Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = classical nucleation theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6091 KB  
Article
Foaming of Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite Using Supercritical CO2: Effect of Operating Strategies on Cell Structure
by Pei-Hua Chen, Chin-Wen Chen, Tzu-Hsien Chan, Hsin-Ying Lin, Ke-Ling Tuan, Chie-Shaan Su, Jung-Chin Tsai and Feng-Huei Lin
Molecules 2025, 30(9), 2056; https://doi.org/10.3390/molecules30092056 - 5 May 2025
Viewed by 815
Abstract
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate [...] Read more.
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate the effects of various foaming strategies on the resulting cell structure, aiming for potential applications in tissue engineering. Eight foaming strategies were examined, starting with a basic saturation process at high temperature and pressure, followed by rapid decompression to ambient conditions, referred to as the (1T-1P) strategy. Intermediate temperature and pressure variations were introduced before the final decompression to evaluate the impact of operating parameters further. These strategies included intermediate-temperature cooling (2T-1P), intermediate-temperature cooling with rapid intermediate decompression (2T-2P), and intermediate-temperature cooling with gradual intermediate decompression (2T-2P, stepwise ΔP). SEM imaging revealed that the (2T-2P, stepwise ΔP) strategy produced a bimodal cell structure featuring small cells ranging from 105 to 164 μm and large cells between 476 and 889 μm. This study demonstrated that cell size was influenced by the regulation of intermediate pressure reduction and the change in intermediate temperature. The results were interpreted based on classical nucleation theory, the gas solubility principle, and the effect of polymer melt strength. Foaming results of average cell size, cell density, expansion ratio, porosity, and opening cell content are reported. The hydrophilicity of various foamed polymer blends was evaluated by measuring the water contact angle. Typical compressive stress–strain curves obtained using DMA showed a consistent trend reflecting the effect of foam stiffness. Full article
Show Figures

Graphical abstract

21 pages, 1693 KB  
Article
Process Analytical Technology Obtained Metastable Zone Width, Nucleation Rate and Solubility of Paracetamol in Isopropanol—Theoretical Analysis
by Mahmoud Ranjbar, Mayank Vashishtha, Gavin Walker and K. Vasanth Kumar
Pharmaceuticals 2025, 18(3), 314; https://doi.org/10.3390/ph18030314 - 24 Feb 2025
Cited by 2 | Viewed by 1084
Abstract
Background: Metastable zone width (MSZW) and solubility are crucial for developing crystallization procedures in the purification of active pharmaceutical ingredients (APIs). Traditionally, determining these properties involves labor-intensive methods that can take weeks or even months. With advancements in process analytical technologies (PAT) and [...] Read more.
Background: Metastable zone width (MSZW) and solubility are crucial for developing crystallization procedures in the purification of active pharmaceutical ingredients (APIs). Traditionally, determining these properties involves labor-intensive methods that can take weeks or even months. With advancements in process analytical technologies (PAT) and the increasing focus on quality by design (QbD) in pharmaceutical manufacturing, more efficient and reliable protocols are needed. In this study, we employ in situ Fourier Transform Infrared (FTIR) spectroscopy and Focused Beam Reflectance Measurement (FBRM) to establish protocols for measuring solubility at different temperatures and MSZW at varying cooling rates. Methods: We experimentally determined MSZW and solubility using FTIR spectroscopy and FBRM. IR spectra were analyzed to obtain solubility concentrations, while FBRM counts were used to extract MSZW and supersolubility concentrations. The collected data were assessed using four theoretical models, including a newly developed model based on classical nucleation theory. By fitting experimental MSZW data to these models, we determined nucleation kinetics and thermodynamic parameters. Results: Our novel model exhibited excellent agreement with experimental MSZW data across different cooling rates, demonstrating its robustness. The nucleation rate constant and nucleation rate ranged between 10²¹ and 10²² molecules/m³·s. The Gibbs free energy of nucleation was calculated as 3.6 kJ/mol, with surface energy values between 2.6 and 8.8 mJ/m². The estimated critical nucleus radius was in the order of 10⁻³ m. Conclusions: The protocols we developed for predicting MSZW and solubility of paracetamol using PAT can serve as a guideline for other APIs. Our theoretical model enhances the predictive accuracy of nucleation kinetics and thermodynamics, contributing to optimized crystallization processes. Full article
Show Figures

Figure 1

20 pages, 2991 KB  
Article
Gypsum: From the Equilibrium to the Growth Shapes—Theory and Experiments
by Dino Aquilano, Marco Bruno and Stefano Ghignone
Minerals 2024, 14(11), 1175; https://doi.org/10.3390/min14111175 - 19 Nov 2024
Cited by 2 | Viewed by 1695
Abstract
The gypsum crystals (CaSO4·2H2O) crystallizes in a low symmetry system (monoclinic) and shows a marked layered structure along with a perfect cleavage parallel to the {010} faces. Owing to its widespread occurrence, as a single or twinned crystal, here [...] Read more.
The gypsum crystals (CaSO4·2H2O) crystallizes in a low symmetry system (monoclinic) and shows a marked layered structure along with a perfect cleavage parallel to the {010} faces. Owing to its widespread occurrence, as a single or twinned crystal, here the gypsum equilibrium (E.S.) and growth shapes (G.S.) have been re-visited. In making the distinction among E.S. and G.S., in the present work, the basic difference between epitaxy and homo-taxy is clearly evidenced. Gypsum has also been a fruitful occasion to recollect the general rules concerning either contact or penetration twins, for free growing and for twinned crystals nucleating onto pre-existing substrates. Both geometric and crystal growth aspects have been considered as well, by unifying theory and experiments of crystallography and crystal growth through the intervention of βadh, the physical quantity representing the specific adhesion energy between gypsum and other phases. Hence, the adhesion energy allowed us to systematically use the Dupré’s formula. In the final part of the paper, peculiar attention has been paid to sediments (or solution growth) where the crystal size is very small, in order to offer a new simple way to afford classical (CNT) and non-classical nucleation (NCNT) theories, both ruling two quantities commonly used in the industrial crystallization: the total induction times (tindtotal) and crystal size distribution (CSD). Full article
Show Figures

Figure 1

30 pages, 3990 KB  
Review
Recent Advances in the Growth and Compositional Modelling of III–V Nanowire Heterostructures
by Egor D. Leshchenko and Nickolay V. Sibirev
Nanomaterials 2024, 14(22), 1816; https://doi.org/10.3390/nano14221816 - 13 Nov 2024
Cited by 3 | Viewed by 1694
Abstract
Nanowire heterostructures offer almost unlimited possibilities for the bandgap engineering and monolithic integration of III–V photonics with Si electronics. The growth and compositional modelling of III–V nanowire heterostructures provides new insight into the formation mechanisms and assists in the suppression of interfacial broadening [...] Read more.
Nanowire heterostructures offer almost unlimited possibilities for the bandgap engineering and monolithic integration of III–V photonics with Si electronics. The growth and compositional modelling of III–V nanowire heterostructures provides new insight into the formation mechanisms and assists in the suppression of interfacial broadening and optimization of optical properties. Different models have been proposed in the past decade to calculate the interfacial profiles in axial nanowire heterostructures mainly grown by molecular beam epitaxy and metal–organic vapour phase epitaxy. Based on various assumptions, existing models have different sets of parameters and can yield varying results and conclusions. By focusing on deterministic models based on classical nucleation theory and kinetic growth theory of III–V ternary monolayers in nanowires, we summarize recent advancements in the modelling of axial heterostructures in III–V nanowires, describe and classify the existing models, and determine their applicability to predictive modelling and to the fitting of the available experimental data. In particular, we consider the coordinate-dependent generalizations of the equilibrium, nucleation-limited, kinetic, and regular growth models to make interfacial profiles across axial heterostructures in different III–V nanowires. We examine the factors influencing the interfacial abruptness, discuss the governing parameters, limitations, and modelling of particular material systems, and highlight the areas that require further research. Full article
(This article belongs to the Special Issue Preparation and Application of Nanowires: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2173 KB  
Article
Crystallization Kinetics of Tacrolimus Monohydrate in an Ethanol–Water System
by Suoqing Zhang, Jixiang Zhao, Ming Kong, Jiahui Li, Mingxuan Li, Miao Ma, Li Tong, Tao Li and Mingyang Chen
Crystals 2024, 14(10), 849; https://doi.org/10.3390/cryst14100849 - 28 Sep 2024
Viewed by 1171
Abstract
Nucleation and growth during the crystallization process are crucial steps that determine the crystal structure, size, morphology, and purity. A thorough understanding of these mechanisms is essential for producing crystalline products with consistent properties. This study investigates the solubility of tacrolimus (FK506) in [...] Read more.
Nucleation and growth during the crystallization process are crucial steps that determine the crystal structure, size, morphology, and purity. A thorough understanding of these mechanisms is essential for producing crystalline products with consistent properties. This study investigates the solubility of tacrolimus (FK506) in an ethanol–water system (1:1, v/v) and examines its crystallization kinetics using batch crystallization experiments. Initially, the solubility of FK506 was measured, and classical nucleation theory was employed to analyze the induction period to determine interfacial free energy (γ) and other nucleation parameters, including the critical nucleus radius (r*), critical free energy (G*), and the molecular count of the critical nucleus (i*). Crystallization kinetics under seeded conditions were also measured, and the parameters of the kinetic model were analyzed to understand the effects of process states such as temperature on the crystallization process. The results suggested that increasing temperature and supersaturation promotes nucleation. The surface entropy factor (f) indicates that the tacrolimus crystal growth mechanism is a two-dimensional nucleation growth. The growth process follows the particle size-independent growth law proposed by McCabe. The estimated kinetic parameters reveal the effects of supersaturation, temperature, and suspension density on the nucleation and growth rates. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

11 pages, 9936 KB  
Article
Modeling and Experimental Validation of Cell Morphology in Microcellular-Foamed Polycaprolactone
by Donghwan Lim, Sanghyun Lee, Seungho Jung, Kwanhoon Kim, Jin Hong and Sung Woon Cha
Polymers 2024, 16(19), 2723; https://doi.org/10.3390/polym16192723 - 26 Sep 2024
Viewed by 1091
Abstract
This study investigates the modeling and experimental validation of cell morphology in microcellular-foamed polycaprolactone (PCL) using supercritical carbon dioxide (scCO2) as the blowing agent. The microcellular foaming process (MCP) was conducted using a solid-state batch foaming process, where PCL was saturated [...] Read more.
This study investigates the modeling and experimental validation of cell morphology in microcellular-foamed polycaprolactone (PCL) using supercritical carbon dioxide (scCO2) as the blowing agent. The microcellular foaming process (MCP) was conducted using a solid-state batch foaming process, where PCL was saturated with scCO2 at 6 to 9 MPa and 313 K, followed by depressurization at a rate of −0.3 and −1 MPa/s. This study utilized the Sanchez–Lacombe equation of state and the Peng–Robinson–Stryjek–Vera equation of state to model the solubility and density of the PCL-CO2 mixture. Classical nucleation theory was modified and combined with numerical analysis to predict cell density, incorporating factors such as gas absorption kinetics, the role of scCO2 in promoting nucleation, and the impact of depressurization rate and saturation pressure on cell growth. The validity of the model was confirmed by comparing the theoretical predictions with experimental and reference data, with the cell density determined through field-emission scanning electron microscopy analysis of foamed PCL samples. This study proposes a method for predicting cell density that can be applied to various polymers, with the potential for wide-ranging applications in biomaterials and industrial settings. This research also introduces a Python-based numerical analysis tool that allows for easy calculation of solubility and cell density based on the material properties of polymers and penetrant gases, offering a practical solution for optimizing MCP conditions in different contexts. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 8921 KB  
Article
Free Energy Evaluation of Cavity Formation in Metastable Liquid Based on Stochastic Thermodynamics
by Issei Shimizu and Mitsuhiro Matsumoto
Entropy 2024, 26(8), 700; https://doi.org/10.3390/e26080700 - 17 Aug 2024
Cited by 1 | Viewed by 1317
Abstract
Nucleation is a fundamental and general process at the initial stage of first-order phase transition. Although various models based on the classical nucleation theory (CNT) have been proposed to explain the energetics and kinetics of nucleation, detailed understanding at nanoscale is still required. [...] Read more.
Nucleation is a fundamental and general process at the initial stage of first-order phase transition. Although various models based on the classical nucleation theory (CNT) have been proposed to explain the energetics and kinetics of nucleation, detailed understanding at nanoscale is still required. Here, in view of the homogeneous bubble nucleation, we focus on cavity formation, in which evaluation of the size dependence of free energy change is the key issue. We propose the application of a formula in stochastic thermodynamics, the Jarzynski equality, for data analysis of molecular dynamics (MD) simulation to evaluate the free energy of cavity formation. As a test case, we performed a series of MD simulations with a Lennard-Jones (LJ) fluid system. By applying an external spherical force field to equilibrated LJ liquid, we evaluated the free energy change during cavity growth as the Jarzynski’s ensemble average of required works. A fairly smooth free energy curve was obtained as a function of bubble radius in metastable liquid of mildly negative pressure conditions. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics of Bubble Nucleation)
Show Figures

Figure 1

20 pages, 2190 KB  
Article
Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt
by Maude Bilodeau and Don R. Baker
Minerals 2024, 14(6), 611; https://doi.org/10.3390/min14060611 - 15 Jun 2024
Viewed by 1665
Abstract
A modified model based on classical nucleation theory was applied to a natural hydrous peraluminous pegmatite composition and tested against crystallization experiments in order to further investigate the quantification of nucleation delay in felsic melts. Crystallization experiments were performed in a piston-cylinder apparatus [...] Read more.
A modified model based on classical nucleation theory was applied to a natural hydrous peraluminous pegmatite composition and tested against crystallization experiments in order to further investigate the quantification of nucleation delay in felsic melts. Crystallization experiments were performed in a piston-cylinder apparatus at 630 MPa and temperatures between 650 and 1000 °C for durations ranging from 0.3 to 211 h. Experimental run products were investigated by scanning electron microscopy paired with energy dispersive spectroscopy analyses of both crystalline and quenched liquid phases, the results of which were compared to an established theoretical nucleation delay model from the literature. The experiments showed good agreement (within a factor of 5) with the model for quartz, while it showed moderate agreement (within a factor of 10) with the model for sodic feldspar. Other crystals also nucleated, demonstrating abundant features of disequilibrium. Our research further demonstrates the potential of the model to predict nucleation delay, showing promising results for the quantification of the nucleation delay of quartz and feldspar in natural felsic melts, thus adding to previously published studies on hydrous, metaluminous, felsic melts and dry basaltic melts. Full article
Show Figures

Figure 1

13 pages, 2805 KB  
Article
Scalable and Quench-Free Processing of Metal Halide Perovskites in Ambient Conditions
by Carsen Cartledge, Saivineeth Penukula, Antonella Giuri, Kayshavi Bakshi, Muneeza Ahmad, Mason Mahaffey, Muzhi Li, Rui Zhang, Aurora Rizzo and Nicholas Rolston
Energies 2024, 17(6), 1455; https://doi.org/10.3390/en17061455 - 18 Mar 2024
Cited by 4 | Viewed by 2625
Abstract
With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth-abundant materials; however, scalability, [...] Read more.
With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth-abundant materials; however, scalability, stability, and durability remain key challenges. In order to transition from small-scale processing in inert environments to higher throughput processing in ambient conditions, the fundamentals of perovskite crystallization must be understood. Classical nucleation theory, the LaMer relation, and nonclassical crystallization considerations are discussed to provide a mechanism by which a gellan gum (GG) additive—a nontoxic polymeric saccharide—has enabled researchers to produce quality halide perovskite thin-film blade coated in ambient conditions without a quench step. Furthermore, we report on the improved stability and durability properties inherent to these films, which feature improved morphologies and optoelectronic properties compared to films spin-coated in a glovebox with antisolvent. We tune the amount of GG in the perovskite precursor and study the interplay between GG concentration and processability, morphological control, and increased stability under humidity, heat, and mechanical testing. The simplicity of this approach and insensitivity to environmental conditions enable a wide process window for the production of low-defect, mechanically robust, and operationally stable perovskites with fracture energies among the highest obtained for perovskites. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

19 pages, 7580 KB  
Article
Hydrate Formation with the Memory Effect Using Classical Nucleation Theory
by I. Yucel Akkutlu, Emre Arslan and Faisal Irshad Khan
Crystals 2024, 14(3), 243; https://doi.org/10.3390/cryst14030243 - 29 Feb 2024
Viewed by 1737
Abstract
Methane hydrate formation is analytically studied in the presence of the water memory effect using the classical nucleation theory. The memory effect is introduced as a change in nucleation site from a three-dimensional heterogenous nucleation on a solid surface with cap-shaped hydrate clusters [...] Read more.
Methane hydrate formation is analytically studied in the presence of the water memory effect using the classical nucleation theory. The memory effect is introduced as a change in nucleation site from a three-dimensional heterogenous nucleation on a solid surface with cap-shaped hydrate clusters (3D-HEN) to a two-dimensional nucleation on the solid hydrate residue surface with monolayer disk-shaped hydrate clusters (2D-NOH). The analysis on the stationary nucleation of methane hydrate under isobaric conditions shows that the memory effect caused an average decrease of 4.4 K in metastable zone width, or subcooling. This decrease can be erased at higher dissociation temperatures (ΔT > 17.2 K) due to a decrease in the concentration of 2D-NOH nucleation sites. Moreover, the probability of hydrate formation is estimated for the purpose of quantifying risk associated with methane hydrate formation in the presence of the memory effect. Full article
Show Figures

Figure 1

28 pages, 13823 KB  
Article
Microsegregation Influence on Austenite Formation from Ferrite and Cementite in Fe–C–Mn–Si and Fe–C–Si Steels
by Monika Krugla, S. Erik Offerman, Jilt Sietsma and Dave N. Hanlon
Metals 2024, 14(1), 92; https://doi.org/10.3390/met14010092 - 11 Jan 2024
Cited by 1 | Viewed by 2909
Abstract
The production reality of sheet steels from casting to the end product is such that in the cases of ultra- and advanced high-strength steels, we have to deal with the segregation of elements on macro- and microlevels. Both can have a significant impact [...] Read more.
The production reality of sheet steels from casting to the end product is such that in the cases of ultra- and advanced high-strength steels, we have to deal with the segregation of elements on macro- and microlevels. Both can have a significant impact on the microstructure formation and resulting properties. There are several production stages where it can influence the transformations, i.e., casting, hot rolling process and annealing after cold rolling. In the present work, we focus on the latter, and more specifically, the transformation from ferrite–cementite to austenite, especially the nucleation process, in cold-rolled material. We vary the levels of two substitutional elements, Mn and Si, and then look in detail at the microsegregation and nucleation processes. The classical nucleation theory is used, and both the chemical driving force and strain energy are calculated for various scenarios. In the case of a high Mn and high Si concentration, the nucleation can thus be explained. In the cases of high Mn and low Si concentrations as well as low Mn alloys, more research is needed on the nuclei shapes and strain energy. Full article
Show Figures

Figure 1

17 pages, 7592 KB  
Article
Size-Independent Nucleation and Growth Model of Potassium Sulfate from Supersaturated Solution Produced by Stirred Crystallization
by Yayuan Zheng
Molecules 2024, 29(1), 141; https://doi.org/10.3390/molecules29010141 - 26 Dec 2023
Cited by 10 | Viewed by 2799
Abstract
This paper explores the kinetics of the crystallization of potassium sulfate in a stirred bed crystallizer through experimental investigation. Employing classical nucleation theory, the homogeneous and heterogeneous nucleation mechanisms of potassium sulfate were investigated. The induction time and critical nucleation parameters, including the [...] Read more.
This paper explores the kinetics of the crystallization of potassium sulfate in a stirred bed crystallizer through experimental investigation. Employing classical nucleation theory, the homogeneous and heterogeneous nucleation mechanisms of potassium sulfate were investigated. The induction time and critical nucleation parameters, including the surface tension (γ), critical nucleation radius (r*), critical nucleation free energy (ΔG*), and critical nucleation molecule number (i*), were meticulously determined under varying temperatures and supersaturation ratios. The experimental findings revealed that as the temperature and supersaturation ratio increased, the induction time, critical nucleation free energy, critical nucleation radius, and critical molecule number decreased whereas the nucleation rate increased. The crystalline shape remains relatively unaltered with respect to temperature and supersaturation ratio, yet the particle size (D10, D50, D90) increases as the supersaturation and temperature increase. The variations in the measured nucleation parameters align well with the predictions of classical nucleation theory. Furthermore, the kinetic equations of crystal nucleation and the growth rate in a stirred crystallization system were fitted using population balance equations. The results demonstrate that the growth rate increases with increasing supersaturation and stirring rates. Additionally, the effects of the parameters in the nucleation rate equation suggested that the suspension density exerted the greatest influence, followed by the supersaturation ratio and stirring rate. This extensive research provides invaluable theoretical guidance for optimizing the crystallization process and designing industrial crystallizers. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

10 pages, 610 KB  
Article
Infrared Thermography Investigation of Crystallization in Acoustically Levitated Supersaturated Aqueous Solution
by Joohyun Lee, Ji-Hwan Kwon and Sooheyong Lee
Appl. Sci. 2024, 14(1), 131; https://doi.org/10.3390/app14010131 - 22 Dec 2023
Cited by 2 | Viewed by 1446
Abstract
In this study, crystallization in highly supersaturated aqueous urea solutions was investigated using in situ infrared thermography facilitated by an acoustic levitation apparatus. A notable contribution of this thermographic approach is the identification of a transient heat release signature, particularly pronounced beyond the [...] Read more.
In this study, crystallization in highly supersaturated aqueous urea solutions was investigated using in situ infrared thermography facilitated by an acoustic levitation apparatus. A notable contribution of this thermographic approach is the identification of a transient heat release signature, particularly pronounced beyond the solubility limit, indicating the enhanced formation of bonds between urea molecules in the supersaturated states. Surprisingly, the temporal evolution of the heat release measurements on an acoustically levitated droplet strongly suggests a two-stage process for urea crystallization. A comprehensive statistical analysis based on classical nucleation theory is used to further investigate the exceptionally high degree of supersaturation and the emergence of prominent heat signatures observed toward the onset of crystallization. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

17 pages, 5989 KB  
Article
Effects of Different Flotation Agents on the Nucleation and Growth of Potassium Chloride
by Guangle Wang, Xiao Bian, Zeren Shang, Weibing Dong, Yi Zhang and Songgu Wu
Molecules 2023, 28(23), 7923; https://doi.org/10.3390/molecules28237923 - 4 Dec 2023
Cited by 3 | Viewed by 2131
Abstract
The flotation agent is an important collector in the production of potassium chloride and is brought into the crystallization stage with the reflux of the mother liquor. Octadecylamine Hydrochloride (ODA), 1-Dodecylamine Hydrochloride (DAH) and Sodium 1-dodecanesulfonate (SDS) were selected to study their effect [...] Read more.
The flotation agent is an important collector in the production of potassium chloride and is brought into the crystallization stage with the reflux of the mother liquor. Octadecylamine Hydrochloride (ODA), 1-Dodecylamine Hydrochloride (DAH) and Sodium 1-dodecanesulfonate (SDS) were selected to study their effect on the nucleation of potassium chloride. Focused Beam Reflectance Measurement was used to collect the nucleation-induced periods of KCl in the presence of flotation agents at different supersaturations. Then, empirical equations, classical nucleation theory and growth mechanism equations were employed for data analysis. It was found that the presence of flotation agents increased the nucleation sequence m, and m(ODA) > m(SDS) > m(DAH) > m(H2O). In addition, the interfacial energy data obtained using classical nucleation theory suggest that the flotation agents used in our paper promoted the homogeneous nucleation of KCl (reduced from 5.3934 mJ·m−2 to 5.1434 mJ·m−2) and inhibited the heterogeneous nucleation of KCl (increased from 2.8054 mJ·m−2 to 3.6004 mJ·m−2). This investigation also revealed that the growth of potassium chloride was consistent with the 2D nucleation-mediated growth mechanism, and the addition of flotation agent did not change the growth mechanism of potassium chloride. Finally, the particle size distribution results were exactly consistent with the order of nucleation order m. The study of nucleation kinetics and growth mechanisms of different flotation agents on potassium chloride can provide guidance for optimizing the production process of potassium chloride and developing new flotation agents. Full article
Show Figures

Graphical abstract

22 pages, 8252 KB  
Article
Cyclic Appearance and Disappearance of Aerosol Nucleation in the Boundary Layer of Drops of Volatile Liquid
by Patrick Scheunemann, Mark Jermy and Paul Stephenson
Energies 2023, 16(22), 7491; https://doi.org/10.3390/en16227491 - 8 Nov 2023
Viewed by 1146
Abstract
The cyclic appearance and disappearance of nucleation was observed in the boundary layer of drops of 1,3-propanediol, 1,2-propanediol, and glycerol, close to the boiling point and exposed to a cooler airflow. Although continuous nucleation has previously been widely observed, the cyclic nature of [...] Read more.
The cyclic appearance and disappearance of nucleation was observed in the boundary layer of drops of 1,3-propanediol, 1,2-propanediol, and glycerol, close to the boiling point and exposed to a cooler airflow. Although continuous nucleation has previously been widely observed, the cyclic nature of the phenomenon observed here is unusual. It was observed in experiments with free-falling drops and fixed drops in an upflow of air. To investigate this unexpected phenomenon further, the phenomenon was reproduced in two finite volume models. The first model used 1D potential flow solutions to approximate the airflow around the spherical windward face of the droplet. The second model used CFD to model the airflow. Both models used classical nucleation theory, the Stefan–Fuchs model of droplet growth by condensation, mass transfer by evaporation, diffusion, convection, and heat transfer by diffusion and convection. Despite several simplifications, the most important being the assumption that the drop has a uniform temperature, both models predict the frequency of nucleation to be better than the order of magnitude. These models also predict the experimentally observed power law dependence of nucleation frequency on air speed. It is proposed that the cyclic nature of the phenomenon is caused by the following process: the depletion of condensable vapour around the freshly nucleated aerosol due to condensation onto the aerosol results in reduced supersaturation, which stops further nucleation, and then the replenishment of this vapour by diffusion and convection from the parent drop, with nucleation of aerosol recommencing when the supersaturation has recovered sufficiently—then, the repetition of these steps in a cycle. It is proposed that the process depends mostly on the maximum saturation ratio in the boundary layer, which itself is determined by four key dimensionless numbers: the Lewis number, the Peclet number, the Reynolds number, and the ratio of the vapour pressure of the condensable compound at drop surface temperature to the vapour pressure of the same species at ambient temperature. A practical application of the phenomenon may be as a means of validation of thermo-fluid models, which include nucleation. Full article
(This article belongs to the Special Issue Research on Fluid Mechanics and Heat Transfer)
Show Figures

Figure 1

Back to TopTop