Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = cold precipitation events

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7625 KB  
Article
Outdoor Ice Rinks in Ontario, Canada—An Oversimplified Model for Ice Water Equivalent and Operational Duration to Evaluate Changing Climate
by Huaxia Yao and Steven R. Fassnacht
Hydrology 2025, 12(10), 263; https://doi.org/10.3390/hydrology12100263 - 5 Oct 2025
Viewed by 326
Abstract
Outdoor ice rinks have long been a staple for inexpensive exercise and entertainment in cold environments. However, the possible deterioration of or impact on outdoor ice rinks from a changing climate is poorly understood due to no or little monitoring of data of [...] Read more.
Outdoor ice rinks have long been a staple for inexpensive exercise and entertainment in cold environments. However, the possible deterioration of or impact on outdoor ice rinks from a changing climate is poorly understood due to no or little monitoring of data of such facilities. To investigate long-term changes in ice rinks over recent decades, an energy-balance-based ice rink model (with three versions considering precipitation and melt) was applied to a simulated ice rink for two representative area—Dorset of south-central Ontario and the Experimental Lakes Area (ELA) of northwestern Ontario, Canada. The model was calibrated and tested using four-year ice rink data (since limited data are available) and applied to a 40-year period starting in 1978 to reproduce the dates of rink-on and rink-off, rink duration in a season, and ice water equivalent under daily climate inputs, and to illustrate any changing trend in these variables, i.e., the ice rink responses to changed climate. Results showed no clear trend in any ice rink features over four decades, attributed to winter temperature that did not increase substantially (a weak driver), no change in events of rain-on-ice and snowfall-on-rink, and reduced wind speed (possibly slowing ice melting). This is the first trial of a physically based rink model to evaluate outdoor ice rinks. More in situ monitoring and in-depth modelling are necessary, and this model can help guide the monitoring. Full article
Show Figures

Graphical abstract

54 pages, 18368 KB  
Article
LUME 2D: A Linear Upslope Model for Orographic and Convective Rainfall Simulation
by Andrea Abbate and Francesco Apadula
Meteorology 2025, 4(4), 28; https://doi.org/10.3390/meteorology4040028 - 3 Oct 2025
Viewed by 158
Abstract
Rainfalls are the result of complex cloud microphysical processes. Trying to estimate their intensity and duration is a key task necessary for assessing precipitation magnitude. Across mountains, extreme rainfalls may cause several side effects on the ground, triggering severe geo-hydrological issues (floods and [...] Read more.
Rainfalls are the result of complex cloud microphysical processes. Trying to estimate their intensity and duration is a key task necessary for assessing precipitation magnitude. Across mountains, extreme rainfalls may cause several side effects on the ground, triggering severe geo-hydrological issues (floods and landslides) which impact people, human activities, buildings, and infrastructure. Therefore, having a tool able to reconstruct rainfall processes easily and understandably is advisable for non-expert stakeholders and researchers who deal with rainfall management. In this work, an evolution of the LUME (Linear Upslope Model Experiment), designed to simplify the study of the rainfall process, is presented. The main novelties of the new version, called LUME 2D, regard (1) the 2D domain extension, (2) the inclusion of warm-rain and cold-rain bulk-microphysical schemes (with snow and hail categories), and (3) the simulation of convective precipitations. The model was completely rewritten using Python (version 3.11) and was tested on a heavy rainfall event that occurred in Piedmont in April 2025. Using a 2D spatial and temporal interpolation of the radiosonde data, the model was able to reconstruct a realistic rainfall field of the event, reproducing rather accurately the rainfall intensity pattern. Applying the cold microphysics schemes, the snow and hail amounts were evaluated, while the rainfall intensity amplification due to the moist convection activation was detected within the results. The LUME 2D model has revealed itself to be an easy tool for carrying out further studies on intense rainfall events, improving understanding and highlighting their peculiarity in a straightforward way suitable for non-expert users. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2025))
Show Figures

Figure 1

19 pages, 15250 KB  
Article
Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models
by Yuxi Jiang, Yutao Chi, Weidong Wang, Wenshan Li, Hui Wang and Jianxiang Sun
Atmosphere 2025, 16(10), 1143; https://doi.org/10.3390/atmos16101143 - 29 Sep 2025
Viewed by 313
Abstract
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the [...] Read more.
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the multimodel ensemble from the Couple Model Intercomparison Project 6 and a temperature threshold method to investigate the EAWC changes during the period 1979–2100. The results show that the EAWC has been undergoing widespread and robust changes in response to global warming. The winter length in East Asia has shortened and will continue shortening owing to later onsets and earlier withdrawals, leading to a drastic contraction in length from 100 days in 1979 to 43 days (27 days) in 2100 under SSP2-4.5 (SSP5-8.5). While most regions of the East Asian continent are projected to become warmer in winter, the Japan and marginal seas of northeastern Asia will face the risks from colder winters with more frequent extreme cold events, accompanied by less precipitation. Meanwhile, the Tibetan Plateau is very likely to have colder winters in the future, though its surface snow amounts will significantly decline. Greenhouse gas (GHG) emissions are found to be responsible for the EAWC changes. GHG traps heat inside the Earth’s atmosphere and notably increases the air temperature; moreover, its force modulates large-scale atmospheric circulation, facilitating an enhanced and northward-positioned Aleutian low together with a weakened Siberian high, East Asian trough, and East Asian jet stream. These two effects work together, resulting in a contracted winter with robust and uneven regional changes in the EAWC. This finding highlights the urgency of curbing GHG emissions and improving forecasts of the EAWC, which are crucial for mitigating their major ecological and social impacts. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 2329 KB  
Article
Forecasting the Athabasca River Flow Using HEC-HMS as Hydrologic Model for Cold Weather Applications
by Chiara Belvederesi, Gopal Achari and Quazi K. Hassan
Hydrology 2025, 12(10), 253; https://doi.org/10.3390/hydrology12100253 - 28 Sep 2025
Viewed by 420
Abstract
The Athabasca River flows through the Lower Athabasca Region (LAR) in Alberta, Canada, which is characterized by variable inter-annual weather, long winters and short summers. LAR is important for the extraction of energy resources and industrial activities that lead to environmental concerns, including [...] Read more.
The Athabasca River flows through the Lower Athabasca Region (LAR) in Alberta, Canada, which is characterized by variable inter-annual weather, long winters and short summers. LAR is important for the extraction of energy resources and industrial activities that lead to environmental concerns, including river pollution and exploitation. This study attempts to forecast the Athabasca River at Fort McMurray and understand the suitability of HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) in cold weather regions, characterized by poorly gauged streams. Daily temperature and precipitation records (1971–2014) were employed in two calibration–validation schemes: (1) a temporally dependent partition (1971–2000 for calibration; 2001–2014 for validation) and (2) a temporally independent partition (alternating years assigned to calibration and validation). The temporally independent approach achieved superior performance, with a Nash–Sutcliffe efficiency of 0.88, outperforming previously developed regional models. HEC-HMS successfully reproduced hydrologic dynamics and peak discharge events under conditions of sparse hydroclimatic data and limited computational inputs, underscoring its robustness for operational forecasting in data-scarce, cold-climate catchments. However, long-term projections may be subject to uncertainty due to the exclusion of anticipated changes in land use and climate forcing. These results substantiate the applicability of HEC-HMS as a cost-effective and reliable tool for hydrological modeling and flow forecasting in support of water resource management, particularly in regions subject to industrial pressures and associated environmental impacts. Full article
Show Figures

Figure 1

13 pages, 10728 KB  
Article
Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
by Matheus Gomes Tavares, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros and Francis Wagner Correia
Geographies 2025, 5(3), 36; https://doi.org/10.3390/geographies5030036 - 24 Jul 2025
Viewed by 579
Abstract
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of [...] Read more.
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of the Madeira River Sustainable Development Reserve (MSDR), offering scientific support to efforts to assess the feasibility of implementing adaptation measures to increase the resilience of isolated Amazon communities in the face of extreme climate events. Significant statistical analyses based on time series of observational and reanalysis climate data were employed to obtain a detailed diagnosis of local climate variability. The results show that monthly mean two-meter temperatures vary from 26.5 °C in February, the coolest month, to 28 °C in August, the warmest month. Monthly precipitation averages approximately 250 mm during the rainy season, from December until May. July and August are the driest months, August and September are the warmest months, and September and October are the months with the lowest river level. Cold spells were identified in July, and warm spells were identified between July and September, making this period critical for public health. Heavy precipitation events detected by the R80, Rx1day, and Rx5days indices show an increasing trend in frequency and intensity in recent years. The analyses indicated that the MSDR has no potential for wind-energy generation; however, photovoltaic energy production is viable throughout the year. Regarding the two major commercial crops and their resilience to thermal stress, the region presents suitable conditions for açaí palm cultivation, but Brazil nut production may be adversely affected by extreme drought and heat events. The results of this study may support research on adaptation strategies that includethe preservation of local traditions and natural resources to ensure sustainable development. Full article
Show Figures

Figure 1

20 pages, 14382 KB  
Article
Exploring the Causes of Multicentury Hydroclimate Anomalies in the South American Altiplano with an Idealized Climate Modeling Experiment
by Ignacio Alonso Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodríguez, Nicolás Lampe-Huenul and Antonio Maldonado
Atmosphere 2025, 16(7), 751; https://doi.org/10.3390/atmos16070751 - 20 Jun 2025
Viewed by 542
Abstract
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric [...] Read more.
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric mechanisms conducive to long-term precipitation variability in the southern Altiplano (18–25° S; 70–65 W; >3500 masl). We performed a series of 100-year-long idealized simulations using the Weather Research and Forecasting (WRF) model, configured to repeat annually the oceanic and atmospheric forcing leading to the exceptionally humid austral summers of 1983/1984 and 2011/2012. The aim of these cyclical experiments was to evaluate if these specific conditions can sustain a century-long pluvial event in the Altiplano. Unlike the annual forcing, long-term negative precipitation trends are observed in the simulations, suggesting that the drivers of 1983/1984 and 2011/2012 wet summers are unable to generate a century-scale pluvial event. Our results show that an intensification of the anticyclonic circulation along with cold surface air anomalies in the southwestern Atlantic progressively reinforce the lower and upper troposphere features that prevent moisture transport towards the Altiplano. Prolonged drying is also observed under persistent La Niña conditions, which contradicts the well-known relationship between precipitation and ENSO at interannual timescales. Contrasting the hydroclimate responses between the Altiplano and the tropical Andes result from a sustained northward migration of the Atlantic trade winds, providing a useful analog for explaining the divergences in the Holocene records. This experiment suggests that the drivers of century-scale hydroclimate events in the Altiplano were more diverse than previously thought and shows how climate modeling can be used to test paleoclimate hypotheses, emphasizing the necessity of combining proxy data and numerical models to improve our understanding of past climates. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

31 pages, 29953 KB  
Article
Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part II: A Numerical Study of Urban Infrastructure Effects on the Evolution of City-Scale Convection
by S. M. Shajedul Karim, Michael L. Kaplan and Yuh-Lang Lin
Atmosphere 2025, 16(6), 652; https://doi.org/10.3390/atmos16060652 - 27 May 2025
Viewed by 556
Abstract
Numerical models were employed to simulate the effects of urban infrastructure on the city-scale precipitation distribution during multiple closely occurring convective squall line events over Chicago. Two high-resolution simulations were inter-compared, one using standard land use databases to initialize the WRF-ARW numerical model [...] Read more.
Numerical models were employed to simulate the effects of urban infrastructure on the city-scale precipitation distribution during multiple closely occurring convective squall line events over Chicago. Two high-resolution simulations were inter-compared, one using standard land use databases to initialize the WRF-ARW numerical model and the other using a high-resolution urban canopy formulation and detailed land use databases to initialize the WRF-UCM numerical model. Two squall lines organized and propagated over Chicago during an eight-hour period. The (1 km) spatio-temporal evolution of the first squall line was more accurately simulated by the WRF-UCM than that simulated by the WRF-ARW. The WRF-UCM captures more realistic urban heat island-induced buoyancy forcing when validated against multiple airport meteograms and Doppler radar-derived reflectivity and precipitation. The WRF-UCM increases surface heating, substantially strengthening the surface-based convective available potential energy (SBCAPE) and subsequent cold downdrafts. Additionally, the increased surface heating acts to strengthen and bifurcate the upper-level divergence and energize three low-level jets that converge upon the city and shape the convective organization. While the effect of this additional buoyancy on the first squall line was critical, the second line’s dissipation was not substantially different in the two simulations because of diminishing tropospheric forcing. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 4948 KB  
Article
The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
by Nana Zhang, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin and Zhongbo Yu
Atmosphere 2025, 16(6), 640; https://doi.org/10.3390/atmos16060640 - 24 May 2025
Viewed by 691
Abstract
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional [...] Read more.
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional water security. In this study, the HBV hydrological model was set up and driven by CMIP6 global climate model outputs to investigate the multi-scale temporal variations of runoff under different climate change scenarios in the Tuotuo River Basin (TRB) within the source region of the Yangtze River (SRYR). The results suggest that the TRB will undergo significant warming and wetting in the future, with increasing precipitation primarily occurring from May to October and a notable rise in annual temperature. Both temperature and precipitation trends intensify under more extreme climate scenarios. Under all climate scenarios, annual runoff generally exhibits an upward trend, except under the SSP1-2.6 scenario, where a slight decline in total runoff is projected for the late 21st century (2061–2090). The increase in total runoff is primarily concentrated between May and October, driven by enhanced rainfall and meltwater contributions, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. Precipitation is the primary driver of annual runoff depth changes, with temperature effects varying by scenario and period. Under high emissions, intensified warming and glacier melt amplify runoff, while low emissions show stable warming with precipitation dominating runoff changes. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

16 pages, 11579 KB  
Article
Characteristic Analysis of the Extreme Precipitation over South China During the Dragon-Boat Precipitation in 2022
by Meixia Chen, Yufeng Xue, Juliao Qiu, Chunlei Liu, Shuqin Zhang, Jianjun Xu and Ziye Zhu
Atmosphere 2025, 16(5), 619; https://doi.org/10.3390/atmos16050619 - 19 May 2025
Viewed by 701
Abstract
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from [...] Read more.
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from 20 May to 21 June over South China in 2022 using the synoptic diagnostic method. The results indicate that the total precipitation during this period significantly exceeded the climatological average, with multiple large-scale extreme rainfall events characterized by high intensity, extensive coverage, and prolonged duration. The spatial distribution of precipitation exhibited a north-more-south-less pattern, with the maximum rainfall center located in the Nanling Mountains, particularly in the Shaoguan–Qingyuan–Heyuan region of Guangdong Province, where peak precipitation exceeded 1100 mm, and the mean precipitation was approximately 1.7 times the climatology from the GPM data. The average daily precipitation throughout the period was 17.5 mm/day, which was 6 mm/day higher than the climatological mean, while the heaviest rainfall on 13 June reached 39 mm/day above the average, exceeding two standard deviations. The extreme precipitation during the “Dragon-Boat Precipitation” period in 2022 was associated with an anomalous deep East Asian trough, an intensified South Asian High, a stronger-than-usual Western Pacific Subtropical High, an enhanced South Asian monsoon and South China Sea monsoon, and the dominance of a strong Southwesterly Low-Level Jet (SLLJ) over South China. Two major moisture transport pathways were established: one from the Bay of Bengal to South China and another from the South China Sea, with the latter contributing a little higher amount of water vapor transport than the former. The widespread extreme precipitation on 13 June 2022 was triggered by the anomalous atmospheric circulation conditions. In the upper levels, South China was located at the northwestern periphery of the slightly stronger-than-normal Western Pacific Subtropical High, intersecting with the base of a deep trough associated with an anomalous intense Northeast China Cold Vortex (NCCV). At lower levels, the region was positioned along a shear line formed by anomalous southwesterly and northerly winds, where exceptionally strong southwesterly moisture transport, significant moisture convergence, and intense vertical updraft led to the widespread extreme rainfall event on that day. Full article
(This article belongs to the Special Issue Climate Change and Extreme Weather Disaster Risks (2nd Edition))
Show Figures

Figure 1

20 pages, 12500 KB  
Article
Has Climate Change Affected the Occurrence of Compound Heat Wave and Heavy Rainfall Events in Poland?
by Joanna Wibig and Joanna Jędruszkiewicz
Sustainability 2025, 17(10), 4447; https://doi.org/10.3390/su17104447 - 14 May 2025
Viewed by 1944
Abstract
In the recent decades, an ongoing increase in maximum temperature during summer has been observed in Poland, especially in the central-southern and southeastern areas. This raises the vulnerability of these regions not only to heat waves and drought but also to floods. The [...] Read more.
In the recent decades, an ongoing increase in maximum temperature during summer has been observed in Poland, especially in the central-southern and southeastern areas. This raises the vulnerability of these regions not only to heat waves and drought but also to floods. The potential effect of compound heat waves and extreme rainfall events may be more serious than the effects of these events occurring separately. This research is the first attempt in Poland to investigate whether the presence of a heat wave increases the likelihood of extreme rainfall events, if so, by how much, and whether this changes with warming. For this purpose, we used daily maximum temperature values and 6 h precipitation datasets from 44 meteorological stations in Poland for the 1966–2024 period. It was proven that compound heat wave and extreme rainfall events occurred in Poland with spatially differentiated frequency. They occurred the least frequently on the coast and the most frequently in southwestern, southeastern, and northeastern Poland. The extreme rainfall occurred most often between noon and midnight on the last heat wave day. During these hours, the likelihood of extreme rainfall is, on average, 3.5 times higher than that expected according to climatology norms. With warming, the frequency of days with these compound events increases at the rate of 1.22 days per decade, and the frequency of compound events increases at a rate of 3.75 events per decade. Although a detailed analysis of the mechanisms responsible for such events is planned for further research, the preliminary study revealed that in most cases, the approach of a cold front with a mesoscale thundercloud system was responsible for heat wave termination with extreme rainfall. Since we cannot prevent the growing number of heat waves or heavy precipitation events that terminate the heat wave events in Poland, the adaptation strategy needs to be implemented to meet the sustainable development goals regarding climate actions. This refers primarily to urban planning, agriculture (agroecosystems), social health, and well-being. Full article
Show Figures

Figure 1

19 pages, 6469 KB  
Article
Long-Term Impact of Extreme Weather Events on Grassland Growing Season Length on the Mongolian Plateau
by Wanyi Zhang, Qun Guo, Genan Wu, Kiril Manevski and Shenggong Li
Remote Sens. 2025, 17(9), 1560; https://doi.org/10.3390/rs17091560 - 28 Apr 2025
Viewed by 1042
Abstract
Quantifying extreme weather events (EWEs) and understanding their impacts on vegetation phenology is crucial for assessing ecosystem stability under climate change. This study systematically investigated the ecosystem growing season length (GL) response to four types of EWEs—extreme heat, extreme cold, extreme wetness (surplus [...] Read more.
Quantifying extreme weather events (EWEs) and understanding their impacts on vegetation phenology is crucial for assessing ecosystem stability under climate change. This study systematically investigated the ecosystem growing season length (GL) response to four types of EWEs—extreme heat, extreme cold, extreme wetness (surplus precipitation), and extreme drought (lack of precipitation). The EWE extremity thresholds were found statistically using detrended long time series (2000–2022) ERA5 meteorological data through z-score transformation. The analysis was based on a grassland ecosystem in the Mongolian Plateau (MP) from 2000 to 2022. Using solar-induced chlorophyll fluorescence data and event coincidence analysis, we evaluated the probability of GL anomalies coinciding with EWEs and assessed the vegetation sensitivity to climate variability. The analysis showed that 83.7% of negative and 87.4% of positive GL anomalies were associated with one or more EWEs, with extreme wetness (27.0%) and extreme heat (25.4%) contributing the most. These findings highlight the dominant role of EWEs in shaping phenological shifts. Negative GL anomalies were more strongly linked to EWEs, particularly in arid and cold regions where extreme drought and cold shortened the growing season. Conversely, extreme heat and wetness had a greater influence in warmer and wetter areas, driving both the lengthening and shortening of GL. Furthermore, background hydrothermal conditions modulated the vegetation sensitivity, with warmer regions being more susceptible to heat stress and drier regions more vulnerable to drought. These findings emphasize the importance of regional weather variability and climate characteristics in shaping vegetation phenology and provide new insights into how weather extremes impact ecosystem stability in semi-arid and arid regions. Future research should explore extreme weather events and the role of human activities to enhance predictions of vegetation–climate interactions in grassland ecosystems of the MP. Full article
Show Figures

Figure 1

27 pages, 26505 KB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Cited by 1 | Viewed by 924
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

18 pages, 9721 KB  
Article
A Multi-Year Investigation of Thunderstorm Activity at Istanbul International Airport Using Atmospheric Stability Indices
by Oğuzhan Kolay, Bahtiyar Efe, Emrah Tuncay Özdemir and Zafer Aslan
Atmosphere 2025, 16(4), 470; https://doi.org/10.3390/atmos16040470 - 17 Apr 2025
Viewed by 1669
Abstract
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of [...] Read more.
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of Istanbul International Airport (International Civil Aviation Organization (ICAO) code: LTFM) have been investigated because it is currently one of the busiest airports in Europe and the seventh-busiest airport in the world. Geopotential height (m), temperature (°C), dewpoint temperature (°C), relative humidity (%), mixing ratio (g kg−1), wind direction (°), and wind speed (knots) data for the ground level and upper levels of the İstanbul radiosonde station were obtained from the Turkish State Meteorological Service (TSMS) for 29 October 2018 and 1 January 2023. Surface data were regularly collected by the automatic weather stations near the runway and the upper-level data were collected by the radiosonde system located in the Kartal district of İstanbul. Thunderstorm statistics, stability indices, and meteorological variables at the upper levels were evaluated for this period. Thunderstorms were observed to be more frequent during the summer, with a total of 51 events. June had the highest number of thunderstorm events with a total of 32. This averages eight events per year. A total of 72.22% occurred during trough and cold front transitions. The K index and total totals index represented the thunderstorm events better than other stability indices. In total, 75% of the thunderstorm days were represented by these two stability indices. The results are similar to the covering of this area: the convective available potential energy (CAPE) values which are commonly used for atmospheric instability are low during thunderstorm events, and the K and total totals indices are better represented for thunderstorm events. This study investigates thunderstorm events at the LTFM, providing critical insights into aviation safety and operational efficiency. The research aims to improve flight planning, reduce weather-related disruptions, and increase safety and also serves as a reference for airports with similar climatic conditions. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

16 pages, 7307 KB  
Article
Rainfall Partitioning by Two Alpine Shrubs in the Qilian Mountains, Northwest China: Implications for Hydrological Modeling in Cold Regions
by Zhangwen Liu, Yongxin Tian, Jinxian Qi, Zhiying Dang, Rensheng Chen, Chuntan Han and Yong Yang
Forests 2025, 16(4), 658; https://doi.org/10.3390/f16040658 - 10 Apr 2025
Viewed by 500
Abstract
Understanding rainfall partitioning by shrub canopies is essential for assessing water balance and improving hydrological models in cold regions. From 2010 to 2012, field experiments were conducted in the Hulu catchment of the Qilian Mountains, focusing on Potentilla fruticosa and Caragana jubata during [...] Read more.
Understanding rainfall partitioning by shrub canopies is essential for assessing water balance and improving hydrological models in cold regions. From 2010 to 2012, field experiments were conducted in the Hulu catchment of the Qilian Mountains, focusing on Potentilla fruticosa and Caragana jubata during the growing season. Throughfall, stemflow, and interception loss were measured using rain gauges, stemflow collars, and a water balance approach. A total of 197 natural rainfall events were recorded, and precipitation partitioning characteristics were analyzed in relation to rainfall intensity, amount, and vegetation traits. One-way ANOVA and regression analyses were used to test differences and correlations. The results showed that the critical rainfall threshold for generating throughfall and stemflow was 1.9 mm. For P. fruticosa, throughfall, stemflow, and interception loss accounted for 66.96%, 3.51%, and 29.53% of gross rainfall, respectively; the corresponding values for C. jubata were 67.31%, 7.27%, and 25.42%. Significant differences (p < 0.05) in stemflow were observed between species. Partitioning components were positively correlated with rainfall amount and stabilized at ~4 mm h−1 intensity. Interception loss percentage decreased with intensity and plateaued at 2 mm h−1 for P. fruticosa and 5 mm h−1 for C. jubata. These findings provide empirical evidence for modeling shrub canopy rainfall redistribution in alpine environments. Full article
(This article belongs to the Special Issue Hydrological Modelling of Forested Ecosystems)
Show Figures

Figure 1

23 pages, 11213 KB  
Article
Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024)
by Claudio Stefanini, Francesca Becherini, Antonio della Valle and Dario Camuffo
Climate 2025, 13(4), 70; https://doi.org/10.3390/cli13040070 - 30 Mar 2025
Viewed by 2547
Abstract
Regular meteorological observations in Padua started in 1725 and have continued unbroken up to the present, making the series one of the longest in the world. Daily mean temperatures and precipitation amounts have recently been homogenized for the entire 1725–2024 period, making it [...] Read more.
Regular meteorological observations in Padua started in 1725 and have continued unbroken up to the present, making the series one of the longest in the world. Daily mean temperatures and precipitation amounts have recently been homogenized for the entire 1725–2024 period, making it possible to add new measurements without further work. Starting from the temperature series, the trends of cold and warm spells are investigated in this paper. The ongoing warming that started in the 1970s is extensively analyzed on the basis of the variability of the mean values and a magnitude index that captures both the duration and intensity of a spell and by investigating the frequency of extreme events by means of Intensity–Duration–Frequency curves. The periods with the greatest deviation from the climatological average are analyzed in detail: February 1740 and April 1755, the months with the largest negative and positive temperature anomalies, respectively, in the 300-year-long series. Moreover, the analysis of snow occurrences extracted from the original logs, together with the pressure observations from the long series of London and Uppsala, made it possible to evaluate the most typical synoptic situations leading to snow events in Padua for the whole period. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records (Second Edition))
Show Figures

Figure 1

Back to TopTop