Optimization-Based Downscaling of Satellite-Derived Isotropic Broadband Albedo to High Resolution
Abstract
:1. Introduction
1.1. The State of the Art
1.2. Motivation
1.3. Proposed Novelties
- A novel workflow is introduced that integrates the deep learning–based Segment Anything Model (SAM) with K-means clustering to produce spectrally consistent segments in the high-resolution true orthophoto, reducing complexity for optimization-driven downscaling. Furthermore, SAM results are refined with a classified Digital Surface Model (cDSM) in order to filter out transient objects (e.g., cars). The albedo is then estimated on a per segment instead of per pixel granularity.
- The single-objective DE algorithm is used to downscale segment-level albedo values, approximating 1 m isotropic broadband albedo estimations from coarse satellite data, even when few bands are available in the high-resolution true orthophoto. For this purpose, two new objective functions are introduced.
- Using sensitivity analysis, multiple DE optimization strategies and parameter settings (mutation, crossover, number of segments, and the considered objective function) are analyzed to quantify their effects on convergence and final accuracy.
- The presented method was validated on an 0.75 km2 area, with comparison against the isotropic NTB-based albedo [11] derived from Sentinel-2 Level-2A [38] of 10 m, and a further per-band spatiospectral analysis was performed. Lastly, comparison with manually annotated 1 m ground truth reference data for the given 0.75 km2 area was performed and compared to two super-resolution deep learning models.
1.4. Paper Structure
2. Methodology
2.1. Data Preprocessing
2.1.1. A: Satellite-Derived Isotropic Broadband Albedo
2.1.2. B: True Orthophoto Segmentation
2.2. Optimization-Based Downscaling
2.2.1. Mutation and Crossover Strategies
- DE/rand/1 [41]: , where is the mutation factor, and are distinct individuals randomly selected from the population. This strategy emphasizes exploration by relying on random solutions.
- DE/best/1 [41]: , where is the best candidate solution observed so far. By directing the search toward the best current solution, this strategy accelerates possible convergence.
- DE/rand/2 [41]: , where two differences between four solutions improve diversity.
- DE/best/2 [41]: ; this approach leverages the current best and multiple difference vectors to refine promising regions of the search space while maintaining moderate diversity.
- DE/current-to-best/1: , this combines and , offering a balance between exploring new solutions and refining good ones.
- Binomial (uniform) crossover [41]: Here, is the crossover rate, and is a uniform random number. This replaces individual components with a probability governed by , promoting diversity while retaining some of the structure of the parent solution.
- Exponential crossover [41]: Starting from a random index , exponential crossover replaces consecutive components from the mutant vector, potentially incorporating contiguous values of .
2.2.2. Proposed Objective Functions
3. Results
3.1. Data Acquisition and Segmentation
3.2. Sensitivity Analysis of DE Strategies and Downscaling Results
3.3. Validation with Ground Truth Data
3.4. Application to Other Study Areas
4. Discussion
4.1. Limitations
4.2. Shadowing and Anisotropy Effects at 1 m
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Roesch, A.; Wild, M.; Pinker, R.; Ohmura, A. Comparison of spectral surface albedos and their impact on the general circulation model simulated surface climate. J. Geophys. Res. Atmos. 2002, 107, ACL 13-1–ACL 13-18. [Google Scholar] [CrossRef]
- Small, C. Comparative analysis of urban reflectance and surface temperature. Remote Sens. Environ. 2006, 104, 168–189. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Y.; Liu, Y.; Zhang, K.; Li, Y.; Enwer, R.; Li, Y.; Hu, Q. Spatiotemporal variations of surface albedo in Central Asia and its influencing factors and confirmatory path analysis during the 21st century. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104233. [Google Scholar] [CrossRef]
- Sailor, D.J.; Resh, K.; Segura, D. Field measurement of albedo for limited extent test surfaces. Sol. Energy 2006, 80, 589–599. [Google Scholar] [CrossRef]
- Hofierka, J.; Onačillová, K. Estimating Visible Band Albedo from Aerial Orthophotographs in Urban Areas. Remote Sens. 2021, 14, 164. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.; Hunt, R. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; He, T.; Liu, S.; Li, X. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary assessment of 20-m surface albedo retrievals from sentinel-2A surface reflectance and MODIS/VIIRS surface anisotropy measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B.; He, T. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. Remote Sens. Environ. 2014, 152, 467–479. [Google Scholar] [CrossRef]
- Bonafoni, S.; Sekertekin, A. Albedo Retrieval From Sentinel-2 by New Narrow-to-Broadband Conversion Coefficients. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1618–1622. [Google Scholar] [CrossRef]
- Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafò, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. [Google Scholar] [CrossRef]
- Calhoun, Z.D.; Willard, F.; Ge, C.; Rodriguez, C.; Bergin, M.; Carlson, D. Estimating the effects of vegetation and increased albedo on the urban heat island effect with spatial causal inference. Sci. Rep. 2024, 14, 540. [Google Scholar] [CrossRef]
- Karimi, A.; Moreno-Rangel, D.; García-Martínez, A. Granular mapping of UHI and heatwave effects: Implications for building performance and urban resilience. Build. Environ. 2025, 273, 112705. [Google Scholar] [CrossRef]
- Lin, X.; Wu, S.; Chen, B.; Lin, Z.; Yan, Z.; Chen, X.; Yin, G.; You, D.; Wen, J.; Liu, Q.; et al. Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2022, 194, 1–20. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 20 December 2024).
- Chen, H.; Lin, X.; Sun, Y.; Wen, J.; Wu, X.; You, D.; Cheng, J.; Zhang, Z.; Zhang, Z.; Wu, C.; et al. Performance Assessment of Four Data-Driven Machine Learning Models: A Case to Generate Sentinel-2 Albedo at 10 Meters. Remote Sens. 2023, 15, 2684. [Google Scholar] [CrossRef]
- Canisius, F.; Wang, S.; Croft, H.; Leblanc, S.G.; Russell, H.A.J.; Chen, J.; Wang, R. A UAV-Based Sensor System for Measuring Land Surface Albedo: Tested over a Boreal Peatland Ecosystem. Drones 2019, 3, 27. [Google Scholar] [CrossRef]
- Xu, X.; Asawa, T.; Kobayashi, H. Narrow-to-Broadband Conversion for Albedo Estimation on Urban Surfaces by UAV-Based Multispectral Camera. Remote Sens. 2020, 12, 2214. [Google Scholar] [CrossRef]
- Buster, G.; Rossol, M.; Maclaurin, G.; Xie, Y.; Sengupta, M. A physical downscaling algorithm for the generation of high-resolution spatiotemporal solar irradiance data. Sol. Energy 2021, 216, 508–517. [Google Scholar] [CrossRef]
- Karalasingham, S.; Deo, R.C.; Casillas-Perez, D.; Raj, N.; Salcedo-Sanz, S. Downscaling Surface Albedo to Higher Spatial Resolutions With an Image Super-Resolution Approach and PROBA-V Satellite Images. IEEE Access 2023, 11, 5558–5577. [Google Scholar] [CrossRef]
- Chen, J.; Sciusco, P.; Ouyang, Z.; Zhang, R.; Henebry, G.M.; John, R.; Roy, D.P. Linear downscaling from MODIS to landsat: Connecting landscape composition with ecosystem functions. Landsc. Ecol. 2019, 34, 2917–2934. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Z.; Zhao, C.; Qu, Y.; Liu, Q.; Zhang, H.; Tong, Y.; Wang, C.; Li, S.; Guo, J.; et al. Review of Land Surface Albedo: Variance Characteristics, Climate Effect and Management Strategy. Remote Sens. 2022, 14, 1382. [Google Scholar] [CrossRef]
- Wang, N.; Yue, Z.; Liu, Y.; Liu, Y. Machine learning potentials for global multi-timescale diffuse irradiance estimation: Synthesizing ground observations, time-series, and environmental features. Energy 2024, 306, 132535. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Szabó, S.; Enyedi, P.; Horváth, M.; Kovács, Z.; Burai, P.; Csoknyai, T.; Szabó, G. Automated registration of potential locations for solar energy production with Light Detection And Ranging (LiDAR) and small format photogrammetry. J. Clean. Prod. 2016, 112, 3820–3829. [Google Scholar] [CrossRef]
- Mainzer, K.; Killinger, S.; McKenna, R.; Fichtner, W. Assessment of rooftop photovoltaic potentials at the urban level using publicly available geodata and image recognition techniques. Sol. Energy 2017, 155, 561–573. [Google Scholar] [CrossRef]
- Assouline, D.; Mohajeri, N.; Scartezzini, J.L. Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Appl. Energy 2018, 217, 189–211. [Google Scholar] [CrossRef]
- Boccalatte, A.; Jha, A.; Chanussot, J. Leveraging large-scale aerial data for accurate urban rooftop solar potential estimation via multitask learning. Sol. Energy 2025, 290, 113336. [Google Scholar] [CrossRef]
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J. The albedo of Earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Lukač, N.; Špelič, D.; Štumberger, G.; Žalik, B. Optimisation for large-scale photovoltaic arrays’ placement based on Light Detection And Ranging data. Appl. Energy 2020, 263, 114592. [Google Scholar] [CrossRef]
- Bizjak, M.; Žalik, B.; Štumberger, G.; Lukač, N. Large-scale estimation of buildings’ thermal load using LiDAR data. Energy Build. 2021, 231, 110626. [Google Scholar] [CrossRef]
- Hofierka, J.; Gallay, M.; Onačillová, K.; Hofierka, J. Physically-based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data. Urban Clim. 2020, 31, 100566. [Google Scholar] [CrossRef]
- Hofierka, J.; Bogľarský, J.; Kolečanský, Š.; Enderova, A. Modeling Diurnal Changes in Land Surface Temperature in Urban Areas under Cloudy Conditions. ISPRS Int. J. Geo-Inf. 2020, 9, 534. [Google Scholar] [CrossRef]
- García Mainieri, J.J.; Sen, S.; Roesler, J.; Al-Qadi, I.L. Albedo Change Mechanism of Asphalt Concrete Surfaces. Transp. Res. Rec. 2022, 2676, 763–772. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; Sabbatini, S.; Cozzolino, N.; Stipa, P.; D’Orazio, M. Optical properties of traditional clay tiles for ventilated roofs and implication on roof thermal performance. J. Build. Phys. 2019, 42, 484–505. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 User Handbook; ESA: Paris, France, 2015. [Google Scholar]
- Habib, A.F.; Kim, E.M.; Kim, C.J. New Methodologies for True Orthophoto Generation. Photogramm. Eng. Remote Sens. 2007, 73, 25–36. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–3 October 2023; pp. 3992–4003. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. Int. Comput. Sci. Inst. 1995, 11, 341–359. [Google Scholar]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Wu, X.; Jiang, L.; Wang, P.S.; Liu, Z.; Liu, X.; Qiao, Y.; Ouyang, W.; He, T.; Zhao, H. Point Transformer V3: Simpler, Faster, Stronger. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024; pp. 4840–4851. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding; Stanford University: Standford, CA, USA, 2006. [Google Scholar]
- Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Gruber, M.; Muick, M. UltraCam Eagle Prime Aerial Sensor Calibration and Validation. In Proceedings of the Imaging and Geospatial Technology Forum (IGTF 2016), Fort Wort, TX, USA, 11–15 April 2016. [Google Scholar]
- Huntjr, E.; Rock, B. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Ollinger, S.V.; Richardson, A.D.; Meyers, T.P.; Dail, D.B.; Martin, M.E.; Scott, N.A.; Arkebauer, T.J.; Baldocchi, D.D.; Clark, K.L.; et al. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob. Change Biol. 2010, 16, 696–710. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Kendall, A. Field measurement of albedo for different land cover materials and effects on thermal performance. Build. Environ. 2013, 59, 536–546. [Google Scholar] [CrossRef]
- Katsaros, K.B.; McMurdie, L.A.; Lind, R.J.; DeVault, J.E. Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed. J. Geophys. Res. Ocean. 1985, 90, 7313–7321. [Google Scholar] [CrossRef]
- Chiodetti, M.; Lindsay, A.; Dupeyrat, P.; Binesti, D.; Lutun, E.; Radouane, K.; Mousel, S. PV bifacial yield simulation with a variable albedo model. In Proceedings of the EU PVSEC 2016, Munich, Germany, 20–24 June 2016. [Google Scholar]
- Qin, S.; Li, S.; Yang, K.; Zhang, L.; Cheng, L.; Liu, P.; She, D. A Method for Estimating Surface Albedo and Its Components for Partial Plastic Mulched Croplands. J. Hydrometeorol. 2023, 24, 1069–1086. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018; Leal-Taixé, L., Roth, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11133, pp. 63–79. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, J.; Van Gool, L.; Timofte, R. Designing a Practical Degradation Model for Deep Blind Image Super-Resolution. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 4771–4780. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X. Land Use and Land Cover Mapping in the Era of Big Data. Land 2022, 11, 1692. [Google Scholar] [CrossRef]
Sensor | Band | Spectral Range [μm] [38,49] | Per-Pixel Res. [m] |
---|---|---|---|
Sentinel-2 MSI | 2 (Blue) | 0.451–0.539 | 10 |
Sentinel-2 MSI | 3 (Green) | 0.538–0.585 | 10 |
Sentinel-2 MSI | 4 (Red) | 0.641–0.689 | 10 |
Sentinel-2 MSI | 8 (NIR) | 0.784–0.900 | 10 |
Sentinel-2 MSI | 11 (SWIR) | 1.565–1.655 | 20 |
Sentinel-2 MSI | 12 (SWIR) | 2.100–2.280 | 20 |
Ultracam Eagle M3 | 1 (Blue) | 0.400–0.600 | 0.1 |
Ultracam Eagle M3 | 2 (Green) | 0.480–0.700 | 0.1 |
Ultracam Eagle M3 | 3 (Red) | 0.580–0.720 | 0.1 |
Ultracam Eagle M3 | 4 (NIR) | 0.680–1.000 | 0.1 |
Parameter | Value | Description |
---|---|---|
pred_iou_thresh_acc | 0.85 | IoU threshold for mask prediction accuracy. |
stability_score_thresh | 0.90 | Stability score threshold to filter unstable masks. |
points_per_batch | 64 | Number of sampled points per batch for improved precision. |
crop_n_layers | 1 | Number of crop layers for processing smaller segments. |
crop_n_points_d._f. | 2 | Downsampling factor for refining small regions. |
DE Strategy | K | G | or | RMSE | MAE | MAPE | |
---|---|---|---|---|---|---|---|
DE/best/1/bin | 10 | 75 | 169.83 | 0.0322 | 0.0224 | 21.92% | |
DE/best/2/bin | 50 | 150 | 139.01 | 0.0272 | 0.0185 | 20.40% | |
DE/rand/2/bin | 100 | 450 | 131.10 | 0.0257 | 0.0174 | 13.44% | |
DE/rand/2/bin | 10 | 150 | 168.62 | 0.0317 | 0.0226 | 21.49% | |
DE/best/1/exp | 50 | 1350 | 138.32 | 0.0267 | 0.0184 | 20.34% | |
DE/current-to-best/1/bin | 100 | 4900 | 130.86 | 0.0253 | 0.0174 | 13.40% |
Parameter | Value | Description |
---|---|---|
M | 100 | Population size. |
G | 5000 | Number of generations. |
E | Used objective function. | |
K | 100 | Number of segments. |
5 | Number of coefficients per segment (i.e., for each band + bias). | |
Mutation | Current-to-best-1 | The used mutation strategy. |
Crossover | Binominal | The used crossover strategy. |
F & | Self-adaptive | Estimated using self-adaptivity (Equations (7) and (8)). |
Consecutive difference in in 10 generations for convergence. |
Material | Albedo [min, max] | Source |
---|---|---|
Asphalt | [0.05, 0.25] | García Mainieri et al. [36] |
Clay | [0.10, 0.77] | Di Giuseppe et al. [37] |
Metal | [0.07, 0.80] | Di Giuseppe et al. [37] |
Trees & shrubs | [0.12, 0.18] | Hollinger et al. [51] |
Concrete | [0.17, 0.31] | Li et al. [52] |
Water | [0.03, 0.10] | Katsaros et al. [53] |
Grass | [0.18, 0.23] | Chiodetti et al. [54] |
Soil | [0.15, 0.25] | Qin et al. [55] |
Material | Proposed | ESRGAN [56] | BSRGAN [57] | |||
---|---|---|---|---|---|---|
RMSE | MAPE [%] | RMSE | MAPE [%] | RMSE | MAPE [%] | |
Asphalt | 0.0102 | 1.3072 | 0.0176 | 1.9162 | 0.0223 | 2.7396 |
Clay | 0.0070 | 0.7399 | 0.0093 | 1.6922 | 0.0142 | 4.0377 |
Metal | 0.0095 | 0.9034 | 0.0091 | 1.1306 | 0.0116 | 2.3536 |
Trees & shrubs | 0.0210 | 9.8227 | 0.0437 | 20.3588 | 0.0487 | 23.9452 |
Concrete | 0.0276 | 8.3735 | 0.0350 | 13.0763 | 0.0453 | 18.3799 |
Water | 0.0077 | 0.6031 | 0.0365 | 23.4378 | 0.0363 | 28.4478 |
Grass | 0.0286 | 7.4963 | 0.0423 | 15.3704 | 0.0531 | 20.7614 |
Wood | 0.0261 | 9.4317 | 0.1048 | 62.3503 | 0.1090 | 65.6096 |
Soil | 0.0277 | 9.5370 | 0.0271 | 9.2620 | 0.0355 | 13.5878 |
All | 0.0179 | 4.0299 | 0.0285 | 9.2778 | 0.0341 | 12.3104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukač, N.; Mongus, D.; Bizjak, M. Optimization-Based Downscaling of Satellite-Derived Isotropic Broadband Albedo to High Resolution. Remote Sens. 2025, 17, 1366. https://doi.org/10.3390/rs17081366
Lukač N, Mongus D, Bizjak M. Optimization-Based Downscaling of Satellite-Derived Isotropic Broadband Albedo to High Resolution. Remote Sensing. 2025; 17(8):1366. https://doi.org/10.3390/rs17081366
Chicago/Turabian StyleLukač, Niko, Domen Mongus, and Marko Bizjak. 2025. "Optimization-Based Downscaling of Satellite-Derived Isotropic Broadband Albedo to High Resolution" Remote Sensing 17, no. 8: 1366. https://doi.org/10.3390/rs17081366
APA StyleLukač, N., Mongus, D., & Bizjak, M. (2025). Optimization-Based Downscaling of Satellite-Derived Isotropic Broadband Albedo to High Resolution. Remote Sensing, 17(8), 1366. https://doi.org/10.3390/rs17081366