Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,109)

Search Parameters:
Keywords = coal structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3952 KB  
Article
Ground Subsidence Prediction and Shaft Control in Pillar Recovery During Mine Closure
by Defeng Wang, Zhenqi Wang, Yatao Li and Yong Wang
Processes 2025, 13(10), 3274; https://doi.org/10.3390/pr13103274 - 14 Oct 2025
Abstract
With the progressive depletion of coal resources, the recovery of shaft pillars has become an important means of improving resource utilization and reducing waste. Taking the main shaft pillar recovery of the Longxiang Coal Mine at the stage of mine closure as the [...] Read more.
With the progressive depletion of coal resources, the recovery of shaft pillars has become an important means of improving resource utilization and reducing waste. Taking the main shaft pillar recovery of the Longxiang Coal Mine at the stage of mine closure as the engineering background, this study systematically investigates ground subsidence prediction and shaft stability control under strip mining with symmetrical extraction. An improved subsidence prediction model was established by integrating the probability integral method with superposition theory, and its validity was verified through numerical simulations and field monitoring data. The results demonstrate that the proposed method can accurately capture the subsidence behavior under complex geological conditions, with prediction errors ranging from 6.4 mm to 399.1 mm. In fully subsided zones, the percentage error was as low as 1.1–3.5%, while larger deviations were observed in areas where subsidence was incomplete, confirming both the reliability and the practical limitations of the method under different conditions. Furthermore, the deformation mechanisms of the shaft during pillar recovery were analyzed. Monitoring results indicated that the maximum subsidence at the east and west sides of the shaft reached 7620.6 mm, accompanied by local cracks exceeding 1500 mm, which caused significant damage to surface structures. To address these risks, a safety control scheme based on an integrated “prediction–monitoring–control” framework is proposed, including shaft wall reinforcement, optimization of mining parameters, and continuous ground subsidence monitoring. By combining real-time monitoring with the superposition of small working face predictions, the scheme enables maximum recovery of shaft pillar coal while ensuring operational safety. This study provides a scientific basis and technical support for shaft pillar recovery in Longxiang Coal Mine and offers valuable theoretical guidance for similar mine closure projects, with significant implications for engineering practice. Full article
Show Figures

Figure 1

25 pages, 8599 KB  
Article
Structural Design Method for Narrow Coal Pillars in Gateway Protection: Framework and Field Case Study
by Yinghu Li, Ze Xia, Qiangling Yao, Qiang Xu, Chuangkai Zheng, Haodong Hu and Haitao Li
Buildings 2025, 15(20), 3682; https://doi.org/10.3390/buildings15203682 (registering DOI) - 13 Oct 2025
Abstract
Coal pillars are important safety structures for maintaining the stability of underground coal mine roadways. To address both coal resource loss from wide pillars and the need for safer, more sustainable underground building structures, this study proposes a framework for controlling the surrounding [...] Read more.
Coal pillars are important safety structures for maintaining the stability of underground coal mine roadways. To address both coal resource loss from wide pillars and the need for safer, more sustainable underground building structures, this study proposes a framework for controlling the surrounding rock based on the narrow pillar. By establishing a load-bearing mechanical model for narrow coal pillars and a mechanical model for roof instability, the design principles of key parameters were clarified, including the optimal width, the required support strength for the pillar–roof system, and the height and angle of roof pre-splitting. In addition, zoning control measures and corresponding technical procedures for adjacent mining roadways were proposed. This technology was applied in Tashan Mine and, during the extraction of panel 8311, the surrounding rock stability of roadway 2312 was well maintained, with the maximum deformation of the solid coal rib measured at 135 mm, while that of the narrow pillar reached 386 mm. The proposed design method can effectively improve coal recovery in underground mining and provide theoretical and technical guidance for coal pillar stability control and wide pillar optimization under complex mining conditions. Full article
Show Figures

Figure 1

17 pages, 1163 KB  
Article
The Stochastic Nature of the Mining Production Process—Modeling of Processes in Deep Hard Coal Mines
by Ryszard Snopkowski, Marta Sukiennik and Aneta Napieraj
Energies 2025, 18(20), 5383; https://doi.org/10.3390/en18205383 (registering DOI) - 13 Oct 2025
Abstract
The stochastic and undetermined nature of longwall coal mining results from the complex interaction between geological-mining and technical-organizational factors. This interaction causes variability in key parameters of the production process. This article presents three stochastic models developed on the basis of probability density [...] Read more.
The stochastic and undetermined nature of longwall coal mining results from the complex interaction between geological-mining and technical-organizational factors. This interaction causes variability in key parameters of the production process. This article presents three stochastic models developed on the basis of probability density functions, which describe selected process parameters. These mathematical functions serve as the foundation for effective stochastic models, enabling analysis of complex mining operations. The methodology employed in the study involves empirical data collection, statistical analysis, and stochastic simulation, carried out under both laboratory and field conditions. The results include empirical probability functions for output, delays, and crew-dependent productivity, offering insights into process variability and its impact on performance. Each method is characterized by its theoretical foundations, algorithmic structure, and application areas. The models have been validated through statistical tests and operational field data and can be applied as decision-support tools in both scientific research and industrial management. Given the extensive nature of the described methods, the article provides a comprehensive reference list for readers interested in further exploration and practical implementation in mining engineering. Full article
Show Figures

Figure 1

25 pages, 15886 KB  
Review
Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review
by Hongda Xu, Rui Li, Jue Kou, Xiaojin Wen, Jiawei Lin, Jiawen Yin, Chunbao Sun and Tichang Sun
Minerals 2025, 15(10), 1067; https://doi.org/10.3390/min15101067 - 11 Oct 2025
Viewed by 87
Abstract
Conventional separation methods often prove ineffective for complex, refractory high-phosphorus iron ores. Recent advances propose a coal-based direct reduction dephosphorization-magnetic separation process, achieving significant dephosphorization efficiency. This review systematically analyzes phosphorus occurrence states in high-phosphorus oolitic iron ores across global deposits, particularly within [...] Read more.
Conventional separation methods often prove ineffective for complex, refractory high-phosphorus iron ores. Recent advances propose a coal-based direct reduction dephosphorization-magnetic separation process, achieving significant dephosphorization efficiency. This review systematically analyzes phosphorus occurrence states in high-phosphorus oolitic iron ores across global deposits, particularly within iron minerals. We categorize contemporary research and elucidate dephosphorization mechanisms during coal-based direct reduction. Key factors influencing iron mineral phase transformation, iron enrichment, and phosphorus removal are comprehensively evaluated. Phosphorus primarily exists as apatite and collophane gangue m horization agents function by: (1) inhibiting phosphorus-bearing mineral reactions or binding phosphorus into soluble salts to prevent incorporation into metallic iron; (2) enhancing iron oxide reduction and coal gasification; (3) disrupting oolitic structures, promoting metallic iron particle growth, and improving the intergrowth relationship between metallic iron and gangue. Iron mineral phase transformations follow the sequence: Fe2O3 → Fe3O4 → FeO (FeAl2O4, Fe2SiO4) → Fe. Critical parameters for effective dephosphorization under non-reductive phosphorus conditions include reduction temperature, duration, reductant/dephosphorization agent types/dosages. Future research should focus on: (1) investigating phosphorus forms in iron minerals for targeted ore utilization; (2) reducing dephosphorization agent consumption and developing sustainable alternatives; (3) refining models for metallic iron growth and improving energy efficiency; (4) optimizing reduction atmosphere control; (5) implementing low-carbon emission strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 3554 KB  
Article
Optimizing Amendment Ratios for Sustainable Recovery of Aeolian Sandy Soils in Coal Mining Subsidence Areas: An Orthogonal Experiment on Medicago sativa
by Lijun Hao, Zhenqi Hu, Qi Bian, Xuyang Jiang, Yingjia Cao, Changjiang Li and Ruihao Cui
Sustainability 2025, 17(20), 9010; https://doi.org/10.3390/su17209010 (registering DOI) - 11 Oct 2025
Viewed by 78
Abstract
Coal mining in the aeolian sandy regions of western China has caused extensive land degradation. Traditional single-component soil amendments have proven inadequate for ecological restoration, underscoring the need for integrated and sustainable strategies to restore soil fertility and vegetation. A pot experiment using [...] Read more.
Coal mining in the aeolian sandy regions of western China has caused extensive land degradation. Traditional single-component soil amendments have proven inadequate for ecological restoration, underscoring the need for integrated and sustainable strategies to restore soil fertility and vegetation. A pot experiment using alfalfa (Medicago sativa L.) evaluated the effects of weathered coal, cow manure, and potassium polyacrylate combined in a three-factor three-level orthogonal design on plant growth, nutrient uptake, and soil properties. Results showed that compared with the control (C0O0P0), amendment treatments significantly increased alfalfa fresh weight (+47.57~107.38%), dry weight (+43.46~104.93%), plant height (+43.46~104.93%), and stem diameter (+12.62~31.52%), along with improved plant phosphorus and potassium concentrations (+15.41~46.65%). Soil fertility was also notably enhanced, with increases in soil organic matter, total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) ranging from 4.25% to 777.78%. In contrast, soil pH and bulk density were significantly reduced. The optimal amendment combination was identified as 10 g·kg−1 weathered coal, 5 g·kg−1 cow manure, and 0.6 g·kg−1 potassium polyacrylate. Structural equation modeling revealed that the amendments promoted plant growth both directly by improving soil conditions and indirectly by enhancing nutrient uptake. However, high doses (30 g·kg−1) of weathered coal may inhibit plant growth, and the co-application of high-dose weathered coal or manure with potassium polyacrylate may lead to antagonistic effects. This study provides fundamental insights into soil–plant interactions and proposes a sustainable amendment strategy for improving aeolian sandy soils, which could support future ecological reclamation efforts in coal mining area. Full article
Show Figures

Figure 1

19 pages, 1525 KB  
Article
Fractional Modeling of Deep Coal Rock Creep Considering Strong Time-Dependent Behavior
by Shuai Yang, Wenhao Jia, Senlin Xie, Haochen Wang and Lu An
Mathematics 2025, 13(20), 3247; https://doi.org/10.3390/math13203247 - 10 Oct 2025
Viewed by 127
Abstract
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional [...] Read more.
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional time-dependent strains induced by stress-state variations were considered, with long-term rock strength adopted as the damage stress threshold. The stress difference between nominal and post-damage stress, σD(t), defined as the stress gradient, was applied to a viscoelastic–plastic body containing a fractional Abel dashpot, producing conventional creep strain and strong time-dependent strain. The model was extended from one-dimensional to three-dimensional under triaxial stress conditions. The validity of the model was verified using triaxial creep test data for argillaceous sandstone and coal in deep roadways, and the model parameters were determined. The results demonstrate that the model accurately reproduces the full creep process, particularly the nonlinear accelerated stage influenced by strong time-dependence. Through stress-gradient-induced variations in strong time-dependent strain, the proposed creep model elucidates the progression of deformation in the strong time-dependent stage, offering a theoretical framework for the quantitative assessment of deep rock’s strong time-dependence. Sensitivity analysis identified the stress level, fractional order, and strong time-dependence coefficient α as key factors affecting strong time-dependent creep behavior. These findings indicate that tunnel support structures in deep environments are prone to instability, underscoring the necessity of accounting for strong time-dependence to ensure long-term stability. Full article
Show Figures

Figure 1

16 pages, 2428 KB  
Article
Bonding Performance at the Interface of Glass Fiber-Reinforced Polymer Anchors and Polymer Concrete
by Kai Liu, Wenchao Li, Tianlong Ling, Bo Huang and Meihong Zhou
Polymers 2025, 17(19), 2714; https://doi.org/10.3390/polym17192714 - 9 Oct 2025
Viewed by 172
Abstract
Currently, resin polymer anchoring agents are widely used for bolting support in coal mine roadways to anchor the bolts to the surrounding rock mass. However, due to the relatively low strength of the resin anchoring agent itself, the required anchoring length tends to [...] Read more.
Currently, resin polymer anchoring agents are widely used for bolting support in coal mine roadways to anchor the bolts to the surrounding rock mass. However, due to the relatively low strength of the resin anchoring agent itself, the required anchoring length tends to be excessively long. Based on this, this paper proposes the use of resin concrete as a replacement for resin. Compared to resin anchoring agents, resin concrete offers greater mechanical interlocking force with anchor rods, which can reduce the theoretical anchoring length. To systematically investigate the influence of factors such as the diameter and anchorage length of Glass Fiber-Reinforced Polymer (GFRP) bolt on the bond behavior between GFRP bolts and resin concrete, 33 standard pull-out tests were designed and conducted in accordance with the CSA S807-19 standard. Taking the 18 mm-diameter bolt as an example, when the bond lengths were 2D, 3D, 4D, and 5D, the average bond strengths were 41.32 MPa, 39.18 MPa, 38.84 MPa, and 37.44 MPa, respectively. This represents a decrease of 5.18%, 6.00%, and 9.39% for each subsequent increase in bond length. The results indicate that the bond strength between GFRP anchors and resin decreases as the anchorage length increases. Due to the shear lag effect, the average bond strength also decreases with increasing anchor diameter. Taking a 5D (where D is the anchor diameter) anchorage length as a reference, the average bond strengths for anchor diameters of 18 mm, 20 mm, 22 mm, and 24 mm were 37.44 MPa, 33.97 MPa, 32.18 MPa, and 31.50 MPa, respectively. The corresponding reductions compared to the 18 mm diameter case were 9.27%, 14.05%, and 15.87%. Based on the experimental results, this paper proposes a bond–slip constitutive model between the bolt and resin concrete, which consists of a rising branch, a descending branch, and a residual branch. A differential equation relating shear stress to displacement was established, and the functions describing the variation in displacement, normal stress, and shear stress along the position were solved for the ascending branch. Although an analytical solution for the differential equation of the descending branch was not obtained, it will not affect the subsequent derivation of the theoretical anchorage length for the GFRP bolt–resin concrete system, as structural components in practical engineering are not permitted to undergo excessive bond-slip. Full article
(This article belongs to the Special Issue Polymer Admixture-Modified Cement-Based Materials)
Show Figures

Figure 1

19 pages, 5060 KB  
Article
Fractal Characteristics of Multi-Scale Pore Structure of Coal Measure Shales in the Wuxiang Block, Qinshui Basin
by Rui Wang and Mengyu Zhao
Processes 2025, 13(10), 3214; https://doi.org/10.3390/pr13103214 - 9 Oct 2025
Viewed by 145
Abstract
Due to the diverse origins of shale reservoirs, the coal measure shales of the Wuxiang block, Qinshui Basin typically exhibit fractal pore structures, which significantly influence shale gas occurrence and migration. Clarifying the fractal nature of pore structures is significant for the efficient [...] Read more.
Due to the diverse origins of shale reservoirs, the coal measure shales of the Wuxiang block, Qinshui Basin typically exhibit fractal pore structures, which significantly influence shale gas occurrence and migration. Clarifying the fractal nature of pore structures is significant for the efficient development and utilization of shale gas. In this study, mercury intrusion porosimetry and liquid nitrogen adsorption experiments were conducted to develop a method that integrates pore compressibility correction and nitrogen adsorption for pore structure characterization. On this basis, this study analyzed the fractal characteristics of coal measure shale pore structures across multiple scales. The results reveal that coal measure shale pores exhibit a three-stage fractal pattern, consisting of three regions with pore diameters >65 nm (seepage pores), 6–65 nm (transition pores), and <6 nm (micropores). Samples with fractal dimensions of seepage pores (Da) exceeding 2.9 and transition pores (D1) exceeding 2.5 tend to have larger specific surface areas and more complex pore structures; this is indicated by the increased surface roughness of large-scale pores, which hinders gas seepage. Samples with lower fractal dimension of micropores (D2)—in the range of 2.2–2.8—exhibit higher micropore development, larger specific surface area, and simpler pore structures, as demonstrated by a greater number of micropores and a more uniform pore distribution, which promotes gas adsorption. Full article
Show Figures

Figure 1

17 pages, 6614 KB  
Article
Seismic Response Characteristics and Characterization Parameter Prediction of Thin Interbedded Coal Seam Fracture System
by Kui Wu, Yu Qi, Sheng Zhang, Feng He, Silu Chen, Yixin Yu, Fei Gong and Tingting Zhang
Processes 2025, 13(10), 3173; https://doi.org/10.3390/pr13103173 - 6 Oct 2025
Viewed by 270
Abstract
Fracture systems critically govern coal seam permeability, influencing hydrocarbon migration pathways and well placement strategies. We established a predictive framework for fracture characterization in thin-interbedded coal reservoirs by integrating seismic response analysis with multi-domain validation. Utilizing borehole log statistics and staggered-grid wave equation [...] Read more.
Fracture systems critically govern coal seam permeability, influencing hydrocarbon migration pathways and well placement strategies. We established a predictive framework for fracture characterization in thin-interbedded coal reservoirs by integrating seismic response analysis with multi-domain validation. Utilizing borehole log statistics and staggered-grid wave equation modeling, we first decode azimuthal amplitude anisotropy patterns in fractured coal seams under varying lithological contexts. Key findings reveal that (1) isotropic thick surrounding rocks yield distinct fracture symmetry axis alignment (ellipse long-axis orientation shifts with layer velocity), while (2) anisotropic thin-interbedded host strata amplify azimuthal anisotropy ratios at mid–far offsets but induce prediction ambiguity under comparable fracture intensities. By applying azimuthally partitioned OVT data with optimized mid–long offset stacking, our amplitude ellipse fitting method demonstrates unique fracture solutions validated against structural, logging, and production data. This workflow resolves the multi-solution challenges in thin-layered systems, enabling precise fracture parameter prediction to optimize coalbed methane development in geologically complex basins. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

18 pages, 6931 KB  
Article
Research on Multi-Sensor Data Fusion Based Real-Scene 3D Reconstruction and Digital Twin Visualization Methodology for Coal Mine Tunnels
by Hongda Zhu, Jingjing Jin and Sihai Zhao
Sensors 2025, 25(19), 6153; https://doi.org/10.3390/s25196153 - 4 Oct 2025
Viewed by 365
Abstract
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The [...] Read more.
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The research employs cubemap-based mapping technology to project acquired real-time tunnel images onto six faces of a cube, combined with navigation information, pose data, and synchronously acquired point cloud data to achieve spatial alignment and data fusion. On this basis, inner/outer corner detection algorithms are utilized for precise image segmentation, and a point cloud region growing algorithm integrated with information entropy optimization is proposed to realize complete recognition and segmentation of tunnel planes (e.g., roof, floor, left/right sidewalls) and high-curvature feature objects (e.g., ventilation ducts). Furthermore, geometric dimensions extracted from segmentation results are used to construct 3D models, and real-scene images are mapped onto model surfaces via UV (U and V axes of texture coordinate) texture mapping technology, generating digital twin models with authentic texture details. Experimental validation demonstrates that the method performs excellently in both simulated and real coal mine environments, with models capable of faithfully reproducing tunnel spatial layouts and detailed features while supporting multi-view visualization (e.g., bottom view, left/right rotated views, front view). This approach provides efficient and precise technical support for digital twin construction, fine-grained structural modeling, and safety monitoring of coal mine tunnels, significantly enhancing the accuracy and practicality of photorealistic 3D modeling in intelligent mining applications. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 9549 KB  
Article
Failure Analysis of a Novel Ceramic-Coated Floating Oil Seal Considering O-Ring Initial Assembly Deformation
by Yuehao Zhang, Fengsen Wang, Zhumin Li, Bozhao Sun, Tianci Chen and Jiao Wang
Materials 2025, 18(19), 4592; https://doi.org/10.3390/ma18194592 - 3 Oct 2025
Viewed by 325
Abstract
The floating oil seal (FOS) is a critical component in coal mining machinery, where frictional wear and high stress on the O-ring can lead to oil leakage and eventual FOS failure, significantly impairing equipment performance. To address this issue, this study proposes a [...] Read more.
The floating oil seal (FOS) is a critical component in coal mining machinery, where frictional wear and high stress on the O-ring can lead to oil leakage and eventual FOS failure, significantly impairing equipment performance. To address this issue, this study proposes a novel ceramic-coated floating oil seal (NCCFOS) composite structure that enhances wear resistance without modifying the existing sealing cavity configuration. A two-dimensional axisymmetric finite element model of the NCCFOS was developed based on the Mooney–Rivlin constitutive model, considering the O-ring assembly process for improved accuracy. The model was analyzed under oil pressure loading, with parametric studies examining the influence of oil pressure, assembly clearance, and material hardness on O-ring stress, contact pressure, and frictional stress distribution in the floating seal ring. The results demonstrate that accounting for the assembly process yielded more realistic stress predictions compared to conventional modeling approaches. The NCCFOS design effectively mitigated stress concentrations, reduced O-ring wear, and extended fatigue life, offering a practical solution for enhancing the reliability of coal mining machinery seals. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

21 pages, 6332 KB  
Article
Numerical Simulation and Empirical Validation of Casing Stability in Coalbed Methane Wells Under Mining-Induced Stress: A Case Study of Xiaobaodang Coal Mine in Yulin-Shenmu Mining Area
by Zeke Gao, Wenping Li, Dongding Li, Yangmin Ye and Yuchu Liu
Appl. Sci. 2025, 15(19), 10674; https://doi.org/10.3390/app151910674 - 2 Oct 2025
Viewed by 235
Abstract
This study addresses the issue of coordinated development of coal, oil, and gas resources in the Yulin-Shenmu Coalfield. Taking the 132,201 working face of the Xiaobaodang No. 1 Coal Mine as a case study, the study combines FLAC3D numerical simulation with on-site [...] Read more.
This study addresses the issue of coordinated development of coal, oil, and gas resources in the Yulin-Shenmu Coalfield. Taking the 132,201 working face of the Xiaobaodang No. 1 Coal Mine as a case study, the study combines FLAC3D numerical simulation with on-site monitoring to analyze the impact of mining activities on the stability of gas well casings. Simulation results indicate that mining activities cause stress redistribution in the surrounding rock, with a maximum shear stress of 5.8 MPa, which is far below the shear strength of the casing. The maximum horizontal displacement of the wellbore is only 23 mm, with uniform overall deformation and no shear failure. On-site monitoring showed that the airtightness was intact, and the wellbore diameter test did not detect any destructive damage such as deformation or cracks. Concurrently, fiber optic strain monitoring of the inner and outer casings aligns with simulation results, confirming no significant instability caused by mining activities. The conclusion is that mining activities have a negligible impact on the stability of the gas well casing-concrete composite structure. The dual casing-cement ring structure effectively coordinates deformation to ensure safety. This finding provides a reliable technical basis for the coordinated exploitation of coal, oil and gas resources at the Xiaobaodang No. 1 Coal Mine and similar mines. Full article
Show Figures

Figure 1

16 pages, 3568 KB  
Article
Delineation and Application of Gas Geological Units for Optimized Large-Scale Gas Drainage in the Baode Mine
by Shuaiyin He, Xinjiang Luo, Jinbo Zhang, Zenghui Zhang, Peng Li and Huazhou Huang
Energies 2025, 18(19), 5237; https://doi.org/10.3390/en18195237 - 2 Oct 2025
Viewed by 169
Abstract
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units [...] Read more.
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units (GGUs), aiming to identify regions suitable for large-scale gas extraction. The results indicate that the overall structure of the No. 8 coal seam is a simple monocline. Both gas content (ranging from 2.0 to 7.0 m3/t) and gas pressure (ranging from 0.2 to 0.65 MPa) generally increase with burial depth. However, local anomalies in these parameters, caused by geological structures and hydrogeological conditions, significantly limit the effectiveness of large-scale drainage using ultra-long boreholes. Based on key criteria, the seam was classified into three Grade I and ten Grade II GGUs, distinguishing anomalous zones from homogeneous units. Among the Grade II units, eight (II-i to II-viii) were identified as anomalous zones with distinct geological constraints, while two (II-ix and II-x) exhibited homogeneous gas geological parameters. Practical implementation of large-scale gas extraction strategies—including underground ultra-long boreholes and a U-shaped surface well—within the homogeneous Unit II-x demonstrated significantly improved gas drainage performance, characterized by higher methane concentration, greater flow rate, enhanced temporal stability, and more favorable decay characteristics compared to conventional boreholes. These findings confirm the critical role of GGU delineation in guiding efficient regional gas control and ensuring safe production in similar high-gas coal mines. Full article
Show Figures

Figure 1

17 pages, 11694 KB  
Article
RIS Wireless Network Optimization Based on TD3 Algorithm in Coal-Mine Tunnels
by Shuqi Wang and Fengjiao Wang
Sensors 2025, 25(19), 6058; https://doi.org/10.3390/s25196058 - 2 Oct 2025
Viewed by 221
Abstract
As an emerging technology, Reconfigurable Intelligent Surfaces (RIS) offers an efficient communication performance optimization solution for the complex and spatially constrained environment of coal mines by effectively controlling signal-propagation paths. This study investigates the channel attenuation characteristics of a semi-circular arch coal-mine tunnel [...] Read more.
As an emerging technology, Reconfigurable Intelligent Surfaces (RIS) offers an efficient communication performance optimization solution for the complex and spatially constrained environment of coal mines by effectively controlling signal-propagation paths. This study investigates the channel attenuation characteristics of a semi-circular arch coal-mine tunnel with a dual RIS reflection link. By jointly optimizing the base-station beamforming matrix and the RIS phase-shift matrix, an improved Twin Delayed Deep Deterministic Policy Gradient (TD3)-based algorithm with a Noise Fading (TD3-NF) propagation optimization scheme is proposed, effectively improving the sum rate of the coal-mine wireless communication system. Simulation results show that when the transmit power is 38 dBm, the average link rate of the system reaches 11.1 bps/Hz, representing a 29.07% improvement compared to Deep Deterministic Policy Gradient (DDPG). The average sum rate of the 8 × 8 structure RIS is 3.3 bps/Hz higher than that of the 4 × 4 structure. The research findings provide new solutions for optimizing mine communication quality and applying artificial intelligence technology in complex environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 4923 KB  
Article
Evolution Law and Stability Control of Energy–Plastic Zone of Surrounding Rock After Secondary Mining in Narrow Pillar Roadway in Thick Seam
by Kun Lv, Zhigang Deng, Jicheng Feng, Mingqi Jia, Xiangye Wu, Aoran Ma and Zhihai Ji
Processes 2025, 13(10), 3152; https://doi.org/10.3390/pr13103152 - 2 Oct 2025
Viewed by 309
Abstract
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on [...] Read more.
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on stress evolution and energy distribution characteristics during secondary mining extraction. Key findings include the following: (1) Under the superimposed influence of goaf-side abutment pressure and secondary mining front abutment pressure, roadway surrounding rock exhibits regional asymmetric characteristics in energy dissipation. (2) Within 10 m ahead of the secondary mining face, the coal pillar experiences intense energy dissipation and plastic zone penetration, leading to bearing structure failure. (3) The energy mechanism reveals that asymmetric dissipative energy distribution drives plastic zone expansion. Accordingly, an integrated control strategy combining differentiated support (bolts/cables + tension-type opposite anchor cables + hydraulic props) with coal pillar grouting modification was developed. Field implementation demonstrated effective control of surrounding rock deformation within 200 mm. This study provides theoretical foundations and technical references for roadway stability control under similar mining conditions. Full article
Show Figures

Figure 1

Back to TopTop