New Advances in Symmetric Cryptography

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Computer".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 4268

Special Issue Editor


E-Mail Website
Guest Editor
Institute for Advanced Study, Tsinghua University, Beijing 100084, China
Interests: cryptography

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the use of fast and secure primitives in symmetric cryptography, including the design and analysis of block ciphers, stream ciphers, encryption schemes, hash functions, message authentication codes, (cryptographic) permutations, authenticated encryption schemes, cryptanalysis, etc.

Dr. Xiaoyang Dong
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • block cipher
  • stream cipher
  • hash function
  • message authentication codes
  • authenticated encryption
  • cryptanalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 951 KiB  
Article
A Ciphertext Reduction Scheme for Garbling an S-Box in an AES Circuit with Minimal Online Time
by Xu Yan, Bin Lian, Yunhao Yang, Xiaotie Wang, Jialin Cui, Xianghong Zhao, Fuqun Wang and Kefei Chen
Symmetry 2024, 16(6), 664; https://doi.org/10.3390/sym16060664 - 28 May 2024
Viewed by 800
Abstract
The secure computation of symmetric encryption schemes using Yao’s garbled circuits, such as AES, allows two parties, where one holds a plaintext block m and the other holds a key k, to compute Enc(k,m) without [...] Read more.
The secure computation of symmetric encryption schemes using Yao’s garbled circuits, such as AES, allows two parties, where one holds a plaintext block m and the other holds a key k, to compute Enc(k,m) without leaking m and k to one another. Due to its wide application prospects, secure AES computation has received much attention. However, the evaluation of AES circuits using Yao’s garbled circuits incurs substantial communication overhead. To further improve its efficiency, this paper, upon observing the special structures of AES circuits and the symmetries of an S-box, proposes a novel ciphertext reduction scheme for garbling an S-box in the last SubBytes step. Unlike the idea of traditional Yao’s garbled circuits, where the circuit generator uses the input wire labels to encrypt the corresponding output wire labels, our garbling scheme uses the input wire labels of an S-box to encrypt the corresponding “flip bit strings”. This approach leads to a significant performance improvement in our garbling scheme, which necessitates only 28 ciphertexts to garble an S-box and a single invocation of a cryptographic primitive for decryption compared to the best result in previous work that requires 8×28 ciphertexts to garble an S-box and multiple invocations of a cryptographic primitive for decryption. Crucially, the proposed scheme provides a new idea to improve the performance of Yao’s garbled circuits. We analyze the security of the proposed scheme in the semi-honest model and experimentally verify its efficiency. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

19 pages, 805 KiB  
Article
Algebraic Attacks against Grendel: An Arithmetization-Oriented Primitive with the Legendre Symbol
by Jianqiang Ni, Jianhui Zhang, Gaoli Wang, Rui Li and Yanzhao Shen
Symmetry 2023, 15(8), 1563; https://doi.org/10.3390/sym15081563 - 10 Aug 2023
Viewed by 1296
Abstract
The rise of modern cryptographic protocols such as Zero-Knowledge proofs and secure Multi-party Computation has led to an increased demand for a new class of symmetric primitives. Unlike traditional platforms such as servers, microcontrollers, and desktop computers, these primitives are designed to be [...] Read more.
The rise of modern cryptographic protocols such as Zero-Knowledge proofs and secure Multi-party Computation has led to an increased demand for a new class of symmetric primitives. Unlike traditional platforms such as servers, microcontrollers, and desktop computers, these primitives are designed to be implemented in arithmetical circuits. In terms of security evaluation, arithmetization-oriented primitives are more complex compared to traditional symmetric cryptographic primitives. The arithmetization-oriented permutation Grendel employs the Legendre Symbol to increase the growth of algebraic degrees in its nonlinear layer. To analyze the security of Grendel thoroughly, it is crucial to investigate its resilience against algebraic attacks. This paper presents a preimage attack on the sponge hash function instantiated with the complete rounds of the Grendel permutation, employing algebraic methods. A technique is introduced that enables the elimination of two complete rounds of substitution permutation networks (SPN) in the sponge hash function without significant additional cost. This method can be combined with univariate root-finding techniques and Gröbner basis attacks to break the number of rounds claimed by the designers. By employing this strategy, our attack achieves a gain of two additional rounds compared to the previous state-of-the-art attack. With no compromise to its security margin, this approach deepens our understanding of the design and analysis of such cryptographic primitives. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

13 pages, 563 KiB  
Article
Meet-in-the-Middle Differential Fault Analysis on ITUbee Block Cipher
by Yongze Kang, Qingyuan Yu, Lingyue Qin and Guoyan Zhang
Symmetry 2023, 15(6), 1196; https://doi.org/10.3390/sym15061196 - 2 Jun 2023
Cited by 2 | Viewed by 1458
Abstract
Differential fault analysis (DFA) was introduced by Biham and Shamir. It is a powerful analysis technique to retrieve the secret key by injecting fault into an internal state and utilizing the differences between the correct ciphertexts and the faulty ciphertexts. Based on the [...] Read more.
Differential fault analysis (DFA) was introduced by Biham and Shamir. It is a powerful analysis technique to retrieve the secret key by injecting fault into an internal state and utilizing the differences between the correct ciphertexts and the faulty ciphertexts. Based on the idea of meet-in-the-middle, some differential characters can help to recover the key of some symmetric ciphers. At CHES 2011, this technique was utilized to give analyses on AES. In this article, we propose several DFA schemes on ITUbee, a software-oriented block symmetric cipher for resource-constrained devices based on the meet-in-the-middle idea. Our attacks are efficient enough and more powerful than previous works. Furthermore, the attacks in this article break the protection countermeasure, meaning we have to review the protection method on devices for ITUbee. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

Back to TopTop