Lamasery, Inner Mongolia, as a representative case. We employed a comprehensive methodology that combines non-destructive analytical tools, gas chromatography–mass spectrometry, and quantitative colour analysis to examine pigment composition, binding material, and surface deterioration. Through joint analysis using the CIE Lab and CIE LCh colour space systems, we quantified mural colour changes and explored their correlation with material degradation and environmental exposure. The pigments identified include cinnabar, atacamite, azurite, and chalk, with animal glue and drying oils as binding materials. Colourimetric results revealed pronounced yellowing on the east and west walls, primarily caused by the ageing of organic binders. In contrast, a notable reduction in brightness on the south wall was attributed to dust accumulation. These findings support tailored conservation measures such as regular surface cleaning for the south wall and antioxidant stabilization treatments for the east and west walls. Initial cleaning efforts proved effective. The integrated approach adopted in this study provides a replicable model for mural diagnostics and conservation under complex environmental conditions. Full article
Show Figures

Figure 1

18 pages, 650 KB  
Review
Single-Cell Sequencing: An Emerging Tool for Biomarker Development in Nuclear Emergencies and Radiation Oncology
by Jihang Yu, Md Gulam Musawwir Khan, Nada Mayassi, Bhuvnesh Kaushal and Yi Wang
Cancers 2025, 17(11), 1801; https://doi.org/10.3390/cancers17111801 - 28 May 2025
Cited by 1 | Viewed by 1121
Abstract
Next-generation sequencing (NGS) has been well applied to assess genetic abnormalities in various biological samples to investigate disease mechanisms. With the advent of high-throughput and automatic testing platforms, NGS can identify radiation-sensitive and dose-responsive biomarkers, contributing to triage patients and determining risk groups [...] Read more.
Next-generation sequencing (NGS) has been well applied to assess genetic abnormalities in various biological samples to investigate disease mechanisms. With the advent of high-throughput and automatic testing platforms, NGS can identify radiation-sensitive and dose-responsive biomarkers, contributing to triage patients and determining risk groups for treatment in a nuclear emergency. While bulk NGS provides a snapshot of the average gene expression or genomic changes within a group of cells after the radiation, it cannot provide information on individual cells within the population. On the other hand, single-cell sequencing involves isolating individual cells and sequencing the genetic material from each cell separately. This approach allows for the identification of gene expression and genomic changes in individual cells, providing a high-resolution view of cellular diversity and heterogeneity within a sample. Single-cell sequencing is particularly useful to identify cell-specific features of dose-response and organ-response genes. While single-cell RNA sequencing (scRNA-seq) technology is still emerging in radiation research, it holds significant promise for identifying biomarkers related to radiation exposure and tailoring post-radiation medical care. This review aims to focus on current methods of radiation dosimetry and recently identified biomarkers associated with radiation exposure. Additionally, it addresses the development of NGS techniques in the context of radiation situations, such as cancer treatment and emergency events, with a particular emphasis on single-cell sequencing technology. Full article
Show Figures

Figure 1

11 pages, 2454 KB  
Article
From the Woods to the Great Steppe: The Phylogenetic Affinities and New Distribution Records of the Smooth Snake Coronella austriaca in Kazakhstan
by Evgeniy Simonov, Andrey Bakiev, Anastasia Klenina, Oleg Ermakov and Kazhmurat Akhmedenov
Diversity 2025, 17(5), 348; https://doi.org/10.3390/d17050348 - 15 May 2025
Viewed by 968
Abstract
The smooth snake (Coronella austriaca) has a wide but fragmented distribution across the Western Palearctic, with limited records in Kazakhstan. This study aims to provide an updated distribution map and to explore the phylogenetic affinities of C. austriaca in Kazakhstan. The [...] Read more.
The smooth snake (Coronella austriaca) has a wide but fragmented distribution across the Western Palearctic, with limited records in Kazakhstan. This study aims to provide an updated distribution map and to explore the phylogenetic affinities of C. austriaca in Kazakhstan. The species had not been documented for over 60 years until its recent rediscovery in the region. Field surveys conducted between 2019 and 2024 in the West Kazakhstan and Aktobe regions have yielded novel records, including the southernmost observation in the Mugodzhar mountain range. Mitochondrial DNA analysis confirmed that the Kazakh populations belong to the Eastern lineage, sharing haplotypes with specimens from the northwestern Caucasus and Crimea. Habitat assessment revealed that the species’ distribution is restricted to open habitats of petrophytic and calciphyte steppe communities on chalks and rocky steppes. Of particular interest is that 70% of the observed individuals exhibited patternless coloration, suggesting the potential for regional morphological variation. These findings offer the first evidence for the phylogenetic affiliation of the smooth snake in Kazakhstan and reflect its rarity in the country, highlighting the need for local conservation efforts, including habitat protection and population monitoring. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 384 KB  
Article
Robust Method for Confidence Interval Estimation in Outlier-Prone Datasets: Application to Molecular and Biophysical Data
by Victor V. Golovko
Biomolecules 2025, 15(5), 704; https://doi.org/10.3390/biom15050704 - 12 May 2025
Viewed by 997
Abstract
Estimating confidence intervals in small or noisy datasets is a recurring challenge in biomolecular research, particularly when data contain outliers or exhibit high variability. This study introduces a robust statistical method that combines a hybrid bootstrap procedure with Steiner’s most frequent value (MFV) [...] Read more.
Estimating confidence intervals in small or noisy datasets is a recurring challenge in biomolecular research, particularly when data contain outliers or exhibit high variability. This study introduces a robust statistical method that combines a hybrid bootstrap procedure with Steiner’s most frequent value (MFV) approach to estimate confidence intervals without removing outliers or altering the original dataset. The MFV technique identifies the most representative value while minimizing information loss, making it well suited for datasets with limited sample sizes or non-Gaussian distributions. To demonstrate the method’s robustness, we intentionally selected a dataset from outside the biomolecular domain: a fast-neutron activation cross-section of the 109Ag(n, 2n)108mAg reaction from nuclear physics. This dataset presents large uncertainties, inconsistencies, and known evaluation difficulties. Confidence intervals for the cross-section were determined using a method called the MFV–hybrid parametric bootstrapping (MFV-HPB) framework. In this approach, the original data points were repeatedly resampled, and new values were simulated based on their uncertainties before the MFV was calculated. Despite the dataset’s complexity, the method yielded a stable MFV estimate of 709 mb with a 68.27% confidence interval of [691, 744] mb, illustrating the method’s ability to provide interpretable results in challenging scenarios. Although the example is from nuclear science, the same statistical issues commonly arise in biomolecular fields, such as enzymatic kinetics, molecular assays, and diagnostic biomarker studies. The MFV-HPB framework provides a reliable and generalizable approach for extracting central estimates and confidence intervals in situations where data are difficult to collect, replicate, or interpret. Its resilience to outliers, independence from distributional assumptions, and compatibility with small-sample scenarios make it particularly valuable in molecular medicine, bioengineering, and biophysics. Full article
(This article belongs to the Topic Bioinformatics in Drug Design and Discovery—2nd Edition)
Show Figures

Figure 1

20 pages, 5003 KB  
Article
Assessment of Mercury Contamination in the Chalk Aquifer of the Pays de Caux and Its Implications for Public Health (France)
by Lahcen Zouhri, Jacques Delépine and Lockman Zouhri
Water 2025, 17(7), 1087; https://doi.org/10.3390/w17071087 - 5 Apr 2025
Viewed by 735
Abstract
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the [...] Read more.
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the detection of mercury anomalies during groundwater quality monitoring at the Pays de Caux study site (France), a comprehensive multidisciplinary research effort was initiated. This included geological and hydrogeological studies aimed at tracking mercury concentrations in piezometric wells and identifying the sources of these anomalies. This study seeks to assess the groundwater quality and characteristics from ten hydrogeological wells. The evaluation will focus on key hydrogeological parameters, including pH, redox potential (Eh), suspended solids, and groundwater levels, as well as a detailed geochemical analysis of elements such as Hg, Fe, Mn, Zn, Pb, and Cu. The mobilization of mercury and other metallic traces elements is strongly governed by environmental factors. Hydrochemical analyses highlight the complex interplay of various parameters that influence the chemical forms and behavior of mercury in both soil and groundwater. The results from the piezometric measurement campaigns (Pz1 to Pz7) have provided crucial insights, enabling the development of hypotheses about mercury’s behavior in the chalk aquifer. It is hypothesized that impermeable areas may trap groundwater for extended periods, leading to the accumulation and abnormal concentration of mercury. This could cause mercury to be intermittently released, potentially affecting the surrounding environment. Mercury concentrations in groundwater are highly sensitive to pH and redox potential (Eh), with low pH and reducing conditions promoting mercury mobilization and the formation of toxic methylated species. The study suggests the chalk aquifer is generally in equilibrium with mercury, but fluctuations in mercury levels between Pz7 and Pz4 are likely due to the heterogeneity of the clay and geological factors such as mineral composition and fracturing. This research provides insights into mercury transfer in heterogeneous environments and emphasizes the need for continuous hydrogeological monitoring, including piezometer readings, to manage mercury dispersion in the aquifer. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

37 pages, 19027 KB  
Article
The Diversity of Crystals, Microstructures and Texture That Form Ostreoidea Shells
by Anna Sancho Vaquer, Erika Griesshaber, Carmen Salas, Elizabeth M. Harper, Antonio G. Checa and Wolfgang W. Schmahl
Crystals 2025, 15(3), 286; https://doi.org/10.3390/cryst15030286 - 20 Mar 2025
Cited by 3 | Viewed by 679
Abstract
The shells of bivalved molluscs comprise, in general, few microstructures and very few textures. In the case of ostreoid oysters, a high diversity has been observed. The shells consist of columnar-prismatic, foliated, granular calcite and myostracal-prismatic aragonite. Furthermore, voids are incorporated into the [...] Read more.
The shells of bivalved molluscs comprise, in general, few microstructures and very few textures. In the case of ostreoid oysters, a high diversity has been observed. The shells consist of columnar-prismatic, foliated, granular calcite and myostracal-prismatic aragonite. Furthermore, voids are incorporated into the ostreoid shell: the pores of the vesicular shell segments and the blades/laths of the chalk lenses. These initiate formation of additional microstructures and textures. We investigated the shells of Magallana gigas, Ostrea stentina, Ostrea edulis (Ostreidae), Hyotissa hyotis, Hyotissa mcgintyi and Neopycnodonte cochlear (Gryphaeidae) with high-resolution, low-kV, electron backscatter diffraction (EBSD) measurements and scanning electron microscopy (FE-SEM) imaging and review the diversity of ostreoid Ca-carbonate microstructures and textures. From a crystallographic perspective, we (i) characterized the sub-micrometer crystal assembly pattern of ostreoid microstructures and textures, (ii) investigated crystal organization at the changeover from one microstructure into the other and (iii) examined how curved crystal surfaces are generated at inner shell surface as well as within the shell, in and at aggregations of folia and foliated units. We show that Ostreoidea are capable of secreting single crystalline, graded and dendritic calcite within the same shell and, hence, are able to vary strongly the degree of crystal co-alignment. We demonstrate that Ostreoidea myostracal aragonite is twinned, while shell calcite is not twinned, neither within different microstructures nor at the changeover between adjacent microstructures. We highlight the very specific microstructure of the foliated shell and demonstrate the strongly regulated gradedness of both the c- and a*-axes orientation of the foliated calcite crystallites. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

Back to TopTop