Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (232)

Search Parameters:
Keywords = clock correction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17342 KB  
Article
High-Precision BDS PPP Positioning Method Based on SSR Correction Prediction
by Minghui Gao, Jian Cao, Mengyang Liu, Chuang Yang, Siyu Liu, Jinye Peng and Lin Wang
Remote Sens. 2025, 17(21), 3556; https://doi.org/10.3390/rs17213556 - 28 Oct 2025
Abstract
The interruption of real-time state space representation (SSR) corrections significantly degrades the performance of precise point positioning (PPP). To address this challenge, we propose a novel residual-enhanced iTransformer model specifically designed for BeiDou navigation satellite system (BDS) SSR prediction. Unlike conventional approaches including [...] Read more.
The interruption of real-time state space representation (SSR) corrections significantly degrades the performance of precise point positioning (PPP). To address this challenge, we propose a novel residual-enhanced iTransformer model specifically designed for BeiDou navigation satellite system (BDS) SSR prediction. Unlike conventional approaches including polynomial fitting, harmonic modeling, and autoregressive moving average (ARMA) methods, our framework innovatively integrates residual networks with the iTransformer architecture to effectively capture the complex nonlinear characteristics and non-stationary patterns in satellite clock offsets. The model demonstrates remarkable performance improvements, achieving 72–85% reduction in prediction error compared with traditional ARMA models. Experimental results show that, within 2 h prediction windows, orbit corrections achieve better than 0.1 m (radial), 0.2 m (along-track), and 0.2 m (cross-track) accuracy, while clock corrections maintain sub-0.5 ns precision. Most importantly, during 30 min SSR outages, BDS real-time PPP utilizing our predicted corrections sustains positioning accuracy within 10 cm in all east, north, and up directions, representing over 80% improvement compared with traditional time-differenced carrier phase (TDCP) methods. This work establishes an effective solution for maintaining high-precision positioning services during SSR interruptions. Full article
Show Figures

Figure 1

41 pages, 762 KB  
Article
MCMC Methods: From Theory to Distributed Hamiltonian Monte Carlo over PySpark
by Christos Karras, Leonidas Theodorakopoulos, Aristeidis Karras, George A. Krimpas, Charalampos-Panagiotis Bakalis and Alexandra Theodoropoulou
Algorithms 2025, 18(10), 661; https://doi.org/10.3390/a18100661 - 17 Oct 2025
Viewed by 471
Abstract
The Hamiltonian Monte Carlo (HMC) method is effective for Bayesian inference but suffers from synchronization overhead in distributed settings. We propose two variants: a distributed HMC (DHMC) baseline with synchronized, globally exact gradient evaluations and a communication-avoiding leapfrog HMC (CALF-HMC) method that interleaves [...] Read more.
The Hamiltonian Monte Carlo (HMC) method is effective for Bayesian inference but suffers from synchronization overhead in distributed settings. We propose two variants: a distributed HMC (DHMC) baseline with synchronized, globally exact gradient evaluations and a communication-avoiding leapfrog HMC (CALF-HMC) method that interleaves local surrogate micro-steps with a single–global Metropolis–Hastings correction per trajectory. Implemented on Apache Spark/PySpark and evaluated on a large synthetic logistic regression (N=107, d=100, workers J{4,8,16,32}), DHMC attained an average acceptance of 0.986, mean ESS of 1200, and wall-clock of 64.1 s per evaluation run, yielding 18.7 ESS/s; CALF-HMC achieved an acceptance of 0.942, mean ESS of 5.1, and 14.8 s, i.e., ≈0.34 ESS/s under the tested surrogate configuration. While DHMC delivered higher ESS/s due to robust mixing under conservative integration, CALF-HMC reduced the per-trajectory runtime and exhibited more favorable scaling as inter-worker latency increased. The study contributes (i) a systems-oriented communication cost model for distributed HMC, (ii) an exact, communication-avoiding leapfrog variant, and (iii) practical guidance for ESS/s-optimized tuning on clusters. Full article
(This article belongs to the Special Issue Numerical Optimization and Algorithms: 4th Edition)
Show Figures

Figure 1

20 pages, 1879 KB  
Article
Eliminate Dynamic Error of A-PNAS High-Precision Time Synchronization Using Multi-Sensor Combination
by Zhenling Wang, Haihong Tao, Fang Hao, Yilong Liu and Zhengyong Wang
Sensors 2025, 25(19), 6028; https://doi.org/10.3390/s25196028 - 1 Oct 2025
Viewed by 290
Abstract
High-precision time synchronization among nodes of the airborne-based pseudolite navigation augmentation positioning system (A-PNAS) is a crucial indicator for ensuring the accuracy of positioning services. Due to the flight characteristics and external factors’ influence, the airborne platform usually undergoes random motion. Therefore, the [...] Read more.
High-precision time synchronization among nodes of the airborne-based pseudolite navigation augmentation positioning system (A-PNAS) is a crucial indicator for ensuring the accuracy of positioning services. Due to the flight characteristics and external factors’ influence, the airborne platform usually undergoes random motion. Therefore, the time-varying effect errors and Doppler effect errors will be introduced into the clock skew measurement results during the time-synchronous processing. In A-PNAS with meter-level positioning accuracy, the time synchronization accuracy (TSA) between nodes usually needs to be within 2 ns. These dynamic errors will have an impact on the TSA between nodes, which cannot be ignored. Based on the analysis of the principle of dynamic error generation and the available sensors, a multi-sensor combination method for correcting dynamic errors is proposed. This method calculates and corrects the dynamic errors based on the motion measurements from sensors. The simulation test results show that the degree of improvement in correcting dynamic errors by this method is basically close to 80%. It can effectively meet the requirements of high-precision time synchronization system and can provide an effective reference for the high-precision time synchronization processing of similar space-based platform collaborative systems. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 1718 KB  
Article
A Fifth-Generation-Based Synchronized Measurement Method for Urban Distribution Networks
by Jie Zhang, Bo Pang, Linghao Zhang and Sihao Tang
Energies 2025, 18(17), 4767; https://doi.org/10.3390/en18174767 - 8 Sep 2025
Viewed by 606
Abstract
This work proposes a 5G-based synchronized measurement method for urban distribution networks. First, downlink frequency synchronization is achieved by cross-correlating the Primary and Secondary Synchronization Signals (PSSs/SSSs) within gNB-broadcast Synchronization Signal Blocks (SSBs), enabling accurate alignment with the 5G system clock. Then, uplink [...] Read more.
This work proposes a 5G-based synchronized measurement method for urban distribution networks. First, downlink frequency synchronization is achieved by cross-correlating the Primary and Secondary Synchronization Signals (PSSs/SSSs) within gNB-broadcast Synchronization Signal Blocks (SSBs), enabling accurate alignment with the 5G system clock. Then, uplink phase synchronization is refined using Timing Advance (TA) feedback to compensate for propagation delays. Based on the recovered 5G Pulse Per Second (PPS) signal, a dynamic compensation algorithm is applied to discipline the SAR ADC sampling process. This algorithm tracks crystal oscillator drift, accumulates sub-cycle deviations, and corrects integer timer counts only when the error exceeds ±0.5. Simulations under a 228 MHz oscillator and 1200 samples per cycle demonstrate that the accumulated phase error remains below 0.00008°, satisfying IEEE C37.118 precision requirements. Compared with traditional GPS-based synchronization methods, the proposed solution offers greater deployment flexibility and can operate reliably in GPS-denied environments such as indoors and urban canyons. Full article
Show Figures

Figure 1

26 pages, 5952 KB  
Article
A Hybrid Short-Term Prediction Model for BDS-3 Satellite Clock Bias Supporting Real-Time Applications in Data-Denied Environments
by Ye Yu, Chaopan Yang, Yao Ding, Yuanliang Xue and Yulong Ge
Remote Sens. 2025, 17(16), 2888; https://doi.org/10.3390/rs17162888 - 19 Aug 2025
Viewed by 653
Abstract
High-precision satellite clock bias (SCB) prediction is essential for GNSS applications, including real-time precise point positioning (RT-PPP), Earth observation, planetary exploration, and spaceborne geodetic missions. However, during communication outages or when real-time SCB products are unavailable, RT-PPP may fail due to missing clock [...] Read more.
High-precision satellite clock bias (SCB) prediction is essential for GNSS applications, including real-time precise point positioning (RT-PPP), Earth observation, planetary exploration, and spaceborne geodetic missions. However, during communication outages or when real-time SCB products are unavailable, RT-PPP may fail due to missing clock corrections. This underscores the necessity of reliable short-term SCB prediction in data-denied environments. To address this challenge, a hybrid model that integrates wavelet transform, a particle swarm optimization-enhanced gray model, and a first-order weighted local method is proposed for short-term SCB prediction. First, the novel model employs the db1 wavelet to perform three-level multi-resolution decomposition and single-branch reconstruction on preprocessed SCB, yielding one trend term and three detailed terms. Second, the particle swarm optimization algorithm is adopted to globally optimize the parameters of the traditional gray model to avoid falling into local optima, and the optimization-enhanced gray model is applied to predict the trend term. For the three detailed terms, the embedding dimension and time delay are calculated, and they are constructed in phase space to establish a first-order weighted local model for prediction. Third, the final SCB prediction is obtained by summing the predicted results of the trend term and the three detailed terms correspondingly. The BDS-3 SCB products from the GNSS Analysis Center of Wuhan University (WHU) are selected for experiments. Results indicate that the proposed model surpasses conventional linear polynomial (LP), quadratic polynomial (QP), gray model (GM), and Legendre (Leg.) polynomial models. The average precision and stability improvements reach (80.00, 79.16, 82.14, and 72.22) % and (36.36, 41.67, 41.67, and 61.11) % for 30 min prediction, (79.31, 78.57, 80.65, and 76.92) % and (44.44, 44.44, 47.37, and 74.36) % for 60 min prediction, and the average precision of the predicted SCB products is better than 0.20 ns and 0.21 ns for 30 min and 60 min, respectively. Furthermore, the proposed model exhibits strong robustness and is less affected by changes in clock types and the amount of modeling data. Therefore, in practical applications, the short-term SCB products predicted by the novel model are fully capable of satisfying the requirements of centimeter-level RT-PPP for clock bias precision. Full article
Show Figures

Figure 1

25 pages, 12363 KB  
Review
Clock Noise Suppression Techniques in Space-Borne Gravitational Wave Detection: A Review
by Yijun Xia, Aoting Fang, Mingyang Xu, Yujie Tan and Chenggang Shao
Symmetry 2025, 17(8), 1314; https://doi.org/10.3390/sym17081314 - 13 Aug 2025
Viewed by 592
Abstract
Space-borne gravitational wave (GW) detection is poised to significantly advance the frontiers of astrophysics, gravitation, and cosmology, which might make it possible to measure the fundamental symmetries of space-time. A critical component in GW detection is the employment of ultra-stable oscillators (USOs) on [...] Read more.
Space-borne gravitational wave (GW) detection is poised to significantly advance the frontiers of astrophysics, gravitation, and cosmology, which might make it possible to measure the fundamental symmetries of space-time. A critical component in GW detection is the employment of ultra-stable oscillators (USOs) on each satellite, serving as precision timing references to drive analog-to-digital converters (ADCs) for digital sampling of GW signals. Achieving the required sensitivity in GW detection hinges on highly accurate clock timing. However, the challenges posed by ADC aperture jitter and sampling clock jitter cannot be overlooked. They disrupt sampling timing, introduce clock noise, and distort the digitized signal, thus limiting the effectiveness of GW detection in space. To overcome this problem, researchers have developed pilot tone correction techniques and proposed innovative clock noise calibrated time-delay interferometry (TDI), optical comb TDI techniques, and sideband arm locking techniques that effectively suppress the effects of clock noise. This study provides an in-depth and comprehensive summary of the current status of clock noise and its suppression techniques in the space-borne GW detection. Through a systematic review and analysis, the aim is to provide theoretical and experimental technical support and optimization suggestions for the implementation of China’s space-borne GW detection mission. Full article
Show Figures

Figure 1

22 pages, 15242 KB  
Article
A Modality Alignment and Fusion-Based Method for Around-the-Clock Remote Sensing Object Detection
by Yongjun Qi, Shaohua Yang, Jiahao Chen, Meng Zhang, Jie Zhu, Xin Liu and Hongxing Zheng
Sensors 2025, 25(16), 4964; https://doi.org/10.3390/s25164964 - 11 Aug 2025
Cited by 1 | Viewed by 982
Abstract
Cross-modal remote sensing object detection holds significant potential for around-the-clock applications. However, the modality differences between cross-modal data and the degradation of feature quality under adverse weather conditions limit detection performance. To address these challenges, this paper presents a novel cross-modal remote sensing [...] Read more.
Cross-modal remote sensing object detection holds significant potential for around-the-clock applications. However, the modality differences between cross-modal data and the degradation of feature quality under adverse weather conditions limit detection performance. To address these challenges, this paper presents a novel cross-modal remote sensing object detection framework designed to overcome two critical challenges in around-the-clock applications: (1) significant modality disparities between visible light, infrared, and synthetic aperture radar data, and (2) severe feature degradation under adverse weather conditions including fog, and nighttime scenarios. Our primary contributions are as follows: First, we develop a multi-scale feature extraction module that employs a hierarchical convolutional architecture to capture both fine-grained details and contextual information, effectively compensating for missing or blurred features in degraded visible-light images. Second, we introduce an innovative feature interaction module that utilizes cross-attention mechanisms to establish long-range dependencies across modalities while dynamically suppressing noise interference through adaptive feature selection. Third, we propose a feature correction fusion module that performs spatial alignment of object boundaries and channel-wise optimization of global feature consistency, enabling robust fusion of complementary information from different modalities. The proposed framework is validated on visible light, infrared, and SAR modalities. Extensive experiments on three challenging datasets (LLVIP, OGSOD, and Drone Vehicle) demonstrate our framework’s superior performance, achieving state-of-the-art mean average precision scores of 66.3%, 58.6%, and 71.7%, respectively, representing significant improvements over existing methods in scenarios with modality differences or extreme weather conditions. The proposed solution not only advances the technical frontier of cross-modal object detection but also provides practical value for mission-critical applications such as 24/7 surveillance systems, military reconnaissance, and emergency response operations where reliable around-the-clock detection is essential. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 4409 KB  
Article
Differences in Time Comparison and Positioning of BDS-3 PPP-B2b Signal Broadcast Through GEO
by Hongjiao Ma, Jinming Yang, Xiaolong Guan, Jianfeng Wu and Huabing Wu
Remote Sens. 2025, 17(14), 2351; https://doi.org/10.3390/rs17142351 - 9 Jul 2025
Viewed by 799
Abstract
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing [...] Read more.
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing and positioning. This paper investigates the disparities in time comparison and positioning capabilities associated with the PPP-B2b signals transmitted by the BDS-3 Geostationary Earth Orbit (GEO) satellites (C59 and C61). Three stations in the Asia–Pacific region were selected to establish two time comparison links. The study evaluated the time transfer accuracy of PPP-B2b signals by analyzing orbit and clock corrections from BDS-3 GEO satellites C59 and C61. Using multi-GNSS final products (GBM post-ephemeris) as a reference, the performance of PPP-B2b-based time comparison was assessed. The results indicate that while both satellites achieve comparable time transfer accuracy, C59 demonstrates superior stability and availability compared to C61. Additionally, five stations from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) were selected to assess the positioning accuracy of PPP-B2b corrections transmitted by BDS-3 GEO satellites C59 and C61. Using IGS/iGMAS weekly solution positioning results as a reference, the analysis demonstrates that PPP-B2b enables centimeter-level static positioning and decimeter-level simulated kinematic positioning. Furthermore, C59 achieves higher positioning accuracy than C61. Full article
Show Figures

Figure 1

17 pages, 1673 KB  
Article
Model-Driven Clock Synchronization Algorithms for Random Loss of GNSS Time Signals in V2X Communications
by Wei Hu, Jiajie Zhang and Ximing Cheng
Technologies 2025, 13(7), 273; https://doi.org/10.3390/technologies13070273 - 27 Jun 2025
Viewed by 582
Abstract
Onboard Vehicle-to-Everything (V2X) communication technology is being widely implemented in domains such as intelligent driving, vehicle–road cooperation, and smart transportation. Nevertheless, time synchronization in V2X systems suffers from instability due to the random loss of Global Navigation Satellite System (GNSS) Pulse-Per-Second (PPS) signals. [...] Read more.
Onboard Vehicle-to-Everything (V2X) communication technology is being widely implemented in domains such as intelligent driving, vehicle–road cooperation, and smart transportation. Nevertheless, time synchronization in V2X systems suffers from instability due to the random loss of Global Navigation Satellite System (GNSS) Pulse-Per-Second (PPS) signals. To address this challenge, a model-driven local clock correction approach is proposed. Leveraging probability theory and mathematical statistics, models for the randomly lost GNSS PPS signals are developed. High-order polynomials are used to model local clocks. An optimized Kalman-filter-based time compensation algorithm is then devised to compensate for time errors during PPS signal loss. A software-based task-scheduling solution for precision-time synchronization is developed. An experimental testbed was then built to measure both terminal clocks and PPS signals. The proposed algorithm was integrated into the V2X terminals. Results show that the full-value PPS signals follow an exponential distribution. The onboard clock correction algorithm operates stably across three V2X terminals and accurately predicts clock variations. Furthermore, the virtual clocks achieve an average absolute error of 1.1 μs and a standard deviation of 16 μs, meeting the time synchronization requirements for V2X communication in intelligent connected vehicles. Full article
(This article belongs to the Special Issue Smart Transportation and Driving)
Show Figures

Figure 1

16 pages, 3382 KB  
Article
An Evaluation of Static Affordable Smartphone Positioning Performance Leveraging GPS/Galileo Measurements with Instantaneous CNES and Final IGS Products
by Mohamed Abdelazeem, Hussain A. Kamal, Amgad Abazeed and Amr M. Wahaballa
Geomatics 2025, 5(3), 28; https://doi.org/10.3390/geomatics5030028 - 27 Jun 2025
Viewed by 927
Abstract
This research examines the performance of the affordable Xiaomi 11T smartphone in static positioning mode. Static Global Navigation Satellite System (GNSS) measurements are acquired over a two-hour period with a known reference point, spanning three consecutive days. The acquired data are processed, employing [...] Read more.
This research examines the performance of the affordable Xiaomi 11T smartphone in static positioning mode. Static Global Navigation Satellite System (GNSS) measurements are acquired over a two-hour period with a known reference point, spanning three consecutive days. The acquired data are processed, employing both real-time and post-processing Precise Point Positioning (PPP) solutions using GPS-only, Galileo-only, and the combined GPS/Galileo datasets. To correct the satellite and clock errors, the instantaneous Centre National d’Études Spatiales (CNES), the final Le Groupe de Recherche de Géodésie Spatiale (GRG), GeoForschungsZentrum (GFZ), and Wuhan University (WUM) products were applied. The results demonstrate that sub-30 cm positioning accuracy is achieved in the horizontal direction using real-time and final products. Additionally, sub-50 cm positioning accuracy is attained in the vertical direction for the real-time and post-processed solutions. Furthermore, the real-time products achieved three-dimensional (3D) position accuracies of 40 cm, 29 cm, and 20 cm using GPS-only, Galileo-only, and the combined GPS/Galileo observations, respectively. The final products achieved 3D position accuracies of 24 cm, 26 cm, and 28 cm using GPS-only, Galileo-only, and the combined GPS/Galileo measurements, respectively. The attained positioning accuracy can be used in some land use and urban planning applications. Full article
Show Figures

Figure 1

20 pages, 2791 KB  
Article
Assessment of Affordable Real-Time PPP Solutions for Transportation Applications
by Mohamed Abdelazeem, Amgad Abazeed, Abdulmajeed Alsultan and Amr M. Wahaballa
Algorithms 2025, 18(7), 390; https://doi.org/10.3390/a18070390 - 26 Jun 2025
Viewed by 654
Abstract
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time [...] Read more.
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time kinematic (RTK), and PPP-RTK solutions in both post-processing and real-time modes; however, these receivers are costly. Therefore, this research aims to assess the accuracy of a cost-effective multi-GNSS real-time PPP solution for transportation applications. For this purpose, the U-blox ZED-F9P module is utilized to collect dual-frequency multi-GNSS observations through a moving vehicle in a suburban area in New Aswan City, Egypt; thereafter, datasets involving different multi-GNSS combination scenarios are processed, including GPS, GPS/GLONASS, GPS/Galileo, and GPS/GLONASS/Galileo, using both RT-PPP and RTK solutions. For the RT-PPP solution, the satellite clock and orbit correction products from Bundesamt für Kartographie und Geodäsie (BKG), Centre National d’Etudes Spatiales (CNES), and the GNSS research center of Wuhan University (WHU) are applied to account for the real-time mode. Moreover, GNSS datasets from two geodetic-grade Trimble R4s receivers are collected; hence, the datasets are processed using the traditional kinematic differential solution to provide a reference solution. The results indicate that this cost-effective multi-GNSS RT-PPP solution can attain positioning accuracy within 1–3 dm, and is thus suitable for a variety of transportation applications, including intelligent transportation system (ITS), self-driving cars, and automobile navigation applications. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

19 pages, 8067 KB  
Article
BDS-PPP-B2b-Based Smartphone Precise Positioning Model Enhanced by Mixed-Frequency Data and Hybrid Weight Function
by Zhouzheng Gao, Zhixiong Wu, Shiyu Liu and Cheng Yang
Appl. Sci. 2025, 15(13), 7169; https://doi.org/10.3390/app15137169 - 25 Jun 2025
Viewed by 429
Abstract
Compared to high-cost hardware-based Global Navigation Satellite System (GNSS) positioning techniques, smartphone-based precise positioning technology plays an important role in applications such as the Internet of Things (IoT). Since Google released the Nougat version of Android in 2016, this has provided a new [...] Read more.
Compared to high-cost hardware-based Global Navigation Satellite System (GNSS) positioning techniques, smartphone-based precise positioning technology plays an important role in applications such as the Internet of Things (IoT). Since Google released the Nougat version of Android in 2016, this has provided a new method for achieving high-accuracy positioning solutions with a smartphone. However, two factors are limiting smartphone-based high-accuracy applications, namely, real-time precise orbit/clock products without the internet and the quality-adaptive precise point positioning (PPP) model. To overcome these two factors, we introduce BDS PPP-B2b orbit/clock corrections and a hybrid weight function (based on C/N0 and satellite elevation) into smartphone real-time PPP. To validate the performance of such a method, two sets of field tests were arranged to collect the smartphone’s GNSS measurements and PPP-B2b orbit/clock corrections. The results illustrated that the hybrid weight function led to 5.13%, 18.00%, and 15.15% positioning improvements compared to the results of the C/N0-dependent model in the east, north, and vertical components, and it exhibited improvements of 71.10%, 72.53%, and 53.93% compared to the results of the satellite-elevation-angle-dependent model. Moreover, the mixed-frequency measurement PPP model could also provide positioning improvements of about 14.63%, 19.99%, and 9.21%. On average, the presented smartphone PPP model can bring about 76.64% and 59.84% positioning enhancements in the horizontal and vertical components. Full article
(This article belongs to the Special Issue Advanced GNSS Technologies: Measurement, Analysis, and Applications)
Show Figures

Figure 1

16 pages, 2567 KB  
Article
LEO-Enhanced BDS-3 PPP Performance Based on B2b Signal
by Ju Hong, Rui Tu, Yangyang Liu, Yulong Ge and Fangxin Li
Remote Sens. 2025, 17(13), 2183; https://doi.org/10.3390/rs17132183 - 25 Jun 2025
Cited by 2 | Viewed by 926
Abstract
Since 2020, the BDS-3 has been providing real-time corrections via the B2b signal, enabling users in China and its neighboring regions to achieve kinematic positioning accuracy at the decimeter level. The rapid geometric changes of Low-Earth-Orbit (LEO) satellites facilitate the rapid resolution of [...] Read more.
Since 2020, the BDS-3 has been providing real-time corrections via the B2b signal, enabling users in China and its neighboring regions to achieve kinematic positioning accuracy at the decimeter level. The rapid geometric changes of Low-Earth-Orbit (LEO) satellites facilitate the rapid resolution of phase ambiguities and accelerate the convergence of Precise Point Positioning (PPP). Therefore, this study proposes an LEO-enhanced BDS-3 PPP-B2b positioning model. Firstly, a novel BDS-3 PPP model accounting for satellite clock bias characteristics is proposed, and experimental validation confirms its efficacy. Subsequently, an LEO-enhanced BDS-3 PPP model is developed. Finally, the positioning performance is rigorously evaluated using combined LEO simulation observations and BDS-3 observations. The results indicate that, compared with the traditional PPP model, the new model yields an average convergence time of 25.1 min for experiments where the convergence criterion is jointly satisfied, representing a 35.6% improvement in convergence speed, while maintaining the same positioning accuracy after convergence. When augmented with LEO satellites, the convergence time of the BDS-3 PPP-B2b solution is reduced to less than 2 min. Furthermore, when more than three LEO satellites are available, the mean convergence time is shortened to within 1 min. Full article
Show Figures

Figure 1

21 pages, 951 KB  
Article
Bit Synchronization-Assisted Frequency Correction in Low-SNR Wireless Systems
by Junfeng Gao, Peiji Yang, Shaoxiang Chen, Zhenghua Luo, Yilin Zhang and Tao Liu
Electronics 2025, 14(12), 2319; https://doi.org/10.3390/electronics14122319 - 6 Jun 2025
Viewed by 562
Abstract
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization [...] Read more.
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization framework is introduced, enhancing frequency synchronization accuracy and robustness in low-SNR environments through bit synchronization techniques. Specifically, the approach constructs a “bit synchronization-frequency synchronization” joint correction mechanism, where clock offset information extracted during the bit synchronization process is utilized to estimate frequency offset. This method enables an indirect measurement and compensation of carrier frequency offset, forming a hierarchical error compensation system. Furthermore, to overcome the limited convergence speed of the classical Gardner algorithm under significant phase offset conditions, an improved error feedback structure is proposed, accelerating bit synchronization convergence and reducing timing synchronization errors, thereby enhancing overall system performance. The effectiveness of the proposed method is validated through theoretical analysis and simulation experiments. Simulation results demonstrate that, compared to conventional frequency synchronization schemes, the proposed method achieves higher frequency correction accuracy in low-SNR scenarios, thereby improving the robustness and anti-interference capability of wireless communication systems in complex environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

2 pages, 167 KB  
Correction
Correction: Giertz et al. Healthcare Burden and Productivity Loss Due to Narcolepsy in Sweden. Clocks & Sleep 2025, 7, 8
by Anna Giertz, Johan Mesterton, Tanja Jakobsson, Stephen Crawford, Somraj Ghosh and Anne-Marie Landtblom
Clocks & Sleep 2025, 7(2), 27; https://doi.org/10.3390/clockssleep7020027 - 28 May 2025
Viewed by 455
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Updates in Narcolepsy and Related Disorders)
Show Figures

Figure 1

Back to TopTop