Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = coarse annotation refinement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1422 KB  
Article
Prototype-Guided Promptable Retinal Lesion Segmentation from Coarse Annotations
by Qinji Yu and Xiaowei Ding
Electronics 2025, 14(16), 3252; https://doi.org/10.3390/electronics14163252 - 15 Aug 2025
Viewed by 316
Abstract
Accurate segmentation of retinal lesions is critical for the diagnosis and management of ophthalmic diseases, but pixel-level annotation is labor-intensive and demanding in clinical scenarios. To address this, we introduce a promptable segmentation approach based on prototype learning that enables precise retinal lesion [...] Read more.
Accurate segmentation of retinal lesions is critical for the diagnosis and management of ophthalmic diseases, but pixel-level annotation is labor-intensive and demanding in clinical scenarios. To address this, we introduce a promptable segmentation approach based on prototype learning that enables precise retinal lesion segmentation from low-cost, coarse annotations. Our framework treats clinician-provided coarse masks (such as ellipses) as prompts to guide the extraction and refinement of lesion and background feature prototypes. A lightweight U-Net backbone fuses image content with spatial priors, while a superpixel-guided prototype weighting module is employed to mitigate background interference within coarse prompts. We simulate coarse prompts from fine-grained masks to train the model, and extensively validate our method across three datasets (IDRiD, DDR, and a private clinical set) with a range of annotation coarseness levels. Experimental results demonstrate that our prototype-based model significantly outperforms fully supervised and non-prototypical promptable baselines, achieving more accurate and robust segmentation, particularly for challenging and variable lesions. The approach exhibits excellent adaptability to unseen data distributions and lesion types, maintaining stable performance even under highly coarse prompts. This work highlights the potential of prompt-driven, prototype-based solutions for efficient and reliable medical image segmentation in practical clinical settings. Full article
(This article belongs to the Special Issue AI-Driven Medical Image/Video Processing)
Show Figures

Figure 1

19 pages, 4719 KB  
Article
Laser Stripe Segmentation Network Based on Evidential Uncertainty Theory Modeling Fine-Tuning Optimization Symmetric Algorithm
by Chenbo Shi, Delin Wang, Xiangyu Zhang, Chun Zhang, Jia Yan, Changsheng Zhu and Xiaobing Feng
Symmetry 2025, 17(8), 1280; https://doi.org/10.3390/sym17081280 - 9 Aug 2025
Viewed by 394
Abstract
In welding applications, line-structured-light vision is widely used for seam tracking, but intense noise from arc glow, spatter, smoke, and reflections makes reliable laser-stripe segmentation difficult. To address these challenges, we propose EUFNet, an uncertainty-driven symmetrical two-stage segmentation network for precise stripe extraction [...] Read more.
In welding applications, line-structured-light vision is widely used for seam tracking, but intense noise from arc glow, spatter, smoke, and reflections makes reliable laser-stripe segmentation difficult. To address these challenges, we propose EUFNet, an uncertainty-driven symmetrical two-stage segmentation network for precise stripe extraction under real-world welding conditions. In the first stage, a lightweight backbone generates a coarse stripe mask and a pixel-wise uncertainty map; in the second stage, a functionally mirrored refinement network uses this uncertainty map to symmetrically guide fine-tuning of the same image regions, thereby preserving stripe continuity. We further employ an uncertainty-weighted loss that treats ambiguous pixels and their corresponding evidence in a one-to-one, symmetric manner. Evaluated on a large-scale dataset of 3100 annotated welding images, EUFNet achieves a mean IoU of 89.3% and a mean accuracy of 95.9% at 236.7 FPS (compared to U-Net’s 82.5% mean IoU and 90.2% mean accuracy), significantly outperforming existing approaches in both accuracy and real-time performance. Moreover, EUFNet generalizes effectively to the public WLSD benchmark, surpassing state-of-the-art baselines in both accuracy and speed. These results confirm that a structurally and functionally symmetric, uncertainty-driven two-stage refinement strategy—combined with targeted loss design and efficient feature integration—yields high-precision, real-time performance for automated welding vision. Full article
Show Figures

Figure 1

35 pages, 4256 KB  
Article
Automated Segmentation and Morphometric Analysis of Thioflavin-S-Stained Amyloid Deposits in Alzheimer’s Disease Brains and Age-Matched Controls Using Weakly Supervised Deep Learning
by Gábor Barczánfalvi, Tibor Nyári, József Tolnai, László Tiszlavicz, Balázs Gulyás and Karoly Gulya
Int. J. Mol. Sci. 2025, 26(15), 7134; https://doi.org/10.3390/ijms26157134 - 24 Jul 2025
Viewed by 667
Abstract
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly [...] Read more.
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly supervised learning offers a promising alternative by leveraging coarse or indirect labels to reduce the annotation burden. We evaluated a weakly supervised approach to segment and analyze thioflavin-S-positive parenchymal amyloid pathology in AD and age-matched brains. Our pipeline integrates three key components, each designed to operate under weak supervision. First, robust preprocessing (including retrospective multi-image illumination correction and gradient-based background estimation) was applied to enhance image fidelity and support training, as models rely more on image features. Second, class activation maps (CAMs), generated by a compact deep classifier SqueezeNet, were used to identify, and coarsely localize amyloid-rich parenchymal regions from patch-wise image labels, serving as spatial priors for subsequent refinement without requiring dense pixel-level annotations. Third, a patch-based convolutional neural network, U-Net, was trained on synthetic data generated from micrographs based on CAM-derived pseudo-labels via an extensive object-level augmentation strategy, enabling refined whole-image semantic segmentation and generalization across diverse spatial configurations. To ensure robustness and unbiased evaluation, we assessed the segmentation performance of the entire framework using patient-wise group k-fold cross-validation, explicitly modeling generalization across unseen individuals, critical in clinical scenarios. Despite relying on weak labels, the integrated pipeline achieved strong segmentation performance with an average Dice similarity coefficient (≈0.763) and Jaccard index (≈0.639), widely accepted metrics for assessing segmentation quality in medical image analysis. The resulting segmentations were also visually coherent, demonstrating that weakly supervised segmentation is a viable alternative in histopathology, where acquiring dense annotations is prohibitively labor-intensive and time-consuming. Subsequent morphometric analyses on automatically segmented Aβ deposits revealed size-, structural complexity-, and global geometry-related differences across brain regions and cognitive status. These findings confirm that deposit architecture exhibits region-specific patterns and reflects underlying neurodegenerative processes, thereby highlighting the biological relevance and practical applicability of the proposed image-processing pipeline for morphometric analysis. Full article
Show Figures

Figure 1

21 pages, 1159 KB  
Article
StatePre: A Large Language Model-Based State-Handling Method for Network Protocol Fuzzing
by Yifan Zhang, Kailong Zhu, Jie Peng, Yuliang Lu, Qian Chen and Zixiong Li
Electronics 2025, 14(10), 1931; https://doi.org/10.3390/electronics14101931 - 9 May 2025
Viewed by 803
Abstract
As essential components for communication, network protocol programs are highly security-critical, making it crucial to identify their vulnerabilities. Fuzzing is one of the most popular software vulnerability discovery techniques, being highly efficient and having low false-positive rates. However, current network protocol fuzzing is [...] Read more.
As essential components for communication, network protocol programs are highly security-critical, making it crucial to identify their vulnerabilities. Fuzzing is one of the most popular software vulnerability discovery techniques, being highly efficient and having low false-positive rates. However, current network protocol fuzzing is hindered by the coarse-grained and missing state annotations in programs. The current solutions primarily rely on the manual modification of programs, which is inefficient and prone to omissions. In this paper, we propose StatePre, a novel state-handling method for stateful network protocol programs, which leverages large language model (LLM) code- and text-understanding capabilities to analyze request for comments (RFC)-defined state knowledge and optimize the state handling of programs for fuzzing. StatePre automatically refines coarse-grained state annotations and complements missing state annotations in programs to ensure precise state tracking and fuzzing effectiveness. We implement a prototype of StatePre. The evaluation shows that programs modified with StatePre, with fine-grained and comprehensive state annotations, achieve better fuzzing efficiency, higher code coverage, and improved crash detection compared to those not modified with StatePre. Moreover, StatePre demonstrates good scalability, thus is applicable to various network protocol programs. Full article
(This article belongs to the Special Issue Advances in Cyber-Security and Machine Learning)
Show Figures

Figure 1

26 pages, 20953 KB  
Article
Optimization-Based Downscaling of Satellite-Derived Isotropic Broadband Albedo to High Resolution
by Niko Lukač, Domen Mongus and Marko Bizjak
Remote Sens. 2025, 17(8), 1366; https://doi.org/10.3390/rs17081366 - 11 Apr 2025
Viewed by 439
Abstract
In this paper, a novel method for estimating high-resolution isotropic broadband albedo is proposed, by downscaling satellite-derived albedo using an optimization approach. At first, broadband albedo is calculated from the lower-resolution multispectral satellite image using standard narrow-to-broadband (NTB) conversion, where the surfaces are [...] Read more.
In this paper, a novel method for estimating high-resolution isotropic broadband albedo is proposed, by downscaling satellite-derived albedo using an optimization approach. At first, broadband albedo is calculated from the lower-resolution multispectral satellite image using standard narrow-to-broadband (NTB) conversion, where the surfaces are considered Lambertian with isotropic reflectance. The high-resolution true orthophoto for the same location is segmented with the deep learning-based Segment Anything Model (SAM), and the resulting segments are refined with a classified digital surface model (cDSM) to exclude small transient objects. Afterwards, the remaining segments are grouped using K-means clustering, by considering orthophoto-visible (VIS) and near-infrared (NIR) bands. These segments present surfaces with similar materials and underlying reflectance properties. Next, the Differential Evolution (DE) optimization algorithm is applied to approximate albedo values to these segments so that their spatial aggregate matches the coarse-resolution satellite albedo, by proposing two novel objective functions. Extensive experiments considering different DE parameters over an 0.75 km2 large urban area in Maribor, Slovenia, have been carried out, where Sentinel-2 Level-2A NTB-derived albedo was downscaled to 1 m spatial resolution. Looking at the performed spatiospectral analysis, the proposed method achieved absolute differences of 0.09 per VIS band and below 0.18 per NIR band, in comparison to lower-resolution NTB-derived albedo. Moreover, the proposed method achieved a root mean square error (RMSE) of 0.0179 and a mean absolute percentage error (MAPE) of 4.0299% against ground truth broadband albedo annotations of characteristic materials in the given urban area. The proposed method outperformed the Enhanced Super-Resolution Generative Adversarial Networks (ESRGANs), which achieved an RMSE of 0.0285 and an MAPE of 9.2778%, and the Blind Super-Resolution Generative Adversarial Network (BSRGAN), which achieved an RMSE of 0.0341 and an MAPE of 12.3104%. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Graphical abstract

13 pages, 860 KB  
Article
Multi-Scale 3D Cephalometric Landmark Detection Based on Direct Regression with 3D CNN Architectures
by Chanho Song, Yoosoo Jeong, Hyungkyu Huh, Jee-Woong Park, Jun-Young Paeng, Jaemyung Ahn, Jaebum Son and Euisung Jung
Diagnostics 2024, 14(22), 2605; https://doi.org/10.3390/diagnostics14222605 - 20 Nov 2024
Viewed by 1511
Abstract
Background: Cephalometric analysis is important in diagnosing and planning treatments for patients, traditionally relying on 2D cephalometric radiographs. With advancements in 3D imaging, automated landmark detection using deep learning has gained prominence. However, 3D imaging introduces challenges due to increased network complexity and [...] Read more.
Background: Cephalometric analysis is important in diagnosing and planning treatments for patients, traditionally relying on 2D cephalometric radiographs. With advancements in 3D imaging, automated landmark detection using deep learning has gained prominence. However, 3D imaging introduces challenges due to increased network complexity and computational demands. This study proposes a multi-scale 3D CNN-based approach utilizing direct regression to improve the accuracy of maxillofacial landmark detection. Methods: The method employs a coarse-to-fine framework, first identifying landmarks in a global context and then refining their positions using localized 3D patches. A clinical dataset of 150 CT scans from maxillofacial surgery patients, annotated with 30 anatomical landmarks, was used for training and evaluation. Results: The proposed method achieved an average RMSE of 2.238 mm, outperforming conventional 3D CNN architectures. The approach demonstrated consistent detection without failure cases. Conclusions: Our multi-scale-based 3D CNN framework provides a reliable method for automated landmark detection in maxillofacial CT images, showing potential for other clinical applications. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

25 pages, 4283 KB  
Article
Shape-Aware Adversarial Learning for Scribble-Supervised Medical Image Segmentation with a MaskMix Siamese Network: A Case Study of Cardiac MRI Segmentation
by Chen Li, Zhong Zheng and Di Wu
Bioengineering 2024, 11(11), 1146; https://doi.org/10.3390/bioengineering11111146 - 13 Nov 2024
Viewed by 1365
Abstract
The transition in medical image segmentation from fine-grained to coarse-grained annotation methods, notably scribble annotation, offers a practical and efficient preparation for deep learning applications. However, these methods often compromise segmentation precision and result in irregular contours. This study targets the enhancement of [...] Read more.
The transition in medical image segmentation from fine-grained to coarse-grained annotation methods, notably scribble annotation, offers a practical and efficient preparation for deep learning applications. However, these methods often compromise segmentation precision and result in irregular contours. This study targets the enhancement of scribble-supervised segmentation to match the accuracy of fine-grained annotation. Capitalizing on the consistency of target shapes across unpaired datasets, this study introduces a shape-aware scribble-supervised learning framework (MaskMixAdv) addressing two critical tasks: (1) Pseudo label generation, where a mixup-based masking strategy enables image-level and feature-level data augmentation to enrich coarse-grained scribbles annotations. A dual-branch siamese network is proposed to generate fine-grained pseudo labels. (2) Pseudo label optimization, where a CNN-based discriminator is proposed to refine pseudo label contours by distinguishing them from external unpaired masks during model fine-tuning. MaskMixAdv works under constrained annotation conditions as a label-efficient learning approach for medical image segmentation. A case study on public cardiac MRI datasets demonstrated that the proposed MaskMixAdv outperformed the state-of-the-art methods and narrowed the performance gap between scribble-supervised and mask-supervised segmentation. This innovation cuts annotation time by at least 95%, with only a minor impact on Dice performance, specifically a 2.6% reduction. The experimental outcomes indicate that employing efficient and cost-effective scribble annotation can achieve high segmentation accuracy, significantly reducing the typical requirement for fine-grained annotations. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

12 pages, 4651 KB  
Brief Report
Unsupervised Segmentation of Muscle Precursor Cell Images In Situ
by Lihua Ruan, Yongchun Yuan and Tao Zhang
Appl. Sci. 2023, 13(9), 5314; https://doi.org/10.3390/app13095314 - 24 Apr 2023
Viewed by 1873
Abstract
In vitro culture of muscle stem cells on a large scale could bring light to the treatment of muscle-related diseases. However, the current work related to muscle stem cell culture is still only performed in specialized biological laboratories that are very much limited [...] Read more.
In vitro culture of muscle stem cells on a large scale could bring light to the treatment of muscle-related diseases. However, the current work related to muscle stem cell culture is still only performed in specialized biological laboratories that are very much limited by manual experience. There are still some difficulties to achieve an automated culture of complex morphological cells in terms of live cell observation and morphological analysis. In this paper, a set of bright-field cell in situ imaging devices is designed to perform non-contact and invasive imaging of muscle precursor cells in vitro, and a neural network structured lightweight unsupervised semantic segmentation algorithm is proposed for the acquired images to achieve online extraction of cell regions of interest without manual annotation and pre-training. The algorithm first uses a graph-based super-pixel segmentation to obtain a coarse segmentation, then aggregates the coarse segmentation results with the help of Laplace operators as a reference to a four-layer convolutional neural network (CNN). The CNN parameters learn to refine the boundaries of the cells which helps the final segmentation accuracy and mean intersection–merge ratio reach 88% and 77%, respectively. Full article
Show Figures

Figure 1

18 pages, 7990 KB  
Article
Cross Domain Adaptation of Crowd Counting with Model-Agnostic Meta-Learning
by Xiaoyu Hou, Jihui Xu, Jinming Wu and Huaiyu Xu
Appl. Sci. 2021, 11(24), 12037; https://doi.org/10.3390/app112412037 - 17 Dec 2021
Cited by 7 | Viewed by 3271
Abstract
Counting people in crowd scenarios is extensively conducted in drone inspections, video surveillance, and public safety applications. Today, crowd count algorithms with supervised learning have improved significantly, but with a reliance on a large amount of manual annotation. However, in real world scenarios, [...] Read more.
Counting people in crowd scenarios is extensively conducted in drone inspections, video surveillance, and public safety applications. Today, crowd count algorithms with supervised learning have improved significantly, but with a reliance on a large amount of manual annotation. However, in real world scenarios, different photo angles, exposures, location heights, complex backgrounds, and limited annotation data lead to supervised learning methods not working satisfactorily, plus many of them suffer from overfitting problems. To address the above issues, we focus on training synthetic crowd data and investigate how to transfer information to real-world datasets while reducing the need for manual annotation. CNN-based crowd-counting algorithms usually consist of feature extraction, density estimation, and count regression. To improve the domain adaptation in feature extraction, we propose an adaptive domain-invariant feature extracting module. Meanwhile, after taking inspiration from recent innovative meta-learning, we present a dynamic-β MAML algorithm to generate a density map in unseen novel scenes and render the density estimation model more universal. Finally, we use a counting map refiner to optimize the coarse density map transformation into a fine density map and then regress the crowd number. Extensive experiments show that our proposed domain adaptation- and model-generalization methods can effectively suppress domain gaps and produce elaborate density maps in cross-domain crowd-counting scenarios. We demonstrate that the proposals in our paper outperform current state-of-the-art techniques. Full article
Show Figures

Figure 1

23 pages, 9525 KB  
Article
Mask R-CNN Refitting Strategy for Plant Counting and Sizing in UAV Imagery
by Mélissande Machefer, François Lemarchand, Virginie Bonnefond, Alasdair Hitchins and Panagiotis Sidiropoulos
Remote Sens. 2020, 12(18), 3015; https://doi.org/10.3390/rs12183015 - 16 Sep 2020
Cited by 91 | Viewed by 10450
Abstract
This work introduces a method that combines remote sensing and deep learning into a framework that is tailored for accurate, reliable and efficient counting and sizing of plants in aerial images. The investigated task focuses on two low-density crops, potato and lettuce. This [...] Read more.
This work introduces a method that combines remote sensing and deep learning into a framework that is tailored for accurate, reliable and efficient counting and sizing of plants in aerial images. The investigated task focuses on two low-density crops, potato and lettuce. This double objective of counting and sizing is achieved through the detection and segmentation of individual plants by fine-tuning an existing deep learning architecture called Mask R-CNN. This paper includes a thorough discussion on the optimal parametrisation to adapt the Mask R-CNN architecture to this novel task. As we examine the correlation of the Mask R-CNN performance to the annotation volume and granularity (coarse or refined) of remotely sensed images of plants, we conclude that transfer learning can be effectively used to reduce the required amount of labelled data. Indeed, a previously trained Mask R-CNN on a low-density crop can improve performances after training on new crops. Once trained for a given crop, the Mask R-CNN solution is shown to outperform a manually-tuned computer vision algorithm. Model performances are assessed using intuitive metrics such as Mean Average Precision (mAP) from Intersection over Union (IoU) of the masks for individual plant segmentation and Multiple Object Tracking Accuracy (MOTA) for detection. The presented model reaches an mAP of 0.418 for potato plants and 0.660 for lettuces for the individual plant segmentation task. In detection, we obtain a MOTA of 0.781 for potato plants and 0.918 for lettuces. Full article
(This article belongs to the Special Issue UAVs for Vegetation Monitoring)
Show Figures

Graphical abstract

Back to TopTop