Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = chlorophyll-a retrieval

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3417 KB  
Article
Non-Destructive Estimation of Area and Greenness in Leaf and Seedling Scales: A Case Study in Cucumber
by Georgios Tsaniklidis, Theodora Makraki, Dimitrios Papadimitriou, Nikolaos Nikoloudakis, Amin Taheri-Garavand and Dimitrios Fanourakis
Agronomy 2025, 15(10), 2294; https://doi.org/10.3390/agronomy15102294 - 28 Sep 2025
Abstract
Leaf area (LA) and SPAD value (a proxy for chlorophyll content) are two key determinants of seedling quality. This study aimed to develop and validate approaches for the efficient retrieval of these features in order to facilitate both management and screening practices. In [...] Read more.
Leaf area (LA) and SPAD value (a proxy for chlorophyll content) are two key determinants of seedling quality. This study aimed to develop and validate approaches for the efficient retrieval of these features in order to facilitate both management and screening practices. In cucumber, different models were developed and tested for the accurate estimation of LA at the scale of the individual organ (cotyledon, leaf) by using its linear dimensions (length (L) and width (W)), and of the whole seedling by using the 2D image-extracted projected area (from three different angles: 0°, 45°, and 90°). At either scale, the SPAD value was computed by using image (90°)-based colorimetric features. The estimation of individual organ area was more accurate when using L alone, compared with W alone. By using the two dimensions and specific colorimetric features, the individual organ area (R2 ≥ 0.92) and SPAD value (R2 of 0.77) were accurately predicted. When considering a single view, the top one (90°) was associated with the highest accuracy in whole-seedling LA estimation, and the side view (0°) with the lowest (R2 of 0.88 and 0.73, respectively). Using any combination of two angles, the whole-seedling LA was accurately retrieved (R2 ≥ 0.88). When using colorimetric features, a poor estimation of the whole-seedling SPAD value was noted (R2 ≤ 0.43). The deployment of artificial neural networks (ANNs) further allowed the estimation of specific organ shape traits, and improved the accuracy of all the aforementioned predictions, including the whole-seedling SPAD value (R2 of 0.597). In conclusion, the findings of this study highlight that features readily retrieved from 2D images hold promising potential for improving screening routines within the nursery industry. Full article
(This article belongs to the Special Issue Smart Agriculture for Crop Phenotyping)
Show Figures

Figure 1

21 pages, 1838 KB  
Article
Simulation of Winter Wheat Gross Primary Productivity Incorporating Solar-Induced Chlorophyll Fluorescence
by Xuegui Zhang, Yao Li, Xiaoya Wang, Jiatun Xu and Huanjie Cai
Agronomy 2025, 15(9), 2187; https://doi.org/10.3390/agronomy15092187 - 13 Sep 2025
Viewed by 305
Abstract
Gross primary productivity (GPP) is a key indicator for assessing carbon uptake capacity and photosynthetic productivity in agricultural ecosystems, playing a crucial role in regional carbon cycle evaluation and sustainable agriculture development. However, traditional mechanistic light use efficiency (LUE) models exhibit variable accuracy [...] Read more.
Gross primary productivity (GPP) is a key indicator for assessing carbon uptake capacity and photosynthetic productivity in agricultural ecosystems, playing a crucial role in regional carbon cycle evaluation and sustainable agriculture development. However, traditional mechanistic light use efficiency (LUE) models exhibit variable accuracy under different climatic conditions and crop types. Machine learning models, while demonstrating strong fitting capabilities, heavily depend on the selection of input features and data availability. This study focuses on winter wheat in the Guanzhong region, utilizing continuous field observation data from the 2020–2022 growing seasons to develop five machine learning models: Ridge Regression (Ridge), Random Forest (RF), Support Vector Regression (SVR), Gradient Boosting Regression (GB), and a stacking-based ensemble learning model (LSM). These models were compared with the LUE model under two scenarios, excluding and including solar-induced chlorophyll fluorescence (SIF), to evaluate the contribution of SIF to GPP estimation accuracy. The results indicate significant differences in GPP estimation performance among the machine learning models, with LSM outperforming others in both scenarios. Without SIF, LSM achieved an average R2 of 0.87, surpassing individual models (0.72–0.83), demonstrating strong stability and generalization ability. With SIF inclusion, all machine learning models showed marked accuracy improvements, with LSM’s average R2 rising to 0.91, highlighting SIF’s critical role in capturing photosynthetic dynamics. Although the LUE model approached machine learning model accuracy in some growth stages, its overall performance was limited by structural constraints. This study demonstrates that ensemble learning methods integrating multi-source observations offer significant advantages for high-precision winter wheat GPP estimation, and that incorporating SIF as a physiological indicator further enhances model robustness and predictive capacity. The findings validate the potential of combining ensemble learning and photosynthetic physiological parameters to improve GPP retrieval accuracy, providing a reliable technical pathway for agricultural ecosystem carbon flux estimation and informing strategies for climate change adaptation. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 27889 KB  
Article
A Multi-Objective Genetic Algorithm for Retrieving the Parameters of Sweet Pepper (Capsicum annuum) from the Diffuse Spectral Response
by Freddy Narea-Jiménez, Jorge Castro-Ramos and Juan Jaime Sánchez-Escobar
AgriEngineering 2025, 7(9), 284; https://doi.org/10.3390/agriengineering7090284 - 2 Sep 2025
Viewed by 463
Abstract
In this paper, we present a set of experimental data (SESD) from Capsicum annuum with two different pigmentations, obtained using a self-made computed tomography spectrometer (CTIS), which adapt to the optical model of radiative transfer. An optical model is based on the directional-hemispheric [...] Read more.
In this paper, we present a set of experimental data (SESD) from Capsicum annuum with two different pigmentations, obtained using a self-made computed tomography spectrometer (CTIS), which adapt to the optical model of radiative transfer. An optical model is based on the directional-hemispheric reflectance and transmittance of a turbid medium with plane-parallel layers. To estimate the fruit’s primary pigments (Chlorophyll, Carotenoids, Capsanthin, and Capsorubin), we use the optical model combined with a numerical search and optimization method based on a robust and efficient multi-objective genetic algorithm (GA), allowing us to find the closest solution to the global minimum; and the inverse problem is solved by obtaining the best fit of the analytical function defined in the SESD optical model. Values of pigment concentrations retrieved with the proposed GA show a total difference of 2.51% for green pepper and 5.60% for red pepper compared with those reported in the literature. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Graphical abstract

27 pages, 9197 KB  
Data Descriptor
A Six-Year, Spatiotemporally Comprehensive Dataset and Data Retrieval Tool for Analyzing Chlorophyll-a, Turbidity, and Temperature in Utah Lake Using Sentinel and MODIS Imagery
by Kaylee B. Tanner, Anna C. Cardall and Gustavious P. Williams
Data 2025, 10(8), 128; https://doi.org/10.3390/data10080128 - 13 Aug 2025
Viewed by 587
Abstract
Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and [...] Read more.
Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies. Full article
(This article belongs to the Collection Modern Geophysical and Climate Data Analysis: Tools and Methods)
Show Figures

Graphical abstract

14 pages, 74908 KB  
Article
Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters
by Roko Andričević
Water 2025, 17(15), 2356; https://doi.org/10.3390/w17152356 - 7 Aug 2025
Viewed by 487
Abstract
Monitoring water quality parameters in coastal and estuarine environments is critical for assessing their ecological status and addressing environmental challenges. However, traditional in situ sampling programs are often constrained by limited spatial and temporal coverage, making it difficult to capture the complex variability [...] Read more.
Monitoring water quality parameters in coastal and estuarine environments is critical for assessing their ecological status and addressing environmental challenges. However, traditional in situ sampling programs are often constrained by limited spatial and temporal coverage, making it difficult to capture the complex variability in these dynamic systems. This study introduces a novel upscaling framework that leverages limited in situ measurements and airborne hyperspectral data to generate multiple conditional realizations of water quality parameter fields. These pseudo-measurements are statistically consistent with the original data and are used to calibrate inversion algorithms that relate satellite-derived reflectance data to water quality parameters. The approach was applied to Kaštela Bay, a semi-enclosed coastal area in the eastern Adriatic Sea, to map seasonal variations in water quality parameters such as Chlorophyll-a. The upscaling framework captured spatial patterns that were absent in sparse in situ observations and enabled regional mapping using Sentinel-2A satellite data at the appropriate spatial scale. By generating realistic pseudo-measurements, the method improved the stability and performance of satellite-based retrieval algorithms, particularly in periods of high productivity. Overall, this methodology addresses data scarcity challenges in coastal water monitoring and its application could benefit the implementation of European water quality directives through enhanced regional-scale mapping capabilities. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

27 pages, 17353 KB  
Article
A Framework to Retrieve Water Quality Parameters in Small, Optically Diverse Freshwater Ecosystems Using Sentinel-2 MSI Imagery
by Matheus Henrique Tavares, David Guimarães, Joana Roussillon, Valentin Baute, Julien Cucherousset, Stéphanie Boulêtreau and Jean-Michel Martinez
Remote Sens. 2025, 17(15), 2729; https://doi.org/10.3390/rs17152729 - 7 Aug 2025
Viewed by 608
Abstract
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland [...] Read more.
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland water bodies. However, due to spatial, radiometric, and spectral constraints, it has been heavily focused on large lakes. Sentinel-2 MSI is the first sensor with the capability to consistently retrieve a wide range of essential water quality variables, such as chlorophyll-a concentration (chl-a) and water transparency, in small water bodies, and to provide long time series. Here, we provide and validate a framework for retrieving two variables, chl-a and turbidity, over lakes with diverse optical characteristics using Sentinel-2 imagery. It is based on GRS for atmospheric and sun glint correction, WaterDetect for water detection, and inversion models that were automatically selected based on two different sets of optical water types (OWTs)—one for each variable; for chl-a, we produced a blended product for improved spatial representation. To validate the approach, we compared the products with more than 600 in situ data from 108 lakes located in the Adour–Garonne river basins, ranging from 3 to ∼5000 ha, as well as remote sensing reflectance (Rrs) data collected during 10 field campaigns during the summer and spring seasons. Rrs retrieval (n = 65) was robust for bands 2 to 5, with MAPE varying from 15 to 32% and achieving correlation from 0.74 up to 0.92. For bands 6 to 8A, the Rrs retrieval was much less accurate, being influenced by adjacency effects. Glint removal significantly enhanced Rrs accuracy, with RMSE improving from 0.0067 to 0.0021 sr−1 for band 4, for example. Water quality retrieval showed consistent results, with an MAPE of 56%, an RMSE of 11.4 mg m−3, and an r of 0.76 for chl-a, and an MAPE of 47%, an RMSE of 9.7 NTU, and an r of 0.87 for turbidity, and no significant effect of lake area or lake depth on retrieval errors. The temporal and spatial representations of the selected parameters were also shown to be consistent, demonstrating that the framework is robust and can be applied over lakes as small as 3 ha. The validated methods can be applied to retrieve time series of chl-a and turbidity starting from 2016 and with a frequency of up to 5 days, largely expanding the database collected by water agencies. This dataset will be extremely useful for studying the dynamics of these small freshwater ecosystems. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 17281 KB  
Article
Retrieving Chlorophyll-a Concentrations in Baiyangdian Lake from Sentinel-2 Data Using Kolmogorov–Arnold Networks
by Wenlong Han and Qichao Zhao
Water 2025, 17(15), 2346; https://doi.org/10.3390/w17152346 - 7 Aug 2025
Viewed by 610
Abstract
This study pioneers the integration of Sentinel-2 satellite imagery with Kolmogorov–Arnold networks (KAN) for the evaluation of chlorophyll-a (Chl-a) concentrations in inland lakes. Using Baiyangdian Lake in Hebei Province, China, as a case study, a specialized KAN architecture was designed to extract spectral [...] Read more.
This study pioneers the integration of Sentinel-2 satellite imagery with Kolmogorov–Arnold networks (KAN) for the evaluation of chlorophyll-a (Chl-a) concentrations in inland lakes. Using Baiyangdian Lake in Hebei Province, China, as a case study, a specialized KAN architecture was designed to extract spectral features from Sentinel-2 data, and a robust algorithm was developed for Chl-a estimation. The results demonstrate that the KAN model outperformed traditional feature-engineering-based machine learning (ML) methods and standard multilayer perceptron (MLP) deep learning approaches, achieving an R2 of 0.8451, with MAE and RMSE as low as 1.1920 μg/L and 1.6705 μg/L, respectively. Furthermore, attribution analysis was conducted to quantify the importance of individual features, highlighting the pivotal role of bands B3 and B5 in Chl-a retrieval. Furthermore, spatio-temporal distributions of Chl-a concentrations in Baiyangdian Lake from 2020 to 2024 were generated leveraging the KAN model, further elucidating the underlying causes of water quality changes and examining the driving factors. Compared to previous studies, the proposed approach leverages the high spatial resolution of Sentinel-2 imagery and the accuracy and interpretability of the KAN model, offering a novel framework for monitoring water quality parameters in inland lakes. These findings may guide similar research endeavors and provide valuable decision-making support for environmental agencies. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

31 pages, 5037 KB  
Article
Evaluation and Improvement of Ocean Color Algorithms for Chlorophyll-a and Diffuse Attenuation Coefficients in the Arctic Shelf
by Yubin Yao, Tao Li, Qing Xu, Xiaogang Xing, Xingyuan Zhu and Yubao Qiu
Remote Sens. 2025, 17(15), 2606; https://doi.org/10.3390/rs17152606 - 27 Jul 2025
Viewed by 693
Abstract
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ) [...] Read more.
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ)). These retrieval biases contribute to substantial uncertainties in estimates of primary productivity and upper-ocean heat flux in the Arctic Ocean. However, the performance and constraints of existing ocean color algorithms in Arctic shelf environments remain insufficiently characterized, particularly under seasonally variable and optically complex conditions. In this study, we present a systematic multi-year evaluation of commonly used empirical and semi-analytical ocean color algorithms across the western Arctic shelf, based on seven expeditions and 240 in situ observation stations. Building on these evaluations, regionally optimized retrieval schemes were developed to enhance algorithm performance under Arctic-specific bio-optical conditions. The proposed OCx-AS series for Chl-a and Κd-DAS models for Κd(λ) significantly reduce retrieval errors, achieving RMSE improvements of over 50% relative to global standard algorithms. Additionally, we introduce QAA-LS, a modified semi-analytical model specifically adapted for the Laptev Sea, which addresses the strong absorption effects of CDOM and corrects the significant overestimation observed in previous QAA versions. Full article
Show Figures

Graphical abstract

15 pages, 12546 KB  
Article
Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework
by Weibin Gu, Ji Liang, Lian Yang, Shanshan Guo and Ruixin Jia
Water 2025, 17(15), 2190; https://doi.org/10.3390/w17152190 - 23 Jul 2025
Viewed by 449
Abstract
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and [...] Read more.
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and adaptability, this study focuses on Lake Nanyi in Anhui Province. By integrating Sentinel-2 satellite imagery with in situ water quality measurements and employing the AutoML framework AutoGluon, a Chl-a inversion model based on narrow-band spectral features is developed. Feature selection and model ensembling identify bands B6 (740 nm) and B7 (783 nm) as the optimal combination, which are then applied to multi-temporal imagery from October 2022 to generate spatial mean distributions of Chl-a in Lake Nanyi. The results demonstrate that the AutoGluon framework significantly outperforms traditional methods in both model accuracy (R2: 0.94, RMSE: 1.67 μg/L) and development efficiency. The retrieval results reveal spatial heterogeneity in Chl-a concentration, with higher concentrations observed in the southern part of the western lake and the western side of the eastern lake, while the central lake area exhibits relatively lower concentrations, ranging from 3.66 to 21.39 μg/L. This study presents an efficient and reliable approach for lake ecological monitoring and underscores the potential of AutoML in water color remote sensing applications. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 6055 KB  
Article
Assessment of Remote Sensing Reflectance Glint Correction Methods from Fixed Automated Above-Water Hyperspectral Radiometric Measurement in Highly Turbid Coastal Waters
by Behnaz Arabi, Masoud Moradi, Annelies Hommersom, Johan van der Molen and Leon Serre-Fredj
Remote Sens. 2025, 17(13), 2209; https://doi.org/10.3390/rs17132209 - 26 Jun 2025
Cited by 1 | Viewed by 649
Abstract
Fixed automated (unmanned) above-water radiometric measurements are subject to unavoidable sky conditions and surface perturbations, leading to significant uncertainties in retrieved water surface remote sensing reflectances (Rrs(λ), sr−1). This study evaluates various above-water Rrs(λ) glint correction [...] Read more.
Fixed automated (unmanned) above-water radiometric measurements are subject to unavoidable sky conditions and surface perturbations, leading to significant uncertainties in retrieved water surface remote sensing reflectances (Rrs(λ), sr−1). This study evaluates various above-water Rrs(λ) glint correction methods using a comprehensive dataset collected at the Royal Netherlands Institute for Sea Research (NIOZ) Jetty Station located in the Marsdiep tidal inlet of the Dutch Wadden Sea, the Netherlands. The dataset includes in-situ water constituent concentrations (2006–2020), inherent optical properties (IOPs) (2006–2007), and above-water hyperspectral (ir)radiance observations collected every 10 min (2006–2023). The bio-optical models were validated using in-situ IOPs and utilized to generate glint-free remote sensing reflectances, Rrs,ref(λ), using a robust IOP-to-Rrs forward model. The Rrs,ref(λ) spectra were used as a benchmark to assess the accuracy of glint correction methods under various environmental conditions, including different sun positions, wind speeds, cloudiness, and aerosol loads. The results indicate that the three-component reflectance model (3C) outperforms other methods across all conditions, producing the highest percentage of high-quality Rrs(λ) spectra with minimal errors. Methods relying on fixed or lookup-table-based glint correction factors exhibited significant errors under overcast skies, high wind speeds, and varying aerosol optical thickness. The study highlights the critical importance of surface-reflected skylight corrections and wavelength-dependent glint estimations for accurate above-water Rrs(λ) retrievals. Two showcases on chlorophyll-a and total suspended matter retrieval further demonstrate the superiority of the 3C model in minimizing uncertainties. The findings highlight the importance of adaptable correction models that account for environmental variability to ensure accurate Rrs(λ) retrieval and reliable long-term water quality monitoring from hyperspectral radiometric measurements. Full article
Show Figures

Figure 1

24 pages, 18914 KB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 694
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

23 pages, 3522 KB  
Article
Chlorophyll-a in the Chesapeake Bay Estimated by Extra-Trees Machine Learning Modeling
by Nikolay P. Nezlin, SeungHyun Son, Salem I. Salem and Michael E. Ondrusek
Remote Sens. 2025, 17(13), 2151; https://doi.org/10.3390/rs17132151 - 23 Jun 2025
Viewed by 766
Abstract
Monitoring chlorophyll-a concentration (Chl-a) is essential for assessing aquatic ecosystem health, yet its retrieval using remote sensing remains challenging in turbid coastal waters because of the intricate optical characteristics of these environments. Elevated levels of colored (chromophoric) dissolved organic matter (CDOM) [...] Read more.
Monitoring chlorophyll-a concentration (Chl-a) is essential for assessing aquatic ecosystem health, yet its retrieval using remote sensing remains challenging in turbid coastal waters because of the intricate optical characteristics of these environments. Elevated levels of colored (chromophoric) dissolved organic matter (CDOM) and suspended sediments (aka total suspended solids, TSS) interfere with satellite-based Chl-a estimates, necessitating alternative approaches. One potential solution is machine learning, indirectly including non-Chl-a signals into the models. In this research, we develop machine learning models to predict Chl-a concentrations in the Chesapeake Bay, one of the largest estuaries on North America’s East Coast. Our approach leverages the Extra-Trees (ET) algorithm, a tree-based ensemble method that offers predictive accuracy comparable to that of other ensemble models, while significantly improving computational efficiency. Using the entire ocean color datasets acquired by the satellite sensors MODIS-Aqua (>20 years) and VIIRS-SNPP (>10 years), we generated long-term Chl-a estimates covering the entire Chesapeake Bay area. The models achieve a multiplicative absolute error of approximately 1.40, demonstrating reliable performance. The predicted spatiotemporal Chl-a patterns align with known ecological processes in the Chesapeake Bay, particularly those influenced by riverine inputs and seasonal variability. This research emphasizes the potential of machine learning to enhance satellite-based water quality monitoring in optically complex coastal waters, providing valuable insights for ecosystem management and conservation. Full article
Show Figures

Figure 1

21 pages, 14658 KB  
Article
Retrieval of Ocean Surface Currents by Synergistic Sentinel-1 and SWOT Data Using Deep Learning
by Kai Sun, Jianjun Liang, Xiao-Ming Li and Jie Pan
Remote Sens. 2025, 17(13), 2133; https://doi.org/10.3390/rs17132133 - 21 Jun 2025
Viewed by 711
Abstract
A reliable ocean surface current (OSC) estimate is difficult to retrieve from synthetic aperture radar (SAR) data due to the challenge of accurately partitioning the Doppler shifts induced by wind waves and OSC. Recent research on SAR-based OSC retrieval is typically based on [...] Read more.
A reliable ocean surface current (OSC) estimate is difficult to retrieve from synthetic aperture radar (SAR) data due to the challenge of accurately partitioning the Doppler shifts induced by wind waves and OSC. Recent research on SAR-based OSC retrieval is typically based on the assumption that the SAR Doppler shifts caused by wind waves and OSC are linearly superimposed. However, this assumption may lead to large errors in regions where nonlinear wave–current interactions are significant. To address this issue, we developed a novel deep learning model, OSCNet, for OSC retrieval. The model leverages Sentinel-1 Interferometric Wide (IW) Level 2 Ocean products collected from July 2023 to September 2024, combined with wave data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and geostrophic currents from newly available SWOT Level 3 products. The OSCNet model is optimized by refining input ocean surface physical parameters and introducing a ResNet structure. Moreover, the Normalized Radar Cross-Section (NRCS) is incorporated to account for wave breaking and backscatter effects on Doppler shift estimates. The retrieval performance of the OSCNet model is evaluated using SWOT data. The mean absolute error (MAE) and root mean square error (RMSE) are found to be 0.15 m/s and 0.19 m/s, respectively. This result demonstrates that the OSCNet model enhances the retrieval of OSC from SAR data. Furthermore, a mesoscale eddy detected in the OSC map retrieved by OSCNet is consistent with the collocated sea surface chlorophyll-a observation, demonstrating the capability of the proposed method in capturing the variability of mesoscale eddies. Full article
Show Figures

Graphical abstract

21 pages, 5307 KB  
Article
Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data
by Jiao Zheng, Hao Zhou, Xu Yue, Xichuan Liu, Zhuge Xia, Jun Wang, Jingfeng Xiao, Xing Li and Fangmin Zhang
Remote Sens. 2025, 17(12), 2064; https://doi.org/10.3390/rs17122064 - 15 Jun 2025
Cited by 1 | Viewed by 958
Abstract
Ecosystems modulate Earth’s climate through the exchange of carbon and water fluxes. However, long-term trends in these terrestrial fluxes remain unclear due to the lack of continuous measurements on the global scale. This study combined flux data from 197 eddy covariance sites with [...] Read more.
Ecosystems modulate Earth’s climate through the exchange of carbon and water fluxes. However, long-term trends in these terrestrial fluxes remain unclear due to the lack of continuous measurements on the global scale. This study combined flux data from 197 eddy covariance sites with satellite-retrieved solar-induced chlorophyll fluorescence (SIF) to investigate spatiotemporal variations in gross primary productivity (GPP), evapotranspiration (ET), and their coupling via water use efficiency (WUE) from 2001 to 2020. We developed six global GPP and ET products at 0.05° spatial and 8-day temporal resolution, using two machine learning models and three SIF products, which integrate vegetation physiological parameters with data-driven approaches. These datasets provided mean estimates of 128 ± 2.3 Pg C yr−1 for GPP, 522 ± 58.2 mm yr−1 for ET, and 1.8 ± 0.21 g C kg−1 H2O yr−1 for WUE, with upward trends of 0.22 ± 0.04 Pg C yr−2 in GPP, 0.64 ± 0.14 mm yr−2 in ET, and 0.0019 ± 0.0005 g C kg−1 H2O yr−2 in WUE over the past two decades. These high-resolution datasets are valuable for exploring terrestrial carbon and water responses to climate change, as well as for benchmarking terrestrial biosphere models. Full article
Show Figures

Figure 1

24 pages, 13237 KB  
Article
Inversion of SPAD Values of Pear Leaves at Different Growth Stages Based on Machine Learning and Sentinel-2 Remote Sensing Data
by Ning Yan, Qu Xie, Yasen Qin, Qi Wang, Sumin Lv, Xuedong Zhang and Xu Li
Agriculture 2025, 15(12), 1264; https://doi.org/10.3390/agriculture15121264 - 11 Jun 2025
Viewed by 1156
Abstract
Chlorophyll content is a critical indicator of the physiological status and fruit quality of pear trees, with Soil Plant Analysis Development (SPAD) values serving as an effective proxy due to their advantages in rapid and non-destructive acquisition. However, current remote sensing-based SPAD retrieval [...] Read more.
Chlorophyll content is a critical indicator of the physiological status and fruit quality of pear trees, with Soil Plant Analysis Development (SPAD) values serving as an effective proxy due to their advantages in rapid and non-destructive acquisition. However, current remote sensing-based SPAD retrieval studies are primarily limited to single phenological stages or rely on a narrow set of input features, lacking systematic exploration of multi-temporal feature fusion and comparative model analysis. In this study, pear leaves were selected as the research object, and Sentinel-2 remote sensing data combined with in situ SPAD measurements were used to conduct a comprehensive retrieval study across multiple growth stages, including flowering, fruit-setting, fruit enlargement, and maturity. First, spectral reflectance and representative vegetation indices were extracted and subjected to Pearson correlation analysis to construct three input feature schemes. Subsequently, four machine learning algorithms—K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector Machine (SVM), and an Optimized Integrated Algorithm (OIA)—were employed to develop SPAD retrieval models, and the performance differences across various input combinations and models were systematically evaluated. The results demonstrated that (1) both spectral reflectance and vegetation indices exhibited significant correlations with SPAD values, indicating strong retrieval potential; (2) the OIA model consistently outperformed individual algorithms, achieving the highest accuracy when using the combined feature scheme; (3) among the phenological stages, the fruit-enlargement stage yielded the best retrieval performance, with R2 values of 0.740 and 0.724 for the training and validation sets, respectively. This study establishes a robust SPAD retrieval framework that integrates multi-source features and multiple models, enhancing prediction accuracy across different growth stages and providing technical support for intelligent orchard monitoring and precision management. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop