Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = chosen-plaintext attack secure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8109 KB  
Article
A Face Image Encryption Scheme Based on Nonlinear Dynamics and RNA Cryptography
by Xiyuan Cheng, Tiancong Cheng, Xinyu Yang, Wenbin Cheng and Yiting Lin
Cryptography 2025, 9(3), 57; https://doi.org/10.3390/cryptography9030057 - 4 Sep 2025
Viewed by 131
Abstract
With the rapid development of big data and artificial intelligence, the problem of image privacy leakage has become increasingly prominent, especially for images containing sensitive information such as faces, which poses a higher security risk. In order to improve the security and efficiency [...] Read more.
With the rapid development of big data and artificial intelligence, the problem of image privacy leakage has become increasingly prominent, especially for images containing sensitive information such as faces, which poses a higher security risk. In order to improve the security and efficiency of image privacy protection, this paper proposes an image encryption scheme that integrates face detection and multi-level encryption technology. Specifically, a multi-task convolutional neural network (MTCNN) is used to accurately extract the face area to ensure accurate positioning and high processing efficiency. For the extracted face area, a hierarchical encryption framework is constructed using chaotic systems, lightweight block permutations, RNA cryptographic systems, and bit diffusion, which increases data complexity and unpredictability. In addition, a key update mechanism based on dynamic feedback is introduced to enable the key to change in real time during the encryption process, effectively resisting known plaintext and chosen plaintext attacks. Experimental results show that the scheme performs well in terms of encryption security, robustness, computational efficiency, and image reconstruction quality. This study provides a practical and effective solution for the secure storage and transmission of sensitive face images, and provides valuable support for image privacy protection in intelligent systems. Full article
Show Figures

Figure 1

15 pages, 342 KB  
Article
Post-Quantum Security of COPA
by Ping Zhang and Yutao Wang
Entropy 2025, 27(9), 890; https://doi.org/10.3390/e27090890 - 23 Aug 2025
Viewed by 378
Abstract
COPA is a notable authenticated online cipher and was one of the winning proposals for the CAESAR competition. Current works describe how to break the existentially unforgeable under quantum chosen message attack (EUF-qCMA) of COPA. However, these works do not demonstrate the confidentiality [...] Read more.
COPA is a notable authenticated online cipher and was one of the winning proposals for the CAESAR competition. Current works describe how to break the existentially unforgeable under quantum chosen message attack (EUF-qCMA) of COPA. However, these works do not demonstrate the confidentiality of COPA in the quantum setting. This paper fills this gap, considers the indistinguishable under quantum chosen-plaintext attack (IND-qCPA) security for privacy, and presents the first IND-qCPA security analysis of COPA. In addition, in order to effectively avoid the problems of quantum existential forgery attack and quantum distinguishing attack, we introduce an intermediate state doubling-point technology into COPA, restrict the associated data non-emptiness, and present an enhanced variant, called COPA-ISDP, to support the IND-qCPA and EUF-qCMA security. Our work is of great significance, as it provides a simple and effective post-quantum secure design idea to resist Simon’s attack. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

28 pages, 10631 KB  
Article
A Novel ECC-Based Method for Secure Image Encryption
by Younes Lahraoui, Saiida Lazaar, Youssef Amal and Abderrahmane Nitaj
Algorithms 2025, 18(8), 514; https://doi.org/10.3390/a18080514 - 14 Aug 2025
Viewed by 295
Abstract
As the Internet of Things (IoT) expands, ensuring secure and efficient image transmission in resource-limited environments has become crucial and important. In this paper, we propose a lightweight image encryption scheme based on Elliptic Curve Cryptography (ECC), tailored for embedded and IoT applications. [...] Read more.
As the Internet of Things (IoT) expands, ensuring secure and efficient image transmission in resource-limited environments has become crucial and important. In this paper, we propose a lightweight image encryption scheme based on Elliptic Curve Cryptography (ECC), tailored for embedded and IoT applications. In this scheme, the image data blocks are mapped into elliptic curve points using a decimal embedding algorithm and shuffled to improve resistance to tampering and noise. Moreover, an OTP-like operation is applied to enhance the security while avoiding expensive point multiplications. The proposed scheme meets privacy and cybersecurity requirements with low computational costs. Classical security metrics such as entropy, correlation, NPCR, UACI, and key sensitivity confirm its strong robustness. Rather than relying solely on direct comparisons with existing benchmarks, we employ rigorous statistical analyses to objectively validate the encryption scheme’s robustness and security. Furthermore, we propose a formal security analysis that demonstrates the resistance of the new scheme to chosen-plaintext attacks and noise and cropping attacks, while the GLCM analysis confirms the visual encryption quality. Our scheme performs the encryption of a 512×512 image in only 0.23 s on a 1 GB RAM virtual machine, showing its efficiency and suitability for real-time IoT systems. Our method can be easily applied to guarantee the security and the protection of lightweight data in future smart environments. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

19 pages, 8180 KB  
Article
Weighted Color Image Encryption Algorithm Based on RNA Extended Dynamic Coding and Quantum Chaotic System
by Xiangyu Zhang, Heping Wen, Wei Feng, Shenghao Kang, Zhiyu Xie, Xuexi Zhang and Yiting Lin
Entropy 2025, 27(8), 852; https://doi.org/10.3390/e27080852 - 11 Aug 2025
Viewed by 471
Abstract
The rapid development of Internet technology, while providing convenient services for users, has also aroused deep concern among the public about the issue of privacy leakage during image data transmission. To address this situation, this article proposes a color image encryption algorithm based [...] Read more.
The rapid development of Internet technology, while providing convenient services for users, has also aroused deep concern among the public about the issue of privacy leakage during image data transmission. To address this situation, this article proposes a color image encryption algorithm based on RNA extended dynamic coding and quantum chaos (CIEA-RQ). This algorithm significantly improves the ability of the system to withstand cryptographic attacks by introducing RNA extended dynamic encoding with 384 encoding rules. The employed quantum chaotic map improves the randomness of chaotic sequences and increases the key space. First, the algorithm decomposes the plaintext image into bit planes and obtains two parts, high 4-bit and low 4-bit planes, based on different weights of information. Then, the high 4-bit planes are partitioned into blocks and scrambled, and the scrambled planes are confused using RNA extended coding rules. Meanwhile, the low 4-bit planes employ a lightweight XOR operation to improve encryption efficiency. Finally, the algorithm performs cross-iterative diffusion on the processed high 4-bit and low 4-bit planes and then synthesizes a color ciphertext image. Experimental simulations and security assessments demonstrate the superior numerical statistical outcomes of the CIEA-RQ. According to the criteria of cryptanalysis, it can effectively resist known-plaintext attacks and chosen-plaintext attacks. Therefore, the CIEA-RQ presented in this article serves as an efficient digital image privacy safeguard technique, promising extensive applications in image secure transmission for the upcoming generation of networks. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

28 pages, 6199 KB  
Article
Dual Chaotic Diffusion Framework for Multimodal Biometric Security Using Qi Hyperchaotic System
by Tresor Lisungu Oteko and Kingsley A. Ogudo
Symmetry 2025, 17(8), 1231; https://doi.org/10.3390/sym17081231 - 4 Aug 2025
Viewed by 344
Abstract
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many [...] Read more.
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many existing chaos-based encryption schemes exhibit inherent shortcomings including deterministic randomness and constrained key spaces, often failing to balance security robustness with computational efficiency. To address this, we propose a novel dual-layer cryptographic framework leveraging a four-dimensional (4D) Qi hyperchaotic system for protecting biometric templates and facilitating secure feature matching operations. The framework implements a two-tier encryption mechanism where each layer independently utilizes a Qi hyperchaotic system to generate unique encryption parameters, ensuring template-specific encryption patterns that enhance resistance against chosen-plaintext attacks. The framework performs dimensional normalization of input biometric templates, followed by image pixel shuffling to permutate pixel positions before applying dual-key encryption using the Qi hyperchaotic system and XOR diffusion operations. Templates remain encrypted in storage, with decryption occurring only during authentication processes, ensuring continuous security while enabling biometric verification. The proposed system’s framework demonstrates exceptional randomness properties, validated through comprehensive NIST Statistical Test Suite analysis, achieving statistical significance across all 15 tests with p-values consistently above 0.01 threshold. Comprehensive security analysis reveals outstanding metrics: entropy values exceeding 7.99 bits, a key space of 10320, negligible correlation coefficients (<102), and robust differential attack resistance with an NPCR of 99.60% and a UACI of 33.45%. Empirical evaluation, on standard CASIA Face and Iris databases, demonstrates practical computational efficiency, achieving average encryption times of 0.50913s per user template for 256 × 256 images. Comparative analysis against other state-of-the-art encryption schemes verifies the effectiveness and reliability of the proposed scheme and demonstrates our framework’s superior performance in both security metrics and computational efficiency. Our findings contribute to the advancement of biometric template protection methodologies, offering a balanced performance between security robustness and operational efficiency required in real-world deployment scenarios. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

22 pages, 1156 KB  
Article
An Attribute-Based Proxy Re-Encryption Scheme Supporting Revocable Access Control
by Gangzheng Zhao, Weijie Tan and Changgen Peng
Electronics 2025, 14(15), 2988; https://doi.org/10.3390/electronics14152988 - 26 Jul 2025
Viewed by 588
Abstract
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges [...] Read more.
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges in privacy leakage risks. Existing academic research indicates current proxy re-encryption schemes remain insufficient for cloud access control scenarios characterized by diversified user requirements and personalized permission management, thus failing to fulfill the security needs of emerging computing paradigms. To resolve these issues, a revocable attribute-based proxy re-encryption scheme supporting policy-hiding is proposed. Data owners encrypt data and upload it to the blockchain while concealing attribute values within attribute-based encryption access policies, effectively preventing sensitive information leaks and achieving fine-grained secure data sharing. Simultaneously, proxy re-encryption technology enables verifiable outsourcing of complex computations. Furthermore, the SM3 (SM3 Cryptographic Hash Algorithm) hash function is embedded in user private key generation, and key updates are executed using fresh random factors to revoke malicious users. Ultimately, the scheme proves indistinguishability under chosen-plaintext attacks for specific access structures in the standard model. Experimental simulations confirm that compared with existing schemes, this solution delivers higher execution efficiency in both encryption/decryption and revocation phases. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

23 pages, 16115 KB  
Article
Image Privacy Protection Communication Scheme by Fibonacci Interleaved Diffusion and Non-Degenerate Discrete Chaos
by Zhiyu Xie, Weihong Xie, Xiyuan Cheng, Zhengqin Yuan, Wenbin Cheng and Yiting Lin
Entropy 2025, 27(8), 790; https://doi.org/10.3390/e27080790 - 25 Jul 2025
Cited by 1 | Viewed by 337
Abstract
The rapid development of network communication technology has led to an increased focus on the security of image storage and transmission in multimedia information. This paper proposes an enhanced image security communication scheme based on Fibonacci interleaved diffusion and non-degenerate chaotic system to [...] Read more.
The rapid development of network communication technology has led to an increased focus on the security of image storage and transmission in multimedia information. This paper proposes an enhanced image security communication scheme based on Fibonacci interleaved diffusion and non-degenerate chaotic system to address the inadequacy of current image encryption technology. The scheme utilizes a hash function to extract the hash characteristic values of the plaintext image, generating initial perturbation keys to drive the chaotic system to generate initial pseudo-random sequences. Subsequently, the input image is subjected to a light scrambling process at the bit level. The Q matrix generated by the Fibonacci sequence is then employed to diffuse the obtained intermediate cipher image. The final ciphertext image is then generated by random direction confusion. Throughout the encryption process, plaintext correlation mechanisms are employed. Consequently, due to the feedback loop of the plaintext, this algorithm is capable of resisting known-plaintext attacks and chosen-plaintext attacks. Theoretical analysis and empirical results demonstrate that the algorithm fulfils the cryptographic requirements of confusion, diffusion, and avalanche effects, while also exhibiting a robust password space and excellent numerical statistical properties. Consequently, the security enhancement mechanism based on Fibonacci interleaved diffusion and non-degenerate chaotic system proposed in this paper effectively enhances the algorithm’s resistance to cryptographic attacks. Full article
Show Figures

Figure 1

19 pages, 3841 KB  
Article
An Improved Chosen Plaintext Attack on JPEG Encryption
by Junhui He, Kaitian Gu, Yihan Huang, Yue Li and Xiang Chen
J. Sens. Actuator Netw. 2025, 14(4), 72; https://doi.org/10.3390/jsan14040072 - 14 Jul 2025
Viewed by 648
Abstract
Format-compatible encryption can be used to ensure the security and privacy of JPEG images. Recently, a JPEG image encryption method proved to be secure against known plaintext attacks by employing an adaptive encryption key, which depends on the histogram of the number of [...] Read more.
Format-compatible encryption can be used to ensure the security and privacy of JPEG images. Recently, a JPEG image encryption method proved to be secure against known plaintext attacks by employing an adaptive encryption key, which depends on the histogram of the number of non-zero alternating current coefficients (ACC) in Discrete Cosine Transform (DCT) blocks. However, this scheme has been demonstrated to be vulnerable to chosen-plaintext attacks (CPA) based on the run consistency of MCUs (RCM) between the original image and the encrypted image. In this paper, an improved CPA scheme is proposed. The method of incrementing run-length values instead of permutation is utilized to satisfy the uniqueness of run sequences of different minimum coded units (MCUs). The experimental results show that the proposed method can successfully recover the outlines of plaintext images from the encrypted images, even with lower-quality factors. Full article
Show Figures

Figure 1

26 pages, 8232 KB  
Article
A CML-ECA Chaotic Image Encryption System Based on Multi-Source Perturbation Mechanism and Dynamic DNA Encoding
by Xin Xie, Kun Zhang, Bing Zheng, Hao Ning, Yu Zhou, Qi Peng and Zhengyu Li
Symmetry 2025, 17(7), 1042; https://doi.org/10.3390/sym17071042 - 2 Jul 2025
Cited by 1 | Viewed by 532
Abstract
To meet the growing demand for secure and reliable image protection in digital communication, this paper proposes a novel image encryption framework that addresses the challenges of high plaintext sensitivity, resistance to statistical attacks, and key security. The method combines a two-dimensional dynamically [...] Read more.
To meet the growing demand for secure and reliable image protection in digital communication, this paper proposes a novel image encryption framework that addresses the challenges of high plaintext sensitivity, resistance to statistical attacks, and key security. The method combines a two-dimensional dynamically coupled map lattice (2D DCML) with elementary cellular automata (ECA) to construct a heterogeneous chaotic system with strong spatiotemporal complexity. To further enhance nonlinearity and diffusion, a multi-source perturbation mechanism and adaptive DNA encoding strategy are introduced. These components work together to obscure the image structure, pixel correlations, and histogram characteristics. By embedding spatial and temporal symmetry into the coupled lattice evolution and perturbation processes, the proposed method ensures a more uniform and balanced transformation of image data. Meanwhile, the method enhances the confusion and diffusion effects by utilizing the principle of symmetric perturbation, thereby improving the overall security of the system. Experimental evaluations on standard images demonstrate that the proposed scheme achieves high encryption quality in terms of histogram uniformity, information entropy, NPCR, UACI, and key sensitivity tests. It also shows strong resistance to chosen plaintext attacks, confirming its robustness for secure image transmission. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

26 pages, 5350 KB  
Article
Secure Image Transmission Using Multilevel Chaotic Encryption and Video Steganography
by Suhad Naji Alrekaby, Maisa’a Abid Ali Khodher, Layth Kamil Adday and Reem Aljuaidi
Algorithms 2025, 18(7), 406; https://doi.org/10.3390/a18070406 - 1 Jul 2025
Cited by 1 | Viewed by 650
Abstract
The swift advancement of information and communication technology has made it increasingly difficult to guarantee the security of transmitted data. Traditional encryption techniques, particularly in multimedia applications, frequently fail to defend against sophisticated attacks, such as chosen-plaintext, differential, and statistical analysis attacks. More [...] Read more.
The swift advancement of information and communication technology has made it increasingly difficult to guarantee the security of transmitted data. Traditional encryption techniques, particularly in multimedia applications, frequently fail to defend against sophisticated attacks, such as chosen-plaintext, differential, and statistical analysis attacks. More often than not, traditional cryptographic methods lack proper diffusion and sufficient randomness, which is why they are vulnerable to these types of attacks. By combining multi-level chaotic maps with Least Significant Bit (LSB) steganography and Advanced Encryption Standard (AES) encryption, this study proposes an improved security approach for picture transmission. A hybrid chaotic system dynamically creates the encryption keys, guaranteeing high unpredictability and resistance to brute-force attacks. Next, it incorporates the encrypted images into video frames, making it challenging to find the secret data. The suggested method demonstrates its resilience to statistical attacks by achieving entropy values over 7.99 and number of pixels change rate (NPCR) values above 99.63% in contrast to traditional encryption techniques, showing how resilient it is to statistical attacks. Our hybrid approach improves data secrecy and resistance to various cryptographic attacks. Experimental results confirm the efficiency of the suggested technique by achieving entropy values around 7.99, number of pixels change rate (NPCR) values above 99.63%, and unified average changing intensity (UACI) values over 31.98%, ensuring the secure transmission of sensitive images while maintaining video imperceptibility. Full article
(This article belongs to the Section Parallel and Distributed Algorithms)
Show Figures

Figure 1

21 pages, 732 KB  
Article
Efficient Access Control for Video Anomaly Detection Using ABE-Based User-Level Revocation with Ciphertext and Index Updates
by Lu Jiang, Jielu Yan, Weizhi Xian, Xuekai Wei and Xiaofeng Liao
Appl. Sci. 2025, 15(9), 5128; https://doi.org/10.3390/app15095128 - 5 May 2025
Cited by 1 | Viewed by 616
Abstract
With the widespread deployment of video surveillance systems, effective access control is essential to enhance the accuracy and security of video anomaly detection. This paper proposes a Searchable and Revocable Attribute-Based Encryption scheme (ABE-RS) that is specifically designed for dynamic video anomaly detection [...] Read more.
With the widespread deployment of video surveillance systems, effective access control is essential to enhance the accuracy and security of video anomaly detection. This paper proposes a Searchable and Revocable Attribute-Based Encryption scheme (ABE-RS) that is specifically designed for dynamic video anomaly detection scenarios. By integrating a user management tree structure, attribute-based key distribution, and keyword grouping techniques, the proposed scheme enables efficient user-level revocation along with dynamic updates to ciphertexts and keyword indexes. Furthermore, an inverted index structure is introduced to accelerate keyword search, facilitating the rapid detection and retrieval of anomalous video events. Formal security analysis demonstrates that the scheme is secure against chosen plaintext attacks (CPAs) and chosen keyword attacks (CKAs). The experimental results demonstrate that the scheme maintains millisecond-level revocation efficiency in methodology involving 512 users and either 50 attributes or a thousand keywords. Full article
(This article belongs to the Special Issue Pattern Recognition in Video Processing)
Show Figures

Figure 1

23 pages, 2410 KB  
Article
A Decentralised Multi-Authority Attribute-Based Encryption for Secure and Scalable IoT Access Control
by Chung-Yen Wu, Kuo-Hsuan Huang and Chih-Yao Hsu
Appl. Sci. 2025, 15(7), 3890; https://doi.org/10.3390/app15073890 - 2 Apr 2025
Cited by 3 | Viewed by 873
Abstract
This study presents a decentralised ciphertext-policy attribute-based encryption (CP-ABE) scheme designed for secure and efficient access control in resource-constrained Internet-of-Things (IoT) environments. By utilising multi-authority architecture and outsourced computation, the scheme enhances scalability, simplifies key management by eliminating reliance on a certificate authority [...] Read more.
This study presents a decentralised ciphertext-policy attribute-based encryption (CP-ABE) scheme designed for secure and efficient access control in resource-constrained Internet-of-Things (IoT) environments. By utilising multi-authority architecture and outsourced computation, the scheme enhances scalability, simplifies key management by eliminating reliance on a certificate authority (CA), and ensures data confidentiality through randomised proxy keys. It is particularly suited for multi-scenario IoT applications involving information sharing, such as smart cities or industrial automation in strategic alliances or conglomerates. Demonstrating security against chosen-plaintext attacks under the decisional bilinear Diffie–Hellman assumption, the scheme offers a practical and scalable solution for decentralised access control. Full article
Show Figures

Figure 1

30 pages, 5036 KB  
Article
Chaotic Hénon–Logistic Map Integration: A Powerful Approach for Safeguarding Digital Images
by Abeer Al-Hyari, Mua’ad Abu-Faraj, Charlie Obimbo and Moutaz Alazab
J. Cybersecur. Priv. 2025, 5(1), 8; https://doi.org/10.3390/jcp5010008 - 18 Feb 2025
Cited by 1 | Viewed by 2122
Abstract
This paper presents an integrated chaos-based algorithm for image encryption that combines the chaotic Hénon map and chaotic logistic map (CLM) to enhance the security of digital image communication. The proposed method leverages chaos theory to generate cryptographic keys, utilizing a 1D key [...] Read more.
This paper presents an integrated chaos-based algorithm for image encryption that combines the chaotic Hénon map and chaotic logistic map (CLM) to enhance the security of digital image communication. The proposed method leverages chaos theory to generate cryptographic keys, utilizing a 1D key from the logistic map generator and a 2D key from the chaotic Hénon map generator. These chaotic maps produce highly unpredictable and complex keys essential for robust encryption. Extensive experiments demonstrate the algorithm’s resilience against various attacks, including chosen-plaintext, noise, clipping, occlusion, and known-plaintext attacks. Performance evaluation in terms of encryption time, throughput, and image quality metrics validates the effectiveness of the proposed integrated approach. The results indicate that the chaotic Hénon–logistic map integration provides a powerful and secure method for safeguarding digital images during transmission and storage with a key space that reaches up to 2200. Moreover, the algorithm has potential applications in secure image sharing, cloud storage, and digital forensics, inspiring new possibilities. Full article
(This article belongs to the Special Issue Cybersecurity in the Age of AI and IoT: Challenges and Innovations)
Show Figures

Figure 1

21 pages, 10962 KB  
Article
Cryptanalysis of an Image Encryption Algorithm Using DNA Coding and Chaos
by Yuzhuo Zhao, Qiqin Shi and Qun Ding
Entropy 2025, 27(1), 40; https://doi.org/10.3390/e27010040 - 7 Jan 2025
Cited by 5 | Viewed by 1578
Abstract
In recent years, many chaotic image encryption algorithms have been cracked by chosen plaintext attack. Therefore, the method of associating the key with the plaintext to resist the cryptanalysis has received extensive attention from designers. This paper proposes a new method of cryptanalysis [...] Read more.
In recent years, many chaotic image encryption algorithms have been cracked by chosen plaintext attack. Therefore, the method of associating the key with the plaintext to resist the cryptanalysis has received extensive attention from designers. This paper proposes a new method of cryptanalysis for image encryption algorithms with a key associated with plaintext. We broke an image encryption scheme using chaos and DNA encoding. Through our comprehensive security analysis, we found a security vulnerability in the mechanism of the association between the key and plaintext and proposed a breaking scheme. The experimental results show that the chosen plaintext attack can recover the cipher image to the plain image. The cryptanalysis scheme proposed in this paper can provide new ideas for subsequent cryptanalysis work and also provide some meaningful references for designers to improve the security of encryption algorithms when designing them. In addition, we also propose an improved logistic chaotic map with random bit-position scrambling. The improved chaotic map has a wider parameter range and a larger Lyapunov exponent. In the end, some suggestions are given to improve the original algorithm to resist such attacks. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

20 pages, 6087 KB  
Article
An Efficient Pairing-Free Ciphertext-Policy Attribute-Based Encryption Scheme for Internet of Things
by Chong Guo, Bei Gong, Muhammad Waqas, Hisham Alasmary, Shanshan Tu and Sheng Chen
Sensors 2024, 24(21), 6843; https://doi.org/10.3390/s24216843 - 24 Oct 2024
Cited by 2 | Viewed by 1787
Abstract
The Internet of Things (IoT) is a heterogeneous network composed of numerous dynamically connected devices. While it brings convenience, the IoT also faces serious challenges in data security. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising cryptography method that supports fine-grained access control, offering [...] Read more.
The Internet of Things (IoT) is a heterogeneous network composed of numerous dynamically connected devices. While it brings convenience, the IoT also faces serious challenges in data security. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising cryptography method that supports fine-grained access control, offering a solution to the IoT’s security issues. However, existing CP-ABE schemes are inefficient and unsuitable for IoT devices with limited computing resources. To address this problem, this paper proposes an efficient pairing-free CP-ABE scheme for the IoT. The scheme is based on lightweight elliptic curve scalar multiplication and supports multi-authority and verifiable outsourced decryption. The proposed scheme satisfies indistinguishability against chosen-plaintext attacks (CPA) under the elliptic curve decisional Diffie–Hellman (ECDDH) problem. Performance analysis shows that our proposed scheme is more efficient and better suited to the IoT environment compared to existing schemes. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

Back to TopTop