Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = chiral crossover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 905 KB  
Article
Chiral Invariant Mass Constraints from HESS J1731–347 in an Extended Parity Doublet Model with Isovector Scalar Meson
by Yuk Kei Kong, Bikai Gao and Masayasu Harada
Universe 2025, 11(10), 345; https://doi.org/10.3390/universe11100345 - 16 Oct 2025
Viewed by 340
Abstract
The recent discovery of an extremely light and small central compact object (CCO) within the supernova remnant HESS J1731-347, with mass 0.770.17+0.20M and radius 10.40.78+0.86 km, is challenging our [...] Read more.
The recent discovery of an extremely light and small central compact object (CCO) within the supernova remnant HESS J1731-347, with mass 0.770.17+0.20M and radius 10.40.78+0.86 km, is challenging our understanding of neutron stars. In this article, we identify it as an ultra-light neutron star (NS) and constrain the chiral invariant mass of nucleon m0 from the observational data of NS using an extended parity doublet model with the isovector scalar meson a0(980). We show that the 1σ data from the HESS J1731-347 impose a very narrow constraint on the allowed values of m0 and L0 in the crossover model: 830MeVm0900MeV for L0=40 MeV, and 850MeVm0890MeV for L0=45 MeV. We also study the higher-order asymmertic matter properties such as the symmetry incompressibility Ksym and the symmetry skewness Qsym in the presence of the a0 meson. We find that Ksym and Qsym are very sensitive to m0 in the presence of the a0 meson. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

12 pages, 366 KB  
Article
Stability Analysis of Magnetized Quark Matter in Tsallis Statistics
by Jia Zhang and Xin-Jian Wen
Universe 2025, 11(9), 312; https://doi.org/10.3390/universe11090312 - 12 Sep 2025
Viewed by 542
Abstract
In this work, we employ the nonextensive Nambu–Jona-Lasinio model to analyze the thermodynamic properties of magnetized quark matter. The nonequilibrium state is described in Tsallis distribution by a dimensionless parameter q. We find that within a reasonable temperature range, the system undergoes [...] Read more.
In this work, we employ the nonextensive Nambu–Jona-Lasinio model to analyze the thermodynamic properties of magnetized quark matter. The nonequilibrium state is described in Tsallis distribution by a dimensionless parameter q. We find that within a reasonable temperature range, the system undergoes a crossover transition at the critical chemical potential, which is decreased by the increase of both the temperature and q value. In contrast to the enhanced stability by magnetic field in Boltzmann statistics, it is found that the stability of chiral restored matter in Tsallis statistics would be reduced by an increase of the magnetic field. Conversely, the increase of the q would enhance the stability of quark matter. Finally, we display the different magnetic effects on the stability in the chiral broken and restored regions. Full article
Show Figures

Figure 1

11 pages, 2235 KB  
Article
Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons
by In-Hwan Lee, Hoang-Anh Le and S.-R. Eric Yang
Entropy 2023, 25(10), 1449; https://doi.org/10.3390/e25101449 - 15 Oct 2023
Cited by 5 | Viewed by 2263
Abstract
Graphene zigzag nanoribbons, initially in a topologically ordered state, undergo a topological phase transition into crossover phases distinguished by quasi-topological order. We computed mutual information for both the topologically ordered phase and its crossover phases, revealing the following results: (i) In the topologically [...] Read more.
Graphene zigzag nanoribbons, initially in a topologically ordered state, undergo a topological phase transition into crossover phases distinguished by quasi-topological order. We computed mutual information for both the topologically ordered phase and its crossover phases, revealing the following results: (i) In the topologically ordered phase, A-chirality carbon lines strongly entangle with B-chirality carbon lines on the opposite side of the zigzag ribbon. This entanglement persists but weakens in crossover phases. (ii) The upper zigzag edge entangles with non-edge lines of different chirality on the opposite side of the ribbon. (iii) Entanglement increases as more carbon lines are grouped together, regardless of the lines’ chirality. No long-range entanglement was found in the symmetry-protected phase in the absence of disorder. Full article
(This article belongs to the Special Issue Entanglement Entropy and Quantum Phase Transition)
Show Figures

Figure 1

30 pages, 3480 KB  
Review
Chiral Restoration of Nucleons in Neutron Star Matter: Studies Based on a Parity Doublet Model
by Takuya Minamikawa, Bikai Gao, Toru Kojo and Masayasu Harada
Symmetry 2023, 15(3), 745; https://doi.org/10.3390/sym15030745 - 17 Mar 2023
Cited by 26 | Viewed by 5173
Abstract
We review the chiral variant and invariant components of nucleon masses and the consequence of their existence on the chiral restoration in extreme conditions, particularly in neutron star matter. We consider a model of linear realization of chiral symmetry with the nucleon parity [...] Read more.
We review the chiral variant and invariant components of nucleon masses and the consequence of their existence on the chiral restoration in extreme conditions, particularly in neutron star matter. We consider a model of linear realization of chiral symmetry with the nucleon parity doublet structure that permits the chiral invariant mass, m0, for positive and negative parity nucleons. The nuclear matter is constructed with the parity doublet nucleon model coupled to scalar fields σ, vector fields (ω,ρ), and mesons with strangeness through the U(1)A anomaly. In models with a large m0, the nucleon mass is insensitive to the medium, and the nuclear saturation properties can be reproduced without demanding strong couplings of the nucleons to the scalar fields σ and vector fields ω. We confront the resulting nuclear equations of state with nuclear constraints and neutron star observations and delineate the chiral invariant mass and effective interactions. To further examine the nuclear equations of state beyond the saturation density, we supplement quark models to set the boundary conditions from the high-density side. The quark models are constrained by the two-solar-mass conditions, and such constraints are transferred to nuclear models through the causality and thermodynamic stability conditions. We also calculate various condensates and the matter composition from nuclear to quark matter in a unified matter by constructing a generating functional that interpolates the nuclear and quark matter with external fields. Two types of chiral restoration are discussed: one due to the positive scalar charges of nucleons and the other triggered by the evolution of the Dirac sea. We found that the U(1)A anomaly softens equations of state from low to high density. Full article
(This article belongs to the Special Issue Symmetries and Ultra Dense Matter of Compact Stars)
Show Figures

Figure 1

25 pages, 1924 KB  
Article
Effects of a Finite Volume in the Phase Structure of QCD
by Nallaly Berenice Mata Carrizal, Enrique Valbuena Ordóñez, Adrián Jacob Garza Aguirre, Francisco Javier Betancourt Sotomayor and José Rubén Morones Ibarra
Universe 2022, 8(5), 264; https://doi.org/10.3390/universe8050264 - 26 Apr 2022
Cited by 9 | Viewed by 2840
Abstract
Working in the SU(2) flavor version of the NJL model, we study the effect of taking a finite system volume on a strongly interacting system of quarks, and, in particular, the location of the chiral phase transition and the CEP. We consider two [...] Read more.
Working in the SU(2) flavor version of the NJL model, we study the effect of taking a finite system volume on a strongly interacting system of quarks, and, in particular, the location of the chiral phase transition and the CEP. We consider two shapes for the volume, spherical and cubic regions with different sizes and different boundary conditions. To analyze the QCD phase diagram, we use a novel criterion to study the crossover zone. A comparison between the results obtained from the two different shapes and several boundary conditions is carried out. We use the method of Multiple Reflection Expansion to determine the density of states and three kinds of boundary conditions over the cubic shape. These boundary conditions are: periodic, anti-periodic and stationary boundary conditions on the quark fields. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

25 pages, 2976 KB  
Review
Lattice Constraints on the QCD Chiral Phase Transition at Finite Temperature and Baryon Density
by Owe Philipsen
Symmetry 2021, 13(11), 2079; https://doi.org/10.3390/sym13112079 - 3 Nov 2021
Cited by 30 | Viewed by 5869
Abstract
The thermal restoration of chiral symmetry in QCD is known to proceed by an analytic crossover, which is widely expected to turn into a phase transition with a critical endpoint as the baryon density is increased. In the absence of a genuine solution [...] Read more.
The thermal restoration of chiral symmetry in QCD is known to proceed by an analytic crossover, which is widely expected to turn into a phase transition with a critical endpoint as the baryon density is increased. In the absence of a genuine solution to the sign problem of lattice QCD, simulations at zero and imaginary baryon chemical potential in a parameter space enlarged by a variable number of quark flavours and quark masses constitute a viable way to constrain the location of a possible non-analytic phase transition and its critical endpoint. In this article I review recent progress towards an understanding of the nature of the transition in the massless limit, and its critical temperature at zero density. Combined with increasingly detailed studies of the physical crossover region, current data bound a possible critical point to μB ≳ 3T. Full article
(This article belongs to the Special Issue Advances on Chiral Symmetry and Its Restoration)
Show Figures

Figure 1

45 pages, 3898 KB  
Article
Asymptotically Safe Gravity-Fermion Systems on Curved Backgrounds
by Jesse Daas, Wouter Oosters, Frank Saueressig and Jian Wang
Universe 2021, 7(8), 306; https://doi.org/10.3390/universe7080306 - 19 Aug 2021
Cited by 23 | Viewed by 2643
Abstract
We set up a consistent background field formalism for studying the renormalization group (RG) flow of gravity coupled to Nf Dirac fermions on maximally symmetric backgrounds. Based on Wetterich’s equation, we perform a detailed study of the resulting fixed point structure in [...] Read more.
We set up a consistent background field formalism for studying the renormalization group (RG) flow of gravity coupled to Nf Dirac fermions on maximally symmetric backgrounds. Based on Wetterich’s equation, we perform a detailed study of the resulting fixed point structure in a projection including the Einstein–Hilbert action, the fermion anomalous dimension, and a specific coupling of the fermion bilinears to the spacetime curvature. The latter constitutes a mass-type term that breaks chiral symmetry explicitly. Our analysis identified two infinite families of interacting RG fixed points, which are viable candidates to provide a high-energy completion through the asymptotic safety mechanism. The fixed points exist for all values of Nf outside of a small window situated at low values Nf and become weakly coupled in the large Nf-limit. Symmetry-wise, they correspond to “quasi-chiral” and “non-chiral” fixed points. The former come with enhanced predictive power, fixing one of the couplings via the asymptotic safety condition. Moreover, the interplay of the fixed points allows for cross-overs from the non-chiral to the chiral fixed point, giving a dynamical mechanism for restoring the symmetry approximately at intermediate scales. Our discussion of chiral symmetry breaking effects provides strong indications that the topology of spacetime plays a crucial role when analyzing whether quantum gravity admits light chiral fermions. Full article
(This article belongs to the Special Issue Asymptotic Safety in Quantum Gravity)
Show Figures

Figure 1

27 pages, 13458 KB  
Review
Structural Evidence of Spin State Selection and Spin Crossover Behavior of Tripodal Schiff Base Complexes of tris(2-aminoethyl)amine and Related Tripodal Amines
by Greg Brewer
Magnetochemistry 2020, 6(2), 28; https://doi.org/10.3390/magnetochemistry6020028 - 25 Jun 2020
Cited by 16 | Viewed by 4489
Abstract
A review of the tripodal Schiff base (SB) complexes of tris(2-aminoethyl)amine, Nap(CH2CH 2NH2)3 (tren), and a few closely related tripodal amines with Cr(II), Mn(III) (d4), Mn(II), Fe(III) (d5), Fe(II) (d6 [...] Read more.
A review of the tripodal Schiff base (SB) complexes of tris(2-aminoethyl)amine, Nap(CH2CH 2NH2)3 (tren), and a few closely related tripodal amines with Cr(II), Mn(III) (d4), Mn(II), Fe(III) (d5), Fe(II) (d6), and Co(II) (d7) is provided. Attention is focused on examination of key structural features, the M-Nimine, M-Namine, or M-O and M-Nap bond distances and Nimine-M-N(O) bite and C-Nap-C angles and how these values correlate with spin state selection and spin crossover (SCO) behavior. A comparison of these experimental values with density functional theory calculated values is also given. The greatest number, 132, of complexes is observed with cationic mononuclear iron(II) in a N6 donor set, Fe(II)N6. The dominance of two spin states, high spin (HS) and low spin (LS), in these systems is indicated by the bimodal distribution of histogram plots of Fe(II)-Nimine and Fe(II)-Nazole/pyridine bond distances and of Nimine–Fe(II)-Nazole/pyridine and C-Nap-C bond angles. The values of the two maxima, corresponding to LS and HS states, in each of these histograms agree closely with the theoretical values. The iron(II)-Nimine and iron(II)-Nazole/pyridine bond distances correlate well for these complexes. Examples of SCO complexes of this type are tabulated and a few of the 20 examples are discussed that exhibit interesting features. There are only a few mononuclear iron(III) cationic complexes and one is SCO. In addition, a significant number of supramolecular complexes of these ligands that exhibit SCO, intervalence, and chiral recognition are discussed. A summary is made regarding the current state of this area of research and possible new avenues to explore based on analysis of the present data. Full article
(This article belongs to the Section Spin Crossover and Spintronics)
Show Figures

Figure 1

13 pages, 1030 KB  
Article
Parity Doubling and the Dense-Matter Phase Diagram under Constraints from Multi-Messenger Astronomy
by Michał Marczenko, David Blaschke, Krzysztof Redlich and Chihiro Sasaki
Universe 2019, 5(8), 180; https://doi.org/10.3390/universe5080180 - 30 Jul 2019
Cited by 33 | Viewed by 2929
Abstract
We extend the recently developed hybrid quark–meson–nucleon model by augmenting a six-point scalar interaction and investigate the consequences for neutron-star sequences in the mass–radius diagram. One of the characteristic features of the model is that the chiral symmetry is restored within the hadronic [...] Read more.
We extend the recently developed hybrid quark–meson–nucleon model by augmenting a six-point scalar interaction and investigate the consequences for neutron-star sequences in the mass–radius diagram. One of the characteristic features of the model is that the chiral symmetry is restored within the hadronic phase by lifting the mass splitting between chiral partner states, before quark deconfinement takes place. At low temperature and finite baryon density, the model predicts a first- or second-order chiral phase transition, or a crossover, depending on the expectation value of a scalar field, and a first-order deconfinement phase transition. We discuss two sets of free parameters, which result in compact-star mass–radius relations that are at tension with the combined constraints for maximum-mass ( 2 M ) and the compactness (GW170817). We find that the most preferable mass–radius relations result in isospin-symmetric phase diagram with rather low temperature for the critical point of the chiral phase transition. Full article
Show Figures

Figure 1

9 pages, 2121 KB  
Article
Threefold Spiral Structure Constructed by 1D Chains of [[M(NCS)2(bpa)2]·biphenyl]n (M = Fe, Co; bpa = 1,2-bis(4-pyridyl)ethane)
by Satoshi Tokinobu, Haruka Dote and Satoru Nakashima
Crystals 2019, 9(2), 97; https://doi.org/10.3390/cryst9020097 - 14 Feb 2019
Cited by 1 | Viewed by 3677
Abstract
Assembled complexes [[M(NCS)2(bpa)2]·biphenyl]n (M = Fe, Co; bpa = 1,2-bis(4-pyridyl)ethane) have been synthesized because [Fe(NCBH3)2(bpa)2·biphenyl]n has a novel threefold spiral structure and shows stepwise spin-crossover phenomenon. We attempted to obtain spiral [...] Read more.
Assembled complexes [[M(NCS)2(bpa)2]·biphenyl]n (M = Fe, Co; bpa = 1,2-bis(4-pyridyl)ethane) have been synthesized because [Fe(NCBH3)2(bpa)2·biphenyl]n has a novel threefold spiral structure and shows stepwise spin-crossover phenomenon. We attempted to obtain spiral structures for [[Fe(NCS)2(bpa)2]·biphenyl]n and [[Co(NCS)2(bpa)2]·biphenyl]n using a one-step diffusion method, while the reported spiral structure of [[Fe(NCBH3)2(bpa)2]·biphenyl]n was obtained by diffusion method after synthesizing Fe(II)-pyridine complex. X-ray structural analysis revealed that [[Fe(NCS)2(bpa)2]·biphenyl]n and [[Co(NCS)2(bpa)2]·biphenyl]n had a chiral propeller structure of pyridines around the central metal, and they had a novel spiral structure and chiral space group P3121 without the presence of chiral auxiliaries. It was shown that the host 1D chain, having a chiral propeller structure of pyridines around the central metal along with its concerted interaction with an atropisomer of biphenyl, made a threefold spiral structure. Full article
(This article belongs to the Special Issue Synthesis and Applications of New Spin Crossover Compounds)
Show Figures

Graphical abstract

10 pages, 1033 KB  
Review
Chiralspin Symmetry and Its Implications for QCD
by Leonid Glozman
Universe 2019, 5(1), 38; https://doi.org/10.3390/universe5010038 - 19 Jan 2019
Cited by 7 | Viewed by 2757
Abstract
In a local gauge-invariant theory with massless Dirac fermions, a symmetry of the Lorentz-invariant fermion charge is larger than a symmetry of the Lagrangian as a whole. While the Dirac Lagrangian exhibits only a chiral symmetry, the fermion charge operator is invariant under [...] Read more.
In a local gauge-invariant theory with massless Dirac fermions, a symmetry of the Lorentz-invariant fermion charge is larger than a symmetry of the Lagrangian as a whole. While the Dirac Lagrangian exhibits only a chiral symmetry, the fermion charge operator is invariant under a larger symmetry group, S U ( 2 N F ) , that includes chiral transformations as well as S U ( 2 ) C S chiralspin transformations that mix the right- and left-handed components of fermions. Consequently, a symmetry of the electric interaction, which is driven by the charge density, is larger than a symmetry of the magnetic interaction and of the kinetic term. This allows separating in some situations electric and magnetic contributions. In particular, in QCD, the chromo-magnetic interaction contributes only to the near-zero modes of the Dirac operator, while confining chromo-electric interaction contributes to all modes. At high temperatures, above the chiral restoration crossover, QCD exhibits approximate S U ( 2 ) C S and S U ( 2 N F ) symmetries that are incompatible with free deconfined quarks. Consequently, elementary objects in QCD in this regime are quarks with a definite chirality bound by the chromo-electric field, without the chromo-magnetic effects. In this regime, QCD can be described as a stringy fluid. Full article
Show Figures

Figure 1

15 pages, 4245 KB  
Article
High-Temperature Wide Thermal Hysteresis of an Iron(II) Dinuclear Double Helicate
by Shiori Hora and Hiroaki Hagiwara
Inorganics 2017, 5(3), 49; https://doi.org/10.3390/inorganics5030049 - 28 Jul 2017
Cited by 15 | Viewed by 6085
Abstract
Two new dinuclear iron(II) complexes (1·PF6 and 1·AsF6) of the general formula [FeII2(L2C3)2](X)4·nH2O·mMeCN (X = PF6, n = m = 1.5 for 1·PF6 and X [...] Read more.
Two new dinuclear iron(II) complexes (1·PF6 and 1·AsF6) of the general formula [FeII2(L2C3)2](X)4·nH2O·mMeCN (X = PF6, n = m = 1.5 for 1·PF6 and X = AsF6, n = 3, m = 1 for 1·AsF6) have been prepared and structurally characterized, where L2C3 is a bis-1,2,3-triazolimine type Schiff-base ligand, 1,1′-[propane-1,3-diylbis(1H-1,2,3-triazole-1,4-diyl)]bis{N-[2-(pyridin-2-yl)ethyl]methanimine}. Single crystal X-ray structure analyses revealed that 1·PF6 and 1·AsF6 are isostructural. The complex-cation [FeII2(L2C3)2]4+ of both has the same dinuclear double helicate architecture, in which each iron(II) center has an N6 octahedral coordination environment. Neighboring helicates are connected by intermolecular π–π interactions to give a chiral one-dimensional (1D) structure, and cationic 1D chains with the opposite chirality exist in the crystal lattice to give a heterochiral crystal. Magnetic and differential scanning calorimetry (DSC) studies were performed only for 1·AsF6, since the thermal stability in a high-temperature spin crossover (SCO) region of 1·PF6 is poorer than that of 1·AsF6. 1·AsF6 shows an unsymmetrical hysteretic SCO between the low-spin–low-spin (LS–LS) and high-spin–high-spin (HS–HS) states at above room temperature. The critical temperatures of warming (Tc↑) and cooling (Tc↓) modes in the abrupt spin transition area are 485 and 401 K, respectively, indicating the occurrence of 84 K-wide thermal hysteresis in the first thermal cycle. Full article
(This article belongs to the Special Issue Spin-Crossover Complexes)
Show Figures

Graphical abstract

21 pages, 1653 KB  
Article
Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions
by Weizhe Edward Liu, Ewelina M. Hankiewicz and Dimitrie Culcer
Materials 2017, 10(7), 807; https://doi.org/10.3390/ma10070807 - 15 Jul 2017
Cited by 29 | Viewed by 8673
Abstract
Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless [...] Read more.
Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. Full article
(This article belongs to the Special Issue Metal-Insulator Transition)
Show Figures

Figure 1

15 pages, 1983 KB  
Article
Chiral Optical Tamm States: Temporal Coupled-Mode Theory
by Ivan V. Timofeev, Pavel S. Pankin, Stepan Ya. Vetrov, Vasily G. Arkhipkin, Wei Lee and Victor Ya. Zyryanov
Crystals 2017, 7(4), 113; https://doi.org/10.3390/cryst7040113 - 17 Apr 2017
Cited by 19 | Viewed by 6778
Abstract
The chiral optical Tamm state (COTS) is a special localized state at the interface of a handedness-preserving mirror and a structurally chiral medium such as a cholesteric liquid crystal or a chiral sculptured thin film. The spectral behavior of COTS, observed as reflection [...] Read more.
The chiral optical Tamm state (COTS) is a special localized state at the interface of a handedness-preserving mirror and a structurally chiral medium such as a cholesteric liquid crystal or a chiral sculptured thin film. The spectral behavior of COTS, observed as reflection resonances, is described by the temporal coupled-mode theory. Mode coupling is different for two circular light polarizations because COTS has a helical structure replicating that of the cholesteric. The mode coupling for co-handed circularly polarized light exponentially attenuates with the cholesteric layer thickness since the COTS frequency falls into the stop band. Cross-handed circularly polarized light freely goes through the cholesteric layer and can excite COTS when reflected from the handedness-preserving mirror. The coupling in this case is proportional to anisotropy of the cholesteric and theoretically only anisotropy in magnetic permittivity can ultimately cancel this coupling. These two couplings being equal result in a polarization crossover (the Kopp–Genack effect) for which a linear polarization is optimal to excite COTS. The corresponding cholesteric thickness and scattering matrix for COTS are generally described by simple expressions. Full article
Show Figures

Figure 1

11 pages, 2580 KB  
Article
Abrupt Spin Transition and Chiral Hydrogen-Bonded One-Dimensional Structure of Iron(III) Complex [FeIII(Him)2(hapen)]SbF6 (Him = imidazole, H2hapen = N,N′-bis(2-hydroxyacetophenylidene)ethylenediamine)
by Takahiro Ueno, Kyohei Miyano, Daisuke Hamada, Hiromasa Ono, Takeshi Fujinami, Naohide Matsumoto and Yukinari Sunatsuki
Magnetochemistry 2015, 1(1), 72-82; https://doi.org/10.3390/magnetochemistry1010072 - 11 Dec 2015
Cited by 4 | Viewed by 4703
Abstract
Solvent-free spin crossover (SCO) iron(III) complex, [FeIII(Him)2(hapen)]SbF6 (Him = imidazole, H2hapen = N,N′-bis(2-hydroxyacetophenylidene)ethylenediamine), is synthesized. The FeIII ion has an octahedral coordination geometry, with N2O2 donor atoms of hapen and N [...] Read more.
Solvent-free spin crossover (SCO) iron(III) complex, [FeIII(Him)2(hapen)]SbF6 (Him = imidazole, H2hapen = N,N′-bis(2-hydroxyacetophenylidene)ethylenediamine), is synthesized. The FeIII ion has an octahedral coordination geometry, with N2O2 donor atoms of hapen and N2 atoms of two imidazoles at the axial positions. The saturated five-membered chelate ring of hapen moiety assumes a gauche-type δ- or λ-conformation to give chiral species of δ-[FeIII(Him)2(hapen)]+ or λ-[FeIII(Him)2(hapen)]+. One imidazole is hydrogen-bonded to phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded chiral one-dimensional structure, {δ-[FeIII(Him)2(hapen)]+}1∞ or {λ-[FeIII(Him)2(hapen)]+}1∞. The adjacent chains with the opposite chiralities are arrayed alternately. The temperature dependences of the magnetic susceptibilities revealed an abrupt one-step spin transition between high-spin (S = 5/2) and low-spin (S = 1/2) states at the spin transition temperature of T1/2 = 105 K. The crystal structures were determined at 296 and 100 K, where the populations of HS:LS of high- and low-spin ratio are evaluated to be 1:0 and 0.3:0.7, respectively, based on magnetic measurements. During the spin transition from 296 K to 100 K, the average Fe–N distance and O–Fe–O angle decrease to a regular octahedron by 0.16 Å and 13.4°, respectively. The structural change in the coordination environment is transmitted to the adjacent spin crossover (SCO) sites along the chiral 1D chain through hydrogen-bonds. The abrupt SCO profile and the spin transition temperature for the isomorphous compounds [FeIII(Him)2(hapen)]Y (Y = PF6, AsF6, SbF6) are ascribed to the chiral hydrogen-bonded 1D structure and chain-anion interaction. Full article
(This article belongs to the Special Issue Spin Crossover (SCO) Research)
Show Figures

Graphical abstract

Back to TopTop