Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = coincidence site lattice (CSL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3188 KB  
Article
Mechanical Properties of Bicrystal-Inspired Lattice Structures Fabricated by Additive Manufacturing
by Hak-Sung Lee
Crystals 2025, 15(9), 757; https://doi.org/10.3390/cryst15090757 - 27 Aug 2025
Viewed by 211
Abstract
While crystal-inspired design has become a promising strategy for developing advanced mechanical metamaterials, the specific role of individual grain boundary interfaces on the macroscopic mechanical properties has remained unclear. This study aims to elucidate the importance of this interface by designing, fabricating, and [...] Read more.
While crystal-inspired design has become a promising strategy for developing advanced mechanical metamaterials, the specific role of individual grain boundary interfaces on the macroscopic mechanical properties has remained unclear. This study aims to elucidate the importance of this interface by designing, fabricating, and testing bicrystal-inspired lattice structures. Using the Coincident Site Lattice (CSL) theory, we modeled various Σ5 tilt grain boundaries in a bicrystal configuration. These structures were fabricated from SUS316L powder using a powder bed fusion (PBF) additive manufacturing process. Compression tests revealed that the presence and type of the macroscopic “grain boundary” interface are critical determinants of the mechanical response, with symmetric bicrystal structures exhibiting a distinct two-stage collapse. More importantly, by engineering the fine structure of the interface itself, such as the density of connecting struts, the mechanical properties can be precisely tuned, achieving a systematic variation in yield strength from 9.1 MPa to 11.5 MPa. This work clarifies the crucial role of interfacial structure in crystal-inspired metamaterials and provides a clear design principle for creating lightweight, damage-tolerant structures with programmable mechanical responses. Full article
Show Figures

Figure 1

18 pages, 18563 KB  
Article
Effect of Additive Friction Stir Deposition Processing on the Microstructure and Mechanical Properties of 1045 Steel
by Wei Lei, Xudong Ran, Qi Wang, Yang Wu, Jipeng Sun, Feiyue Zhang, Shuhai Huang, Lin Xiang, Jianquan Tao and Qiang Chen
Materials 2025, 18(6), 1257; https://doi.org/10.3390/ma18061257 - 12 Mar 2025
Cited by 2 | Viewed by 867
Abstract
Using additive friction stir deposition (AFSD), the poor weldability of 1045 steel can be solved, facilitating the efficient and high-performance additive manufacturing of its components. This study selected spherical 1045 steel powder and investigated key factors influencing mechanical properties, including deposition temperature, tool [...] Read more.
Using additive friction stir deposition (AFSD), the poor weldability of 1045 steel can be solved, facilitating the efficient and high-performance additive manufacturing of its components. This study selected spherical 1045 steel powder and investigated key factors influencing mechanical properties, including deposition temperature, tool rotational rate, and axial force. The results showed that dynamic recrystallization (DRX) occurred in AFSD 1045 steel, which produced randomly oriented fine equiaxed grains with a size range of 1–3 µm and was sensitive to changes in tool rotational rate and axial force. The AFSD 1045 steel, with a maximum surface hardness of 477.2 HV, ultimate tensile strength of 1061.9–1172.3 MPa, and elongation of 8.6–19.0%, has superior overall mechanical properties compared with other forming processes. Moreover, by analyzing tensile fracture morphology, geometrically necessary dislocation (GND) density, and coincidence site lattice (CSL) boundary distribution characteristics, the strengthening mechanism in AFSD 1045 steel was discussed. The research findings serve as a reference for optimizing the AFSD process for 1045 steel and supply a new alternative for joining and manufacturing this material. Full article
Show Figures

Figure 1

19 pages, 8165 KB  
Article
Annealing Effects on Microstructure and Texture in KOBO-Processed LPBF AlSi10Mg Alloy: Elucidating CSL Boundary Formation
by Przemysław Snopiński, Lovro Liverić and Juraj Beniak
Symmetry 2024, 16(12), 1663; https://doi.org/10.3390/sym16121663 - 16 Dec 2024
Cited by 1 | Viewed by 1315
Abstract
This study introduces a strain-annealing approach to tailor the grain boundary characteristics of additively manufactured AlSi10Mg alloy produced by Laser Powder Bed Fusion (LPBF). By combining KOBO extrusion and subsequent annealing treatments, we aim to increase the proportion of low-Σ coincident site lattice [...] Read more.
This study introduces a strain-annealing approach to tailor the grain boundary characteristics of additively manufactured AlSi10Mg alloy produced by Laser Powder Bed Fusion (LPBF). By combining KOBO extrusion and subsequent annealing treatments, we aim to increase the proportion of low-Σ coincident site lattice (CSL) grain boundaries, particularly Σ3 boundaries. Through grain boundary engineering (GBE), specifically focused on inducing a high fraction of symmetrical CSL boundaries, our approach allows for the optimization of microstructural features that inhibit defect propagation and improve material stability. Microstructural analysis using electron backscatter diffraction (EBSD) revealed a substantial increase in Σ3 boundaries (60° <111> twin relationship) in the early recrystallization stages of the KOBO-processed LPBF AlSi10Mg alloy, demonstrating the effectiveness of this method. The findings presented in this manuscript highlight a new strategy for advancing the microstructural characteristics of LPBF AlSi10Mg alloy, with promising implications for applications requiring high-performance materials, such as in the aerospace, nuclear, and automotive industries. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 17196 KB  
Article
Evolution of Grain Boundary Character Distribution in B10 Alloy from Friction Stir Processing to Annealing Treatment
by Wen Feng, Junjie Zhou, Shihao Wang, Ting Sun, Tianyu Zhao and Yingying Jiang
Materials 2024, 17(5), 1134; https://doi.org/10.3390/ma17051134 - 29 Feb 2024
Cited by 1 | Viewed by 1141
Abstract
In this study, the grain boundary character distribution (GBCD) of a B10 alloy was optimized, employing thermomechanical processing consisting of friction stirring processing (FSP) and annealing treatment. Using electron backscatter diffraction, the effects of rotational speed of FSP and annealing time on the [...] Read more.
In this study, the grain boundary character distribution (GBCD) of a B10 alloy was optimized, employing thermomechanical processing consisting of friction stirring processing (FSP) and annealing treatment. Using electron backscatter diffraction, the effects of rotational speed of FSP and annealing time on the evolution of GBCD were systematically investigated. The GBCD evolution was analyzed concerning various parameters, such as the fraction of low-Σ coincidence site lattice (CSL) boundaries, the average number of grains per twin-related domain (TRD), the length of longest chain (LLC), and the triple junction distribution. The experimental results revealed that the processing of a 1400 rpm rotational speed of FSP followed by annealing at 750 °C for 60 min resulted in the optimum grain boundary engineering (GBE) microstructure with the highest fraction of low-Σ CSL boundaries being 82.50% and a significantly fragmented random boundary network, as corroborated by the highest average number of grains per TRD (14.73) with the maximum LLC (2.14) as well as the highest J2/(1 − J3) value (12.76%). As the rotational speed of FSP increased from 600 rpm to 1400 rpm, the fraction of low-Σ CSL boundaries monotonously increased. The fraction of low-Σ CSL boundaries first increased and then decreased with an increase in annealing time. The key to achieving GBE lies in inhibiting the recrystallization phenomenon while stimulating abundant multiple twinning events through strain-induced boundary migration. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 13929 KB  
Article
Effects of KoBo-Processing and Subsequent Annealing Treatment on Grain Boundary Network and Texture Development in Laser Powder Bed Fusion (LPBF) AlSi10Mg Alloy
by Przemysław Snopiński
Symmetry 2024, 16(1), 122; https://doi.org/10.3390/sym16010122 - 19 Jan 2024
Cited by 6 | Viewed by 2132
Abstract
It is well known that the properties of polycrystalline metals are related to grain boundaries (GBs), which are fundamental structural elements where crystallographic orientations change abruptly and often exhibit some degree of symmetry. Grain boundaries often exhibit unique structural, chemical, and electronic properties [...] Read more.
It is well known that the properties of polycrystalline metals are related to grain boundaries (GBs), which are fundamental structural elements where crystallographic orientations change abruptly and often exhibit some degree of symmetry. Grain boundaries often exhibit unique structural, chemical, and electronic properties that differ from bulk crystalline domains. Their effects on material properties, including mechanical strength, corrosion resistance, and electrical conductivity, make grain boundaries a focus of intense scientific investigation. In this study, the microstructural transformation of an AlSi10Mg alloy subjected to KoBo extrusion and subsequent annealing is investigated. A notable discovery is the effectiveness of a strain-annealing method for grain boundary engineering (GBE) of the LPBF AlSi10Mg alloy. In particular, this study shows a significant increase in the population of coincidence site lattice boundaries (CSL), which embody the symmetry of the crystal lattice structure. These boundaries, which are characterised by a high degree of symmetry, contribute to their special properties compared to random grain boundaries. The experimental results emphasise the crucial role of strain-induced boundary migration (SIBM) in the development of a brass texture in the microstructure of the alloy after annealing. In addition, the presented results demonstrate the feasibility of applying GBE to materials with high stacking fault energy (SFE), which opens up new possibilities for optimizing their properties. Full article
(This article belongs to the Special Issue Symmetry in Mechanical Engineering: Properties and Applications)
Show Figures

Figure 1

17 pages, 10688 KB  
Article
Characterisation of Microstructure and Special Grain Boundaries in LPBF AlSi10Mg Alloy Subjected to the KoBo Extrusion Process
by Przemysław Snopiński and Krzysztof Matus
Symmetry 2023, 15(9), 1634; https://doi.org/10.3390/sym15091634 - 24 Aug 2023
Cited by 6 | Viewed by 2222
Abstract
Grain boundary engineering (GBE) enhances the properties of metals by incorporating specific grain boundaries, such as twin boundaries (TB). However, applying conventional GBE to parts produced through additive manufacturing (AM) poses challenges, since it necessitates thermomechanical processing, which is not desirable for near-net-shape [...] Read more.
Grain boundary engineering (GBE) enhances the properties of metals by incorporating specific grain boundaries, such as twin boundaries (TB). However, applying conventional GBE to parts produced through additive manufacturing (AM) poses challenges, since it necessitates thermomechanical processing, which is not desirable for near-net-shape parts. This study explores an alternative GBE approach for post-processing bulk additively manufactured aluminium samples (KoBo extrusion), which allows thermo-mechanical treatment in a single operation. The present work was conducted to examine the microstructure evolution and grain boundary character in an additively manufactured AlSi10Mg alloy. Microstructural evolution and grain boundary character were investigated using Electron Back Scattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). The results show that along with grain refinement, the fraction of Coincidence Site Lattice boundaries was also increased in KoBo post-processed samples. The low-Σ twin boundaries were found to be the most common Coincidence Site Lattice boundaries. On the basis of EBSD analysis, it has been proven that the formation of CSL boundaries is directly related to a dynamic recrystallisation process. The findings show prospects for the possibility of engineering the special grain boundary networks in AM Al–Si alloys, via the KoBo extrusion method. Our results provide the groundwork for devising GBE strategies to produce novel high-performance aluminium alloys. Full article
(This article belongs to the Special Issue Electron Diffraction and Structural Imaging II)
Show Figures

Figure 1

13 pages, 4013 KB  
Article
Enhanced Fatigue Limit in Ultrafine-Grained Ferritic–Martensitic Steel
by Marina A. Nikitina, Rinat K. Islamgaliev, Artur V. Ganeev and Aleksandra A. Frik
Materials 2023, 16(4), 1632; https://doi.org/10.3390/ma16041632 - 15 Feb 2023
Cited by 1 | Viewed by 2015
Abstract
The influence of the ultrafine-grained (UFG) structure on the fatigue endurance limit and the nature of fatigue failure have been studied. It is shown that the formation of the UFG structure containing carbides and the coincidence site lattice relationship (CSL) and twin boundaries [...] Read more.
The influence of the ultrafine-grained (UFG) structure on the fatigue endurance limit and the nature of fatigue failure have been studied. It is shown that the formation of the UFG structure containing carbides and the coincidence site lattice relationship (CSL) and twin boundaries leads to an increase in the fatigue endurance limit. To study the mechanisms of fatigue failure, scanning and transmission electron microscopy and X-ray diffraction analysis were used. Studies have shown that the formation of the UFG structure as a result of rolling and subsequent heat treatment above the temperature of the ferrite/austenite phase transition leads to an increase in the fatigue endurance limit by more than 70%, from 475 to 800 MPa, compared to coarse-grained samples. The dynamic aging observed during fatigue tests was more pronounced in materials with a UFG microstructure. The influence of the CSL and twin boundaries on the nature of the fatigue failure of ferritic–martensitic steel is discussed. Full article
Show Figures

Figure 1

12 pages, 6416 KB  
Article
Grain Boundary Engineering and Its Effect on Intergranular Corrosion Resistance of a Ni-Cr-Mo Based C276 Superalloy
by Chi Zhang, Ling Lin, Renchao Chen, Liwen Zhang and Zhiwen Shao
Crystals 2022, 12(11), 1625; https://doi.org/10.3390/cryst12111625 - 13 Nov 2022
Cited by 11 | Viewed by 2674
Abstract
A Ni-Cr-Mo-based C276 superalloy was cold rolled to 5–40% and annealed at 1050 °C for 30 min. The microstructure and grain boundary character distribution after cold rolling and annealing were characterized. Grain refinement and a certain amount of coincident-site lattice (CSL) boundaries were [...] Read more.
A Ni-Cr-Mo-based C276 superalloy was cold rolled to 5–40% and annealed at 1050 °C for 30 min. The microstructure and grain boundary character distribution after cold rolling and annealing were characterized. Grain refinement and a certain amount of coincident-site lattice (CSL) boundaries were obtained through recrystallization. The fraction of CSL boundaries reached peak at the cold rolling of 15% and annealing at 1050 °C for 30 min, which was the critical condition for completed recrystallization. In addition, sensitization treatments and double-loop electrochemical potentiokinetic reaction (DL-EPR) tests were applied to the cold rolled and annealed samples. The samples with a high fraction of CSL boundaries showed higher intergranular corrosion resistance as compared to the ones with a low fraction of CSL boundaries. It implies that the intergranular corrosion resistance of C276 superalloy can be enhanced by optimizing the grain boundary structure through cold rolling and annealing. Full article
(This article belongs to the Special Issue Ni (Co)-Based Superalloys)
Show Figures

Figure 1

14 pages, 23576 KB  
Article
Relationship between Microstructure and Corrodibility of Local Dry Underwater Laser Welded 304 Stainless Steel
by Danbi Song, Jungsoo Choi, Dongsig Shin and Su-Jin Lee
Metals 2022, 12(11), 1904; https://doi.org/10.3390/met12111904 - 7 Nov 2022
Cited by 4 | Viewed by 2644
Abstract
To understand the relationship between microstructure and corrosion, in this study, underwater bead-on-plate laser welding was compared with the in-air laser welding of 10-mm-thick 304 stainless steel plates at different laser powers (2, 4, and 6 kW). Welding was performed via local dry [...] Read more.
To understand the relationship between microstructure and corrosion, in this study, underwater bead-on-plate laser welding was compared with the in-air laser welding of 10-mm-thick 304 stainless steel plates at different laser powers (2, 4, and 6 kW). Welding was performed via local dry underwater laser welding (UWLW) using a custom-designed nozzle and a fiber laser at a water depth of 70 mm. The best weld quality was obtained in both underwater and in-air environments using 2 kW of laser power. To understand the relationship between the microstructure and corrosion resistance of 304ss in underwater laser welding (UWLW), this study was conducted using a custom-designed nozzle. The grain boundary analysis revealed that the specimen prepared by UWLW had high-angle grain boundaries content approximately 1.5 times higher than that of the specimen produced by in-air laser welding, and the fraction of the coincidence site lattice (CSL) boundaries was increased remarkably. High residual stress and microchromium precipitation were observed in the UWLW specimen, and the corrosion rate of the same at 2 kW laser power was considerably similar to that of the in-air laser weld specimen. Full article
(This article belongs to the Special Issue Laser Welding Technology)
Show Figures

Figure 1

20 pages, 7714 KB  
Article
Heterogeneous Nucleation Mechanisms in Systems with Large Lattice Misfit Demonstrated by the Pb(l)/Cu(s) System
by Hua Men and Zhongyun Fan
Metals 2022, 12(10), 1583; https://doi.org/10.3390/met12101583 - 23 Sep 2022
Cited by 12 | Viewed by 2068
Abstract
Our current understanding of heterogeneous nucleation has been largely confined to the classical nucleation theory (CNT) that was postulated over 100 years ago based on a thermodynamic approach. Further advances in heterogeneous nucleation research requires detailed knowledge of atomistic activities at the liquid/substrate [...] Read more.
Our current understanding of heterogeneous nucleation has been largely confined to the classical nucleation theory (CNT) that was postulated over 100 years ago based on a thermodynamic approach. Further advances in heterogeneous nucleation research requires detailed knowledge of atomistic activities at the liquid/substrate interface. In this work, using a classical molecular dynamics (MD) simulation, we investigated the atomistic mechanisms of heterogeneous nucleation in systems with a large lattice misfit (|f| > 12.5%) demonstrated by the liquid Pb and solid Cu system (denoted as the Pb(l)/Cu(s) system) with a misfit of 27.3%. We found that heterogeneous nucleation in systems with a large misfit takes place in two distinctive steps: (1) Prenucleation creates a coincidence site lattice (CSL) on the substrate surface to accommodate the majority (fcsl) of the initial misfit (f) and (2) Heterogeneous nucleation accommodates the residual misfit fr (fr = misfit − fcsl) at the nucleation temperature to create a plane of the new solid phase (a two-dimensional (2D) nucleus) through either a three-layer dislocation mechanism if fr < 0 or a three-layer vacancy mechanism if fr > 0, such as in the case of the Pb(l)/Cu(s) system. Full article
Show Figures

Figure 1

16 pages, 7475 KB  
Article
Electron Backscatter Diffraction (EBSD) Analysis of Machinable Lead-Free Brass Alloys: Connecting Texture with Fracture
by Athanasios Vazdirvanidis, Andreas Rikos, Anagnostis I. Toulfatzis and George A. Pantazopoulos
Metals 2022, 12(4), 569; https://doi.org/10.3390/met12040569 - 28 Mar 2022
Cited by 10 | Viewed by 4280
Abstract
The current paper is related to the study of the microstructure and texture of two machinable lead-free brass alloys, namely CuZn42 (CW510L) and CuZn38As (CW511L), which were evaluated in the as-drawn and post heat treated condition. Electron backscatter diffraction (EBSD) was employed for [...] Read more.
The current paper is related to the study of the microstructure and texture of two machinable lead-free brass alloys, namely CuZn42 (CW510L) and CuZn38As (CW511L), which were evaluated in the as-drawn and post heat treated condition. Electron backscatter diffraction (EBSD) was employed for the examination of the brass rods’ crystallographic properties in order to correlate the effect of post processing heat treatment on the evolution of phase structure and texture towards the interpretation of dynamic (impact) fracture properties. It is shown that α- and β-phase volume fractions, mean grain size, and grain boundary misorientation are the most influential factors altering the fracture resistance of single- and dual-phase brass alloy rods. The role of grain boundary engineering, through the formation of coincidence site lattice (CSL) boundaries and their evolution during thermomechanical processing, is of major importance for the design of the mechanical behaviour of new eco-friendly machinable brass alloys. Full article
(This article belongs to the Special Issue Machinability and Tribological Performance of Advanced Alloys)
Show Figures

Figure 1

13 pages, 72570 KB  
Article
Complete Goss Secondary Recrystallization by Control of the Grain Size and Texture of Primary Recrystallization in Grain-Oriented Silicon Steel
by Zhanyi Xu, Yuhui Sha, Zhenghua He, Fang Zhang, Wei Liu, Huabing Zhang and Liang Zuo
Materials 2021, 14(18), 5383; https://doi.org/10.3390/ma14185383 - 17 Sep 2021
Cited by 11 | Viewed by 2881
Abstract
Matrix microstructure and texture controlling is an important way to optimize Goss ({110}<001>) abnormal grain growth (AGG) in high magnetic induction grain-oriented silicon (Hi-B) steel during primary recrystallization. In the present work, a matrix with homogeneous grain size and favorable texture components was [...] Read more.
Matrix microstructure and texture controlling is an important way to optimize Goss ({110}<001>) abnormal grain growth (AGG) in high magnetic induction grain-oriented silicon (Hi-B) steel during primary recrystallization. In the present work, a matrix with homogeneous grain size and favorable texture components was obtained through two-stage normalized annealing followed by primary recrystallization. Furthermore, secondary recrystallization was performed for sharp Goss orientation by slow heating and purified annealing. It was found that plenty of island grains, which occurred and disappeared gradually, accompanied the process of AGG. Through analyzing the evolution of microstructure and texture, we realized that the formation of island grains was related to the large-size grains in matrix, and the elimination of that was attributed to the special grain boundaries which satisfied both coincident site lattice (CSL) and high-energy (HE) models. It was essential to control grain size and favorable orientations in matrix comprehensively for the high-efficient abnormal growing of sharp Goss orientation, through which excellent magnetic properties could be obtained simultaneously. Full article
Show Figures

Figure 1

11 pages, 5098 KB  
Article
Influence of Laser-Welding on Microstructure and Corrosion Properties of Twinning-Induced Plasticity (TWIP) Steel
by Chengcheng Xu, Youkang Zhang, Wanlei Liu, Ying Jin, Lei Wen and Dongbai Sun
Materials 2020, 13(19), 4315; https://doi.org/10.3390/ma13194315 - 28 Sep 2020
Cited by 7 | Viewed by 2650
Abstract
The effect of welding speed on microstructure, mechanical properties, and corrosion properties of laser-assisted welded joints of a twinning-induced plasticity (TWIP) steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) analysis, electrochemical test, and micro-area scanning [...] Read more.
The effect of welding speed on microstructure, mechanical properties, and corrosion properties of laser-assisted welded joints of a twinning-induced plasticity (TWIP) steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) analysis, electrochemical test, and micro-area scanning Kelvin probe test (SKP). The results reveal that the welded joints, with a fully austenitic structure, are obtained by laser welding. In addition, the preferred orientation of grains in fusion zone (FZ) increased with the increase of welding speed. Additionally, the coincidence site lattice (CSL) grain boundaries of FZ decreased with increasing welding speed. However, potentiodynamic polarization and SKP results demonstrated that the welding speed of 1.5 m/min renders superior corrosion resistance. It can also be inferred that the corrosion properties of the welded joints are related to the grain size and frequency of CSL grain boundary in FZ. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

13 pages, 3402 KB  
Article
Crystallographic Evaluation of Susceptibility to Intergranular Corrosion in Austenitic Stainless Steel with Various Degrees of Sensitization
by Tomoyuki Fujii, Takaya Furumoto, Keiichiro Tohgo and Yoshinobu Shimamura
Materials 2020, 13(3), 613; https://doi.org/10.3390/ma13030613 - 30 Jan 2020
Cited by 14 | Viewed by 3414
Abstract
This study investigated the susceptibility to intergranular corrosion (IGC) in austenitic stainless steel with various degrees of sensitization (DOSs) from a microstructural viewpoint based on the coincidence site lattice (CSL) model. IGC testing was conducted using oxalic acid and type 304 stainless steel [...] Read more.
This study investigated the susceptibility to intergranular corrosion (IGC) in austenitic stainless steel with various degrees of sensitization (DOSs) from a microstructural viewpoint based on the coincidence site lattice (CSL) model. IGC testing was conducted using oxalic acid and type 304 stainless steel specimens with electrochemical potentiokinetic reactivation (EPR) ratios that varied from 3 to 30%. As a measure of IGC susceptibility, the width of the corroded groove was used. The relationship between IGC susceptibility, grain boundaries (GB) structure, and EPR ratio of the specimens was evaluated. As a result, the IGC susceptibility cannot be characterized using the Σ value, irrespective of the DOS of the specimen. The IGC susceptibility increases with increasing unit cell area of CSL boundaries, which is a measure of the stability of the CSL boundaries, and then levels off. The relationship between the IGC susceptibility and unit cell area is sigmoidal, irrespective of the DOS of the specimen. The sigmoid curve shifts rightward and the upper bound of IGC susceptibility decreases with decreasing DOS of the specimen. Full article
(This article belongs to the Special Issue Corrosion and Protection of Materials)
Show Figures

Figure 1

12 pages, 5271 KB  
Article
Effects of Magnetic Field on the Residual Stress and Structural Defects of Ti-6Al-4V
by Xu Zhang, Qian Zhao, Zhipeng Cai and Jiluan Pan
Metals 2020, 10(1), 141; https://doi.org/10.3390/met10010141 - 17 Jan 2020
Cited by 32 | Viewed by 5985
Abstract
In this work, the influences of a magnetic field of 2.4 T on the macro residual stress and the status of structural defects, including grain boundaries, dislocations and the Fe-rich clusters of Ti-6Al-4V were investigated by X-ray Diffraction (XRD), Electron Backscatter Diffraction (EBSD) [...] Read more.
In this work, the influences of a magnetic field of 2.4 T on the macro residual stress and the status of structural defects, including grain boundaries, dislocations and the Fe-rich clusters of Ti-6Al-4V were investigated by X-ray Diffraction (XRD), Electron Backscatter Diffraction (EBSD) and magnetic measurement. The XRD test results show that the applied magnetic field can cause the relaxation and homogenization of macro residual stress. The maps of Kernel Average Misorientation (KAM) values obtained by EBSD tests present a significant dislocation multiplication caused by a magnetic field, and the rise of dislocation density was estimated to be about 32% by XRD tests. The EBSD test results also show an increase in the fraction of Coincidence Site Lattice (CSL) grain boundaries and a decrease in the fraction of low-angle grain boundaries. The results of magnetic measurement show that Ti-6Al-4V has mixed magnetism consisting of paramagnetism and weak ferromagnetism, and that the ferromagnetic saturation magnetization decreased after exposing the alloy to the magnetic field, which suggests the dissolution of the Fe-rich clusters in the alloy. These magnetically-induced changes are related to magnetoplastic effects, a kind of phenomena on which there have been some research, and the possible mechanism of them is discussed in this paper. Full article
Show Figures

Graphical abstract

Back to TopTop