Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,603)

Search Parameters:
Keywords = characteristic curves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 24401 KB  
Article
Effect of Crease-Weakening Schemes on the Structural Performance of Lightweight Foldable Columns Based on the Pillow Box Pattern
by Qingyun Zhang, Joseph M. Gattas and Jian Feng
Appl. Sci. 2025, 15(19), 10756; https://doi.org/10.3390/app151910756 - 6 Oct 2025
Abstract
Origami structures exhibit significant potential for rapid deployment in post-disaster response and temporary architecture due to their ability to quickly fold and deploy. Further development of these structures into modular components that can be assembled into large-scale architectural systems holds great importance for [...] Read more.
Origami structures exhibit significant potential for rapid deployment in post-disaster response and temporary architecture due to their ability to quickly fold and deploy. Further development of these structures into modular components that can be assembled into large-scale architectural systems holds great importance for the fields of architecture and civil engineering. In this study, a thin-walled foldable column was developed based on the “pillow box” origami pattern. This column maintains its three-dimensional configuration during folding, owing to its inherent self-locking characteristic. Two crease-weakening strategies (“dashed-line” and “slit-hole”) were proposed and experimentally validated. A systematic numerical study was conducted to investigate the axial compressive performance of pillow box columns with weakened curved creases. The results indicate that both weakening strategies effectively enable folding while preserving global integrity under compression. The pillow box column with “dashed-line” creases (OCC-D) demonstrated superior load-bearing capacity, with a load-to-weight ratio of up to 658.9, nearly twice that of the corresponding conventional square tube. Parametric analysis of the crease geometry further revealed that increasing the number of crease units enhances the load-bearing performance, and the optimal performance is achieved when the spacing between slit openings equals the slit length (lh=lc). These findings highlight the advantages of pillow box origami columns as thin-walled load-bearing components, offering new insights for the rapid construction and lightweight design of architectural structures. Full article
Show Figures

Figure 1

26 pages, 46021 KB  
Article
Cross-Scale Modeling of CFRP Stacking Sequence in Filament-Wound Composite Pressure Vessels: In-Plane and Inter-Layer Homogenization Analysis
by Ziqi Wang, Ji Shi, Xiaodong Zhao, Hui Li, Huiming Shen, Jianguo Liang and Jun Feng
Materials 2025, 18(19), 4612; https://doi.org/10.3390/ma18194612 - 5 Oct 2025
Abstract
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization [...] Read more.
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization method to achieve cross-scale modeling of carbon fiber-reinforced plastic (CFRP) layers, accounting for both lay-up sequence and in-plane FW diamond-shaped form. The stacking sequence in an FW Type IV composite pressure vessel is numerically investigated through ply modeling and cross-scale homogenization. The composite tank structure, featuring a polyamide PA66 liner, is designed for a working pressure of 70 MPa and comprises 12 helical winding layers and 17 hoop winding layers. An FW cross-undulation representative volume element (RVE) is developed based on actual in-plane mesostructures, suggesting an equivalent laminate RVE effective elastic modulus. Furthermore, six different lay-up sequences are numerically compared using ply models and fully and partially homogenized models. The structural displacements in both radial and axial directions are validated across all modeling approaches. The partial homogenization method successfully captures the detailed fiber-direction stress distribution in the innermost two hoop or helical layers. By applying the Hashin tensile failure criterion, the burst pressure of the composite tank is evaluated, revealing 7.56% deviation between the partial homogenization model and the ply model. Fatigue life analysis of the Type IV composite pressure vessel is conducted using ABAQUS® coupled with FE-SAFE, incorporating an S-N curve for polyamide PA66. The results indicate that the fatigue cycles of the liner exhibit only 0.28% variation across different stacking sequences, demonstrating that homogenization has a negligible impact on liner lifecycle predictions. The proposed cross-scale modeling framework offers an effective approach for multiscale simulation of FW composite pressure vessels, balancing computational efficiency with accuracy. Full article
7 pages, 457 KB  
Case Report
Functional Magnetic Stimulation in the Management of Lower Urinary Tract Dysfunction in Children with Asperger Syndrome: A Case Report
by Edva Anna Frunda, Orsolya Katalyn Ilona Mártha, András Kiss, Árpád Olivér Vida, Tibor Lóránd Reman, Raul-Dumitru Gherasim, Veronica Maria Ghirca, Bogdan Călin Chibelean, Daniel Porav-Hodade and Carmen Viorica Muntean
Children 2025, 12(10), 1340; https://doi.org/10.3390/children12101340 - 5 Oct 2025
Abstract
Background/Objectives: A variant of autism spectrum disorder (ASD) known as Asperger syndrome (AS) shows increasing incidence worldwide, affecting between 0.02% and 0.03% of children. Patients display abnormal conduct, are limited in social interaction and communication, and are more often affected by micturition disorders, [...] Read more.
Background/Objectives: A variant of autism spectrum disorder (ASD) known as Asperger syndrome (AS) shows increasing incidence worldwide, affecting between 0.02% and 0.03% of children. Patients display abnormal conduct, are limited in social interaction and communication, and are more often affected by micturition disorders, incontinence, and voiding symptoms than typically developing children. Methods: The present study aimed to review the literature related to the current management of lower urinary tract conditions in children with Asperger syndrome and to present a case of a 14-year-old girl with ASD, with characteristic impairments, including communication challenges, stereotyped, repetitive behaviors, and chronic constipation with concomitant bladder dysfunction, presenting recurrent urinary tract infections (UTIs) and lower urinary tract symptoms (LUTS), including voiding and filling storage symptoms. For the AS, she was treated with a selective serotonin reuptake inhibitor (Sertraline). An abdominal ultrasound, PLUTTS—pediatric lower urinary symptoms scoring (21); QL-quality of life (3); voiding diary; and uroflowmetry were performed, revealing an incomplete urinary retention (incomplete bladder emptying of 120 mL), a prolonged and interrupted curve, a maximum urinary flow rate (Qmax) 7 mL/s, and a UTI with Enterococcus. Results: Besides psychiatric reevaluation and antibiotic therapy, functional magnetic stimulation (FMS) sessions were performed. After eight sessions (20 min, 35 MHz, every second day), the ultrasound control and the uroflowmetry showed no residual urine, and the Qmax was 17 mL/s. The curve continued to be interrupted: PLUTSS-11, QL-1. FMS was continued at two sessions per week. At the 3-month follow-up, no residual urine was detected, and Qmax reached 24 mL/s. Conclusions: ASD is an incapacitating/debilitating condition that significantly impairs social functioning. In many cases, in addition to psychological symptoms, other conditions such as LUTS and constipation may coexist. Antipsychotics and antidepressants are frequently prescribed for these patients, often leading to various side effects, including micturition disorders. Therefore, screening for LUTS is recommended, and, if indicated, treatment—especially non-pharmacological and non-invasive approaches, such as FMS—should be considered. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

40 pages, 1781 KB  
Article
Exponentiated Inverse Exponential Distribution Properties and Applications
by Aroosa Mushtaq, Tassaddaq Hussain, Mohammad Shakil, Mohammad Ahsanullah and Bhuiyan Mohammad Golam Kibria
Axioms 2025, 14(10), 753; https://doi.org/10.3390/axioms14100753 - 3 Oct 2025
Abstract
This paper introduces Exponentiated Inverse Exponential Distribution (EIED), a novel probability model developed within the power inverse exponential distribution framework. A distinctive feature of EIED is its highly flexible hazard rate function, which can exhibit increasing, decreasing, and reverse bathtub (upside-down bathtub) shapes, [...] Read more.
This paper introduces Exponentiated Inverse Exponential Distribution (EIED), a novel probability model developed within the power inverse exponential distribution framework. A distinctive feature of EIED is its highly flexible hazard rate function, which can exhibit increasing, decreasing, and reverse bathtub (upside-down bathtub) shapes, making it suitable for modeling diverse lifetime phenomena in reliability engineering, survival analysis, and risk assessment. We derived comprehensive statistical properties of the distribution, including the reliability and hazard functions, moments, characteristic and quantile functions, moment generating function, mean deviations, Lorenz and Bonferroni curves, and various entropy measures. The identifiability of the model parameters was rigorously established, and maximum likelihood estimation was employed for parameter inference. Through extensive simulation studies, we demonstrate the robustness of the estimation procedure across different parameter configurations. The practical utility of EIED was validated through applications to real-world datasets, where it showed superior performance compared to existing distributions. The proposed model offers enhanced flexibility for modeling complex lifetime data with varying hazard patterns, particularly in scenarios involving early failure periods, wear-in phases, and wear-out behaviors. Full article
(This article belongs to the Special Issue Probability, Statistics and Estimations, 2nd Edition)
13 pages, 1358 KB  
Article
Elevated Serum Protease 3 Antineutrophil Cytoplasmic Antibody in Mesalazine-Intolerant Ulcerative Colitis: A Potential Diagnostic Biomarker
by Yuhei Oyama, Takashi Taida, Yoshiki Matsubara, Tomomi Ozaki, Takuya Ohashi, Toshiyuki Ito, Shohei Mukai, Nobuaki Shu, Yushi Koshibu, Yusuke Ozeki, Makoto Furuya, Yukiyo Mamiya, Hayato Nakazawa, Ryosuke Horio, Chihiro Goto, Satsuki Takahashi, Akane Kurosugi, Michiko Sonoda, Tatsuya Kaneko, Tsubasa Ishikawa, Yuki Ohta, Kenichiro Okimoto, Keiko Saito, Tomoaki Matsumura and Jun Katoadd Show full author list remove Hide full author list
J. Clin. Med. 2025, 14(19), 7019; https://doi.org/10.3390/jcm14197019 - 3 Oct 2025
Abstract
Background/Objectives: Mesalazine agents are essential drugs for treating ulcerative colitis (UC). Biomarkers that can differentiate mesalazine intolerance from exacerbated UC are needed because of the similarity of their symptoms and increasing prevalence of mesalazine intolerance. The study aim was to assess the [...] Read more.
Background/Objectives: Mesalazine agents are essential drugs for treating ulcerative colitis (UC). Biomarkers that can differentiate mesalazine intolerance from exacerbated UC are needed because of the similarity of their symptoms and increasing prevalence of mesalazine intolerance. The study aim was to assess the usefulness of proteinase 3 antineutrophil cytoplasmic antibody (PR3-ANCA) to identify mesalazine intolerance in patients with UC. Methods: In this single-center retrospective study, patients with UC in whom serum PR3-ANCA was measured were included, and the serum levels were compared between the mesalazine-intolerant and -tolerant patient groups. The predictability of the marker to discriminate between these patients was analyzed. Results: Among 406 patients with UC with measured serum PR3-ANCA levels, 68 (17%) had mesalazine intolerance. The PR3-ANCA levels were significantly higher in the intolerance group than in the tolerance group [4.5 U/mL (0.8–26.2 U/mL) vs. 1.5 U/mL (0.0–8.5 U/mL), p = 0.001]. The area under the curve of the receiver operating characteristic curve analysis of the predictability of PR3-ANCA in differentiating mesalazine-intolerant patients from clinically active patients with UC was 0.755 (95% confidence interval: 0.634–0.876, cutoff value: 15.05 U/mL; sensitivity: 0.625, specificity: 0.813). Multivariate logistic regression analysis using various clinical factors revealed that serum PR3-ANCA > 15.0 U/mL was an independent risk factor of mesalazine intolerance (odds ratio: 8.25, 95% confidence interval: 2.52–27.02, p < 0.001). Conclusions: Serum PR3-ANCA could be a useful marker to identify mesalazine-intolerant patients with UC. Full article
Show Figures

Figure 1

21 pages, 3367 KB  
Article
Research on the Variational Mode Decomposition Method for Displacement Signals of Offshore Pile Foundations in the Rapid Loading Method
by Qing Guo, Ruizhe Jin, Guoliang Dai, Weiming Gong, Pengfei Ji and Xueliang Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1905; https://doi.org/10.3390/jmse13101905 - 3 Oct 2025
Abstract
Based on the characteristics of offshore pile foundation engineering, this study proposes a novel interpretation method for pile settlement time history signals in Rapid Load Testing (RLT). The approach utilizes Variational Mode Decomposition (VMD) to decompose and reconstruct the originally acquired acceleration signals, [...] Read more.
Based on the characteristics of offshore pile foundation engineering, this study proposes a novel interpretation method for pile settlement time history signals in Rapid Load Testing (RLT). The approach utilizes Variational Mode Decomposition (VMD) to decompose and reconstruct the originally acquired acceleration signals, effectively eliminating high-frequency noise and significantly enhancing signal quality. After obtaining a purified acceleration signal, the study further refines the velocity signal based on the velocity characteristics at the beginning and end of the loading process, aiming to mitigate the influence of initial and boundary conditions on the velocity data. This process yields a highly accurate displacement time history curve. To validate the superiority of VMD in acceleration signal processing, a signal model test was conducted. Comparative experimental results demonstrate that the displacement time history curve derived from VMD-processed signals not only exhibits smaller relative errors and higher precision but also shows significant waveform improvements compared to curves obtained through direct integration of filtered signals. The research indicates that for marine pile foundations, using VMD to decompose and reconstruct the signals, and applying the continuous mean square error theory to identify the critical components of noise and effective signals has significant advantages in the processing of displacement signals using RLT. Compared with traditional analysis methods, the study successfully achieved the effective removal of high-frequency noise in the signal by applying the VMD technique to the decomposition and reconstruction of acceleration signals, significantly improving the quality of the signal. The assumption of zero pile head velocity before and after loading enables accurate determination of the actual pile head displacement Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

24 pages, 2836 KB  
Article
Investigation of the Optimum Solar Insolation for PV Systems Considering the Effect of Tilt Angle and Ambient Temperature
by Raghed Melhem, Yomna Shaker, Fatma Mazen Ali Mazen and Ali Abou-Elnour
Energies 2025, 18(19), 5257; https://doi.org/10.3390/en18195257 - 3 Oct 2025
Abstract
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar [...] Read more.
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar photovoltaic (PV) systems. The objective of this study is to achieve the optimal tilt angle and cell temperature accordingly by developing a MATLAB program to reach the target of maximizing the received solar insolation. To achieve this, additional solar angles such as the azimuth, hour, latitude angle, declination angle, hour angle, and azimuth angle need to be calculated. By computing the solar insolation for specific regions of interest, specifically the Gulf Cooperation Council (GCC) countries, the desired results can be obtained. Additionally, the study aims to assess the influence of PV cell temperature on the I–V curves of commercially available PV modules, which will provide insights into the impact of temperature on the performance characteristics of PV cells. By employing a developed model, the study examined the combined collective influences of solar received radiation, tilt angle, and ambient temperature on the output power of PV systems in five different cities. The annual optimal tilt angles were found to be as follows: Mecca (21.4° N)—21.48°, Fujairah (25.13° N)—25.21°, Kuwait (29.3° N)—29.38°, Baghdad (33.3° N)—33.38°, and Mostaganem (35.9° N)—2535.98°. Notably, the estimated yearly optimal tilt angles closely corresponded to the latitudes of the respective cities. Additionally, the study explored the impact of ambient temperature on PV module performance. It was observed that an increase in ambient temperature resulted in a corresponding rise in the temperature of the PV cells, indicating the significant influence of environmental temperature on PV module efficiency. Overall, the findings demonstrate that adjusting the tilt angle of PV modules on a monthly basis led to higher solar power output compared to yearly adjustments. These results underscore the importance of considering both solar radiation and ambient temperature when optimizing PV power generation. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

13 pages, 1023 KB  
Article
The Clinical Features and Prognosis of Idiopathic and Infection-Triggered Acute Exacerbation of Idiopathic Inflammatory Myopathy-Associated Interstitial Lung Disease: A Preliminary Study
by Jingping Zhang, Kai Yang, Lingfei Mo, Liyu He, Jiayin Tong, He Hei, Yuting Zhang, Yadan Sheng, Blessed Kondowe and Chenwang Jin
Diagnostics 2025, 15(19), 2516; https://doi.org/10.3390/diagnostics15192516 - 3 Oct 2025
Abstract
Background: Acute exacerbation (AE) of idiopathic inflammatory myopathy-associated interstitial lung disease (IIM-ILD) is fatal. Infection is one of the most important triggers of the AE of IIM-ILD. We evaluated the clinical features and prognosis of idiopathic (I-AE) and infection-triggered (iT-AE) acute exacerbation [...] Read more.
Background: Acute exacerbation (AE) of idiopathic inflammatory myopathy-associated interstitial lung disease (IIM-ILD) is fatal. Infection is one of the most important triggers of the AE of IIM-ILD. We evaluated the clinical features and prognosis of idiopathic (I-AE) and infection-triggered (iT-AE) acute exacerbation in IIM-ILD patients. Methods: We retrospectively reviewed 278 consecutive patients with IIM admitted to our hospital between January 2014 and December 2020. Among them, 69 patients experienced AE of IIM-ILD, including 34 with I-AE and 35 with iT-AE. Clinical features and short- and long-term outcomes were analyzed in this preliminary study. Results: Compared with I-AE, patients with iT-AE presented with lower hemoglobin and PaO2/FiO2 ratios but higher pulse, body temperature, white blood cell count, neutrophil percentage (NEU), C-reactive protein, erythrocyte sedimentation rates, lactate dehydrogenase, and hydroxybutyrate dehydrogenase levels. They also had more extensive ground-glass opacities (GGOs) on high-resolution computed tomography (all p < 0.05). Mortality was significantly higher in iT-AE than that in I-AE at 30 days (28.6% vs. 5.9%), 90 days (34.3% vs. 14.9%), and 1 year (54.3% vs. 17.6%; log-rank test, p = 0.002). Multivariate logistic regression showed that the combination of NEU and GGO extent could help discriminate iT-AE from I-AE (area under the receiver operating characteristic curve: 0.812; 95% confidence interval: 0.711–0.913; sensitivity: 71.4%, specificity: 73.5%, accuracy: 72.5%). Conclusion: This study found that iT-AE patients exhibited more severe hyperinflammation and markedly worse survival than I-AE patients. Combining NEU and GGO extent may assist in differentiating AE subtypes. Larger prospective studies are required to validate these findings. Full article
Show Figures

Figure 1

19 pages, 5542 KB  
Article
Enhanced Frequency Regulation of Islanded Airport Microgrid Using IAE-Assisted Control with Reaction Curve-Based FOPDT Modeling
by Tarun Varshney, Naresh Patnana and Vinay Pratap Singh
Inventions 2025, 10(5), 88; https://doi.org/10.3390/inventions10050088 - 2 Oct 2025
Abstract
This paper investigates frequency regulation of an airport microgrid (AIM) through the application of an integral absolute error (IAE)-assisted control approach. The islanded AIM is initially captured using a linearized transfer function model to accurately reflect its dynamic characteristics. This model is then [...] Read more.
This paper investigates frequency regulation of an airport microgrid (AIM) through the application of an integral absolute error (IAE)-assisted control approach. The islanded AIM is initially captured using a linearized transfer function model to accurately reflect its dynamic characteristics. This model is then simplified using a first-order plus dead time (FOPDT) approximation derived via a reaction-curve-based method, which balances between model simplicity and accuracy. Two different proportional–integral–derivative (PID) controllers are designed to meet distinct objectives: one focuses on set-point tracking (SPT) to maintain the target frequency levels, while the other addresses load disturbance rejection (LDR) to reduce the effects of load fluctuations. A thorough comparison of these controllers demonstrates that the SPT-mode PID controller outperforms the LDR-mode controller by providing an improved transient response and notably lower error measures. The results underscore the effectiveness of combining IAE-based control with reaction curve modeling to tune PID controllers for islanded AIM systems, contributing to enhanced and reliable frequency regulation for microgrid operations. Full article
15 pages, 840 KB  
Article
External Validation and Comparative Performance of the T.O.HO. and S.T.O.N.E. Scoring Systems for Predicting Stone-Free Outcomes Following Flexible Ureteroscopy: Toward Personalized Preoperative Counseling
by Yuka Sugizaki, Takanobu Utsumi, Rino Ikeda, Naoki Ishitsuka, Takahide Noro, Yuta Suzuki, Shota Iijima, Takatoshi Somoto, Ryo Oka, Takumi Endo, Naoto Kamiya and Hiroyoshi Suzuki
J. Pers. Med. 2025, 15(10), 477; https://doi.org/10.3390/jpm15100477 - 2 Oct 2025
Abstract
Background/Objectives: The attainment of a stone-free (SF) condition is a fundamental indicator of successful outcomes after flexible ureteroscopy (fURS) for urinary stone disease. External confirmations of preoperative scores remain limited. We externally validated the T.O.HO. and S.T.O.N.E. scores in an independent Japanese [...] Read more.
Background/Objectives: The attainment of a stone-free (SF) condition is a fundamental indicator of successful outcomes after flexible ureteroscopy (fURS) for urinary stone disease. External confirmations of preoperative scores remain limited. We externally validated the T.O.HO. and S.T.O.N.E. scores in an independent Japanese cohort and examined calibration, decision curve utility, and threshold-guided use to support personalized planning. Methods: We retrospectively analyzed 361 consecutive patients treated with fURS from March 2018 to August 2023. Postoperative SF status was defined as the absence of residual calculi greater than 2 mm on non-contrast computed tomography performed within three months of surgery. Independent determinants of SF were identified using multivariable logistic regression, predictive performance was quantified by receiver operating characteristic analyses with DeLong’s test, and model calibration and decision curve analysis were additionally assessed. Results: Among the 361 patients, 255 (70.6%) achieved an SF state. A larger stone diameter, the presence of lower-pole calculi, and preoperative pyuria (positive urine WBC) were significant independent predictors of residual fragments. T.O.HO. demonstrated superior discrimination (AUC 0.86) compared with S.T.O.N.E. (AUC 0.77; p < 0.01) and surpassed individual predictors. Both scores showed acceptable calibration. Decision curve analysis demonstrated higher net benefit for T.O.HO. across clinically relevant thresholds. We provide clinically useful cut-offs (e.g., T.O.HO. ≤5: high SF probability; 6: trade-off discussion; ≥7: higher residual risk) to align actions with patient priorities. Conclusions: Beyond discrimination, a calibrated, threshold-aware use of T.O.HO. enables personalized preoperative counseling and shared decision-making, potentially reducing unnecessary staging and enhancing routine fURS planning. Full article
(This article belongs to the Section Personalized Medical Care)
16 pages, 2455 KB  
Article
Classification of Hemiplegic Gait and Mimicked Hemiplegic Gait: A Treadmill Gait Analysis Study in Stroke Patients and Healthy Individuals
by Young-ung Lee, Seungwon Kwon, Cheol-Hyun Kim, Jeong-Woo Seo and Sangkwan Lee
Bioengineering 2025, 12(10), 1074; https://doi.org/10.3390/bioengineering12101074 - 2 Oct 2025
Abstract
Differentiating genuine hemiplegic gait (HG) in stroke survivors from hemiplegic-like gait voluntarily imitated by healthy adults (MHG) is essential for reliable assessment and intervention planning. Treadmill-based gait data were obtained from 79 participants—39 stroke patients (HG) and 40 healthy adults—instructed to mimic HG [...] Read more.
Differentiating genuine hemiplegic gait (HG) in stroke survivors from hemiplegic-like gait voluntarily imitated by healthy adults (MHG) is essential for reliable assessment and intervention planning. Treadmill-based gait data were obtained from 79 participants—39 stroke patients (HG) and 40 healthy adults—instructed to mimic HG (MHG). Forty-eight spatiotemporal and force-related variables were extracted. Random Forest, support vector machine (SVM), and logistic regression classifiers were trained with (i) the full feature set and (ii) the 10 most important features selected via Random Forest Gini importance. Performance was assessed with 5-fold stratified cross-validation and an 80/20 hold-out test, using accuracy, F1-score, and the area under the receiver operating characteristic curve (AUC). All models achieved high discrimination (AUC > 0.93). The SVM attained perfect discrimination (AUC = 1.000, test set) with the full feature set and maintained excellent accuracy (AUC = 0.983) with only the top 10 features. Temporal asymmetries, delayed vertical ground reaction force peaks, and mediolateral spatial instability ranked highest in importance. Reduced-feature models showed negligible performance loss, highlighting their parsimony and interpretability. Supervised machine learning algorithms can accurately distinguish true hemiplegic gait from mimicked patterns using a compact subset of gait features. The findings support data-driven, time-efficient gait assessments for clinical neurorehabilitation and for validating experimental protocols that rely on gait imitation. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

15 pages, 1457 KB  
Article
Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores
by Rihwa Choi, Gayoung Chun, Sung-Eun Cho and Sang Gon Lee
Diagnostics 2025, 15(19), 2508; https://doi.org/10.3390/diagnostics15192508 - 2 Oct 2025
Abstract
Background/Objectives: Central precocious puberty (CPP) is diagnosed via gonadotropin-releasing hormone (GnRH) stimulation testing, which can be burdensome in pediatric settings. This study evaluated the utility of baseline hormonal markers—particularly insulin-like growth fac-tor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3)—as auxiliary tools for [...] Read more.
Background/Objectives: Central precocious puberty (CPP) is diagnosed via gonadotropin-releasing hormone (GnRH) stimulation testing, which can be burdensome in pediatric settings. This study evaluated the utility of baseline hormonal markers—particularly insulin-like growth fac-tor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3)—as auxiliary tools for CPP diagnosis in Korean children. Methods: We retrospectively analyzed patients who underwent GnRH stimulation testing. Baseline LH, FSH, IGF-1, and IGFBP-3 levels were assessed, along with standard deviation scores (SDS) calculated using two different reference intervals. Multivariable logistic regression was performed to improve diagnostic accuracy. Performance was evaluated using area under the curve (AUC) values from receiver operating characteristic (ROC) analyses, stratified by sex. Results: Among 2464 Korean children (2025 girls and 439 boys), CPP diagnosis rates were 54.2% in girls and 65.6% in boys. Among baseline markers, FSH showed the highest AUCs using raw values with sex-specific cutoffs (AUC = 0.767 in girls and 0.895 in boys). Although IGF-1 SDS and IGFBP-3 SDS showed AUCs < 0.7 when used alone, predictive models incorporating these SDS values yielded higher performance (AUC = 0.800 in girls and 0.920 in boys. Conclusions: SDS-based IGF-1 and IGFBP-3 enhance CPP diagnosis when used in predictive models, emphasizing the need for sex-specific interpretation and standardized reference intervals in real-world clinical practice. Full article
(This article belongs to the Special Issue Advances in Laboratory Markers of Human Disease)
Show Figures

Figure 1

13 pages, 1111 KB  
Article
Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data
by Heidi Cleverley-Leblanc, Johan N. Siebert, Jonathan Doenz, Mary-Anne Hartley, Alain Gervaix, Constance Barazzone-Argiroffo, Laurence Lacroix and Isabelle Ruchonnet-Metrailler
Appl. Sci. 2025, 15(19), 10662; https://doi.org/10.3390/app151910662 - 2 Oct 2025
Abstract
A critical factor contributing to the burden of childhood asthma is the lack of effective self-management in homecare settings. Artificial intelligence (AI) and lung sound monitoring could help address this gap. Yet, existing AI-driven auscultation tools focus on wheeze detection and often rely [...] Read more.
A critical factor contributing to the burden of childhood asthma is the lack of effective self-management in homecare settings. Artificial intelligence (AI) and lung sound monitoring could help address this gap. Yet, existing AI-driven auscultation tools focus on wheeze detection and often rely on subjective human labels. To improve the early detection of asthma worsening in children in homecare setting, we trained and evaluated a Deep Learning model based on spirometry-labelled lung sounds recordings to detect asthma exacerbation. A single-center prospective observational study was conducted between November 2020 and September 2022 at a tertiary pediatric pulmonology department. Electronic stethoscopes were used to record lung sounds before and after bronchodilator administration in outpatients. In the same session, children also underwent spirometry, which served as the reference standard for labelling the lung sound data. Model performance was assessed on an internal validation set using receiver operating characteristic (ROC) curves. A total of 16.8 h of lung sound recordings from 151 asthmatic pediatric outpatients were collected. The model showed promising discrimination performance, achieving an AUROC of 0.763 in the training set, but performance in the validation set was limited (AUROC = 0.398). This negative result demonstrates that acoustic features alone may not provide sufficient diagnostic information for the early detection of asthma attacks, especially in mostly asymptomatic outpatients typical of homecare settings. It also underlines the challenges introduced by differences in how digital stethoscopes process sounds and highlights the need to define the severity threshold at which acoustic monitoring becomes informative, and clinically relevant for home management. Full article
(This article belongs to the Special Issue Deep Learning and Data Mining: Latest Advances and Applications)
Show Figures

Figure 1

Back to TopTop