Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,981)

Search Parameters:
Keywords = co-produced research

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4380 KiB  
Article
Exploring the Potential of Green Synthesized Sr0.8Ce0.2Fe0.8Co0.2O3 Using Orange and Lemon Extracts for Hybrid Supercapacitor Applications
by Asmara Fazal, M. Javaid Iqbal, Mohsin Ali Raza, Badriah S. Almutairi, Hesham M. H. Zakaly, Naureen Akhtar, Muneeb Irshad and Saira Riaz
Batteries 2025, 11(8), 310; https://doi.org/10.3390/batteries11080310 - 15 Aug 2025
Abstract
Supercapacitors are required to store energy from renewable resources to ensure a pollutant-free environment. To further encourage its study, researchers are interested in introducing green methods to produce electrode materials. Green synthesis is an innovative and emerging field because plant extracts are the [...] Read more.
Supercapacitors are required to store energy from renewable resources to ensure a pollutant-free environment. To further encourage its study, researchers are interested in introducing green methods to produce electrode materials. Green synthesis is an innovative and emerging field because plant extracts are the best substitute for toxic chemicals. They are considered eco-friendly and cost-effective. In this work, two plant extracts, orange juice (ORJ) and lemon juice (LMJ), are used to synthesize the Sr0.8Ce0.2Fe0.8Co0.2O3 perovskite using the auto-combustion method. The electrochemical performance of Sr0.8Ce0.2Fe0.8Co0.2O3 made from LMJ and ORJ is compared to check their effectiveness. LMJ proved to be a better reducing agent than ORJ with a higher specific capacity of 300 C/g (544 F/g) at 1 A/g current density due to increased oxygen vacancies and surface area. These findings show that green-synthesized perovskites can be utilized in high-performance hybrid supercapacitor devices. Full article
(This article belongs to the Section Supercapacitors)
Show Figures

Graphical abstract

27 pages, 1653 KiB  
Article
Co-Fermentation of Dandelion Leaves (Taraxaci folium) as a Strategy for Increasing the Antioxidant Activity of Fermented Cosmetic Raw Materials—Current Progress and Prospects
by Edyta Kucharska, Dominika Wachura, Iskenderbek Elchiev, Paweł Bilewicz, Marek Gąsiorowski and Robert Pełech
Appl. Sci. 2025, 15(16), 9021; https://doi.org/10.3390/app15169021 - 15 Aug 2025
Abstract
In response to the growing interest in natural cosmetic raw materials with antioxidant and moisturising properties, this study focuses on the use of dandelion leaves (Taraxaci folium) in the co-fermentation process involving selected strains of Saccharomyces cerevisiae and Lactobacillus rhamnosus MI-0272. [...] Read more.
In response to the growing interest in natural cosmetic raw materials with antioxidant and moisturising properties, this study focuses on the use of dandelion leaves (Taraxaci folium) in the co-fermentation process involving selected strains of Saccharomyces cerevisiae and Lactobacillus rhamnosus MI-0272. The aim of the study was to develop an innovative method of co-fermentation of dandelion leaves using waste beet molasses and organic cane biomolasses as substrates to produce lactic acid (LA), which is the main component of fermented cosmetic raw materials (FCRMs). The scope of the research included the determination of antioxidant activity using the DPPH (AA-DPPH) and ORAC (AA-ORAC) methods, determination of total polyphenol content (TPC) using the Folin–Ciocalteu method, assessment of lipophilicity by measuring the log P partition coefficient, assessment of wettability (contact angle), and statistical analysis. The key results indicated that the developed method allows for up to a fivefold reduction in fermentation time, enabling the production of FCRMs with the highest antioxidant activity (AA-DPPH = 3.0 ± 0.1 mmol Tx/L (Trolox equivalents per litre); AA-ORAC = 0.55 ± 0.02 mmol Tx/L) and the highest polyphenol content (TPC = 3589 ± 25 mg gallic acid equivalents per litre (GA/L)), with LA content (determined by GC-MS) up to 37 g/L. In addition, the analysis of the relationship between lipophilicity and membrane wettability showed that the hydrophilic antioxidants contained in FCRMs (log P = −0.9) can accumulate in the aqueous layers of the epidermis, suggesting their potential local protective and antioxidant effects. The results obtained confirm the potential of the developed technology in the production of modern cosmetic raw materials with antioxidant properties. Further research should include qualitative and quantitative analysis of phenolic acids contained in FCRMs and evaluation of the effectiveness of cosmetic preparations containing FCRMs in vivo. Full article
Show Figures

Figure 1

20 pages, 1238 KiB  
Review
Stefan Flow in Char Combustion: A Critical Review of Mass Transfer and Combustion Differences Between Air-Fuel and Oxy-Fuel Conditions
by Wenfei Bao, Zongwei Gan, Yuzhong Li and Yan Ma
Energies 2025, 18(16), 4347; https://doi.org/10.3390/en18164347 - 15 Aug 2025
Abstract
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been [...] Read more.
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been conducted. This paper presents a comprehensive review of Stefan flow in char combustion, with a focus on its impact on mass transfer and combustion behavior under both air-fuel and oxy-fuel conditions. It also highlights the critical role of Stefan flow in enhancing energy conversion efficiency and optimizing carbon capture processes. The analysis reveals that Stefan flow has been widely neglected in traditional combustion models, resulting in significant errors in calculated mass transfer coefficients (up to 21% in air-fuel combustion and as high as 74% in oxy-fuel combustion). This long-overlooked deviation severely compromises the accuracy of combustion efficiency predictions and model reliability. In oxy-fuel combustion, the gasification reaction (C + CO2 = 2CO) induces a much stronger outward Stefan flow, reducing CO2 transport by up to 74%, weakening local CO2 enrichment, and substantially increasing the energy cost of carbon capture. In contrast, the oxidation reaction (2C + O2 = 2CO) results in only an 18% reduction in O2 transport. Stefan flow hinders the inward mass transfer of O2 and CO2 toward the char surface and increases heat loss during combustion, resulting in reduced reaction rates and lower particle temperatures. These effects contribute to incomplete fuel conversion and diminished thermal efficiency. Simulation studies that neglect Stefan flow produce significant errors when predicting combustion characteristics, particularly under oxy-fuel conditions. The impact of Stefan flow on energy balance is more substantial in the kinetic/diffusion-controlled regime than in the diffusion-controlled regime. This review is the first to clearly identify Stefan flow as the fundamental physical mechanism responsible for the differences in combustion behavior between air-fuel and oxy-fuel environments. It addresses a key gap in current research and offers a novel theoretical framework for improving low-carbon combustion models, providing important theoretical support for efficient combustion and clean energy conversion. Full article
Show Figures

Figure 1

25 pages, 16018 KiB  
Article
Textures and Inclusions in Mengyin Diamonds: Insights on Their Formation Within the Southeastern North China Craton
by Yu-Meng Sun, Yi-Qi Wang, Liang Zhang, Li-Qiang Yang, Zhi-Yuan Chu and Hao-Shuai Wang
Minerals 2025, 15(8), 856; https://doi.org/10.3390/min15080856 - 14 Aug 2025
Abstract
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only [...] Read more.
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only adds to our understanding of their origins but also offers an essential glimpse into the development of the North China Craton’s mantle lithosphere. In this article, 50 diamond samples from Mengyin were investigated using gemological microscopy, Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, DiamondView™, and X-ray micro-computed tomography (CT) scanning technologies. The types of Mengyin diamonds are mainly Type IaAB, Type IaB, and Type IIa, and the impurity elements are N and H. Inclusions in diamonds serve as direct indicators of mantle-derived components, providing crucial constraints on the pressure–temperature (P–T) conditions during their crystallization. Mengyin diamonds have both eclogite-type and peridotite-type inclusions. It formed at depths ranging from 147 to 176 km, which corresponds to source pressures of approximately 4.45–5.35 GPa, as determined by the Raman shifts of olivine inclusions. The discovery of coesite provides key mineralogical evidence for subduction of an ancient oceanic plate in the source region. The surface morphology of diamonds varies when they are reabsorbed by melts from the mantle, reflecting distinctive features that record subsequent geological events. Distinctive surface features observed on Mengyin diamonds include fusion pits, tile-like etch patterns, and growth steps. Specifically, regular flat-bottomed negative trigons are mainly formed during diamond resorption in kimberlite melts with a low CO2 (XCO2 < ~0.5) and high H2O content. The samples exhibit varying fluorescence under DiamondView™, displaying blue, green, and a combination of blue and green colors. This diversity indicates that the diamonds have undergone a complex process of non-uniform growth. The nitrogen content of the melt composition also varies significantly throughout the different growth stages. The N3 center is responsible for the blue fluorescence, suggesting that it originated in a long-term, hot, high-nitrogen craton, and the varied ring band structure reveals localized, episodic environmental variations. Radiation and medium-temperature annealing produce H3 centers, which depict stagnation throughout the ascent of kimberlite magma and are responsible for the green fluorescence. Full article
Show Figures

Figure 1

12 pages, 1178 KiB  
Perspective
‘Finally, in Hands I Can Trust’: Perspectives on Trust in Motor Neurone Disease Care
by Dominika Lisiecka, Neil Dyson, Keith Malpress, Anthea Smith, Ellen McNeice, Peter Shack and Karen Hutchinson
Healthcare 2025, 13(16), 1994; https://doi.org/10.3390/healthcare13161994 - 14 Aug 2025
Viewed by 5
Abstract
Integrated multidisciplinary care is recognised as essential for people living with motor neurone disease (PlwMND) and their families. The values underpinning integrated care, such as person-centredness, respect, empowerment, and co-production, are central to delivering meaningful and comprehensive support. Trust is an essential yet [...] Read more.
Integrated multidisciplinary care is recognised as essential for people living with motor neurone disease (PlwMND) and their families. The values underpinning integrated care, such as person-centredness, respect, empowerment, and co-production, are central to delivering meaningful and comprehensive support. Trust is an essential yet often overlooked element of effective person- and family-centred integrated care, particularly for PlwMND. While specialist multidisciplinary MND clinics represent the benchmark for evidence-based care, many PlwMND and their families depend significantly on local and community-based support services to maintain quality of life. Trust directly influences their engagement with these services and the continuity of care provided. Trust enables understanding of personal priorities and how they change as the disease progresses, ultimately allowing for person-centred care to happen. Trust is necessary to enable service co-production, which is a strong value of integrated care. Research highlights seven key domains of support essential to PlwMND and their carers: practical, social, informational, psychological, physical, emotional, and spiritual. Effective integrated care requires strong relationships built upon trust, shared decision-making, respect for individuality, and clear communication. Furthermore, due to the rapidly progressive nature of MND, care priorities and perceived symptom burdens may shift significantly over short periods, making flexible, temporally sensitive approaches critical. A dynamic, inclusive model of decision-making that fosters autonomy within and regular co-review of needs is recommended. This perspective paper examines how person- and family-centred integrated care is currently being delivered, what is working well, and how these practices can be further strengthened to enhance the care experiences of PlwMND, their families, and the health and social care providers involved. This paper builds on both theoretical knowledge and clinical experience to offer our perspective on the critical role of trust in co-producing integrated care for PlwMND. It brings together the voices of clinicians and researchers, alongside those with lived experience of MND. We propose a diagram of care that embeds the core values of integrated, person-centred care within the specific context of MND. Our aim is to enhance collaborative practices, strengthen cross-sector partnerships, and ultimately improve the care experiences for professionals, PlwMND, and their families. Full article
(This article belongs to the Special Issue Improving Care for People Living with ALS/MND)
Show Figures

Figure 1

10 pages, 658 KiB  
Article
Soil Nitrification Rate Is Affected by Plant Species and Nitrogen Levels
by Luca Vitale, Giuseppe Maglione, Francsico Garcia-Sanchez, Lourdes Yabor, Maria Riccardi, Lucia Ottaiano, Bruno Di Matteo, Rosario Nocerino, Antonio Manco and Anna Tedeschi
Agriculture 2025, 15(16), 1740; https://doi.org/10.3390/agriculture15161740 - 14 Aug 2025
Viewed by 55
Abstract
The soil nitrification rate is significantly affected by plant species, and it is also modulated by different nitrogen levels in the soil. There are a wide range of plant species with the capacity to produce biological nitrification inhibitors (hereafter referred to as BNI [...] Read more.
The soil nitrification rate is significantly affected by plant species, and it is also modulated by different nitrogen levels in the soil. There are a wide range of plant species with the capacity to produce biological nitrification inhibitors (hereafter referred to as BNI species). The preliminary results of this study report the influence of three different plant species on the nitrification rates under soil supply with three (0 mM, 3.5 mM, and 7.0 mM) nitrogen levels. The aim was to evaluate the potential of hemp, ryegrass, and sorghum in mitigating nitrification, in order to define a sustainable strategy for improving the nitrogen use efficiency by crops and to limit the nitrogen loss from agroecosystems. Leaf gas exchange measurements were also carried out in this study. Photosynthesis was only affected by nitrogen supply in hemp, resulting in a reduction in CO2 assimilation at nitrogen doses higher than the plant’s requirements. Ryegrass devotes more reductive power towards leaf nitrogen assimilation than sorghum and hemp do. The greatest variation in nitrification rate in response to N was observed in soil cultivated with hemp (which also showed the highest potential nitrification rate), followed by sorghum and ryegrass. We speculate that this occurred because the greater seed sowing density for ryegrass ensured a greater quantity in the soil of molecules acting on nitrification compared to sorghum and hemp, with these latter being sown at lower densities. Our results suggest that sorghum and ryegrass might directly affect nitrification by BNI molecules, whereas hemp might indirectly mitigate nitrification through the nitrogen uptake. However, further research is needed to evaluate the effects exerted by the studied plant species on nitrification rates. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 2449 KiB  
Article
Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production
by Alberto Pietro Damiano Baltrocchi, Francesco Romagnoli, Marco Carnevale Miino and Vincenzo Torretta
Clean Technol. 2025, 7(3), 70; https://doi.org/10.3390/cleantechnol7030070 - 12 Aug 2025
Viewed by 152
Abstract
Most types of packaging that are in contact with food are made of polypropylene (PP), and the environmental impacts of their production and use are still high. Currently, incorporating recycled PP in the food industry is not a viable solution for reducing environmental [...] Read more.
Most types of packaging that are in contact with food are made of polypropylene (PP), and the environmental impacts of their production and use are still high. Currently, incorporating recycled PP in the food industry is not a viable solution for reducing environmental impacts due to its complexity and high costs. For this reason, understanding how to reduce the environmental impacts derived from the production process of plastic food packaging is essential. This study aims to analyze the environmental performance of the production of single-use PP food-contact packaging using the Life Cycle Assessment approach in order to estimate the effectiveness of proposed solutions to mitigate its impacts. Furthermore, the economic savings from the avoided CO2 emissions were estimated. To achieve these goals, three diverse scenarios with different energy source mixes were studied. The analysis was carried out using SimaPro v9.5 software, the Ecoinvent v3.8 database, and a ReCiPe 2016 impact assessment. The findings show that upstream processes are the main contributors to the environmental profile, with 67% of the total impact, followed by core processes, with 32% of the total impacts. An increase in the use of renewable energy can lead to environmental benefits, with an impact reduction ranging from 13% to 61% depending on the energy source mix. Furthermore, up to EUR 12,458 per 100 tons of units produced was saved due to the lack of CO2 emissions. The results of this research will be useful to encourage the use of renewable energy in the processes of PP packaging production as an alternative when polymer replacement is difficult. Full article
Show Figures

Graphical abstract

19 pages, 525 KiB  
Review
Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications
by Michelle Wu, Brandon Park and Xiang-Ping Chu
Anesth. Res. 2025, 2(3), 18; https://doi.org/10.3390/anesthres2030018 - 11 Aug 2025
Viewed by 179
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a neuropeptide that activates the nociceptin opioid peptide (NOP) receptor, a G protein-coupled receptor structurally similar to classical opioid receptors but with distinct pharmacological properties. Unlike μ-opioid receptor (MOR) agonists, NOP receptor agonists provide analgesia with a reduced risk [...] Read more.
Nociceptin/orphanin FQ (N/OFQ) is a neuropeptide that activates the nociceptin opioid peptide (NOP) receptor, a G protein-coupled receptor structurally similar to classical opioid receptors but with distinct pharmacological properties. Unlike μ-opioid receptor (MOR) agonists, NOP receptor agonists provide analgesia with a reduced risk of respiratory depression, tolerance, and dependence. This review synthesizes current evidence from molecular studies, animal models, and clinical trials to evaluate the therapeutic potential of the N/OFQ–NOP system in pain management and anesthesia. A literature review was conducted through a PubMed search of English language articles published between 2015 and 2025 using keywords such as “nociceptin,” “NOP receptor,” “bifunctional NOP/MOR agonists,” and “analgesia.” Primary research articles, clinical trials, and relevant reviews were selected based on their relevance to NOP pharmacology and therapeutic application. Additional references were included through citation tracking of seminal papers. Comparisons with classical opioid systems were made to highlight key pharmacological differences, and therapeutic developments involving NOP-selective and bifunctional NOP/MOR agonists were examined. In preclinical models of chronic inflammatory and neuropathic pain, NOP receptor ago-nists reduced hyperalgesia by 30–70%, while producing minimal effects in acute pain as-says. In healthy human volunteers, bifunctional NOP/MOR agonists such as cebrano-padol provided significant pain relief, achieving ≥30% reduction in pain intensity in up to 70% of subjects, with lower incidence of respiratory depression compared with morphine. Sunobinop, another NOP/MOR agent, demonstrated reduced next-day residual effects and a favorable cognitive safety profile. Clinical data also suggest that co-activation of NOP and MOR may attenuate opioid-induced hyperalgesia and tolerance. However, challenges remain, including variability in receptor signaling and limited human trial data. The N/OFQ–NOP receptor system represents a promising and potentially safer target for analgesia and perioperative care. Future efforts should focus on developing optimized NOP ligands, incorporating personalized approaches based on receptor variability, and advancing clinical trials to integrate these agents into multimodal pain management and enhanced recovery protocols. Full article
Show Figures

Graphical abstract

21 pages, 4801 KiB  
Article
Research on the Process for Removing Heat-Stable Salts from Organic Amine Absorbents via Electrodialysis
by Guang Chen, Qian Liu, Li Liu, Shilong Zhang, Guixian Li, Hongwei Li and Dongliang Wang
Processes 2025, 13(8), 2519; https://doi.org/10.3390/pr13082519 - 10 Aug 2025
Viewed by 240
Abstract
The use of organic amine absorbents in CO2 capture technologies is highly significant. The widespread application of this technique is limited by the heat-stable salts (HSSs) produced during the cyclic absorption–desorption process. This research focused on the HSS removal process using electrodialysis [...] Read more.
The use of organic amine absorbents in CO2 capture technologies is highly significant. The widespread application of this technique is limited by the heat-stable salts (HSSs) produced during the cyclic absorption–desorption process. This research focused on the HSS removal process using electrodialysis technology and systematically examined the effects of operating voltage, initial concentration, pH, current density, the ratio of liquid volume in the enriched chamber to that in the diluting chamber, and the type of ion-exchange membrane on desalination efficiency, energy consumption, and amine loss. An increase in both voltage and initial concentration significantly enhances the rate of water migration. The rate of ion migration is observed to follow the order of Cl > SO42 > F in a homogeneous membrane, while in a heterogeneous membrane, the order is SO42 > Cl > F. The optimal operating voltage is 10 V, with a pH level of 8 resulting in the highest SO42 removal efficiency. An industrial scenario validated the optimized process conditions, which balanced energy consumption with desalination efficiency. This methodology is essential not only for providing a viable solution for the industrial purification of organic amines but also for promoting the environmentally sustainable development of carbon capture technologies. Full article
Show Figures

Figure 1

28 pages, 11672 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 - 7 Aug 2025
Viewed by 341
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

15 pages, 8425 KiB  
Article
The Biocorrosion of a Rare Earth Magnesium Alloy in Artificial Seawater Containing Chlorella vulgaris
by Xinran Yao, Qi Fu, Guang-Ling Song and Kai Wang
Materials 2025, 18(15), 3698; https://doi.org/10.3390/ma18153698 - 6 Aug 2025
Viewed by 201
Abstract
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the [...] Read more.
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the surface of Mg alloys, resulting in biocorrosion damage, which is really troublesome in the maritime industry and can even be disastrous to the navy. Currently, there is a lack of research on the biocorrosion of Mg alloys that may find important applications in marine engineering. In this paper, the biocorrosion mechanism of the Mg alloy Mg-3Nd-2Gd-Zn-Zr caused by Chlorella vulgaris (C. vulgaris), a typical marine microalga, was studied. The results showed that the biomineralization process in the artificial seawater containing a low concentration of C. vulgaris cells was accelerated compared with that in the abiotic artificial seawater, leading to the deposition of CaCO3 on the surface to inhibit the localized corrosion of the Mg alloy, whereas a high concentration of C. vulgaris cells produced a high content of organic acids at some sites through photosynthesis to significantly accelerate the surface film rupture at some sites and severe localized corrosion there, but meanwhile, it resulted in the formation of a more protective biomineralized film in the other areas to greatly alleviate the corrosion. The contradictory biocorrosion behaviors on the Mg-3Nd-2Gd-Zn-Zr alloy induced by C. vulgaris were finally explained by a mechanism proposed in the paper. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 401
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

22 pages, 2179 KiB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 401
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

19 pages, 427 KiB  
Review
The Role of Viral Infections in the Immunopathogenesis of Type 1 Diabetes Mellitus: A Narrative Review
by Ioanna Kotsiri, Maria Xanthi, Charalampia-Melangeli Domazinaki and Emmanouil Magiorkinis
Biology 2025, 14(8), 981; https://doi.org/10.3390/biology14080981 - 2 Aug 2025
Viewed by 482
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections [...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections as potential environmental triggers in disease onset and progression. This narrative review synthesizes current findings on the role of viral pathogens in T1DM pathogenesis. Enteroviruses, especially Coxsackie B strains, are the most extensively studied and show strong epidemiological and mechanistic associations with beta-cell autoimmunity. Large prospective studies—including Diabetes Virus Detection (DiViD), The environmental determinans of diabetes in the young (TEDDY), Miljøfaktorer i utvikling av type 1 diabetes (MIDIA), and Diabetes Autoimmunity Study in the Young (DAISY)—consistently demonstrate correlations between enteroviral presence and the initiation or acceleration of islet autoimmunity. Other viruses—such as mumps, rubella, rotavirus, influenza A (H1N1), and SARS-CoV-2—have been investigated for their potential involvement through direct cytotoxic effects, immune activation, or molecular mimicry. Interestingly, certain viruses like varicella-zoster virus (VZV) and cytomegalovirus (CMV) may exert modulatory or even protective influences on disease progression. Proposed mechanisms include direct beta-cell infection, molecular mimicry, bystander immune activation, and dysregulation of innate and adaptive immunity. Although definitive causality remains unconfirmed, the complex interplay between genetic predisposition, immune responses, and viral exposure underscores the need for further mechanistic research. Elucidating these pathways may inform future strategies for targeted prevention, early detection, and vaccine or antiviral development in at-risk populations. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 751
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

Back to TopTop