Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = colonoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3332 KB  
Article
A Preclinical Model to Assess Intestinal Barrier Integrity Using Canine Enteroids and Colonoids
by Megan P. Corbett, Vojtech Gabriel, Vanessa Livania, David Díaz-Regañón, Abigail Ralston, Christopher Zdyrski, Dongjie Liu, Sarah Minkler, Hannah Wickham, Addison Lincoln, Karel Paukner, Todd Atherly, Maria M. Merodio, Dipak Kumar Sahoo, David K. Meyerholz, Karin Allenspach and Jonathan P. Mochel
Biology 2025, 14(3), 270; https://doi.org/10.3390/biology14030270 - 6 Mar 2025
Cited by 1 | Viewed by 1834
Abstract
While two-dimensional (2D) cell cultures, such as Caco-2 and Madin–Darby canine kidney (MDCK) cells are widely used in a variety of biological models, these two-dimensional in vitro systems present inherent limitations in replicating the complexities of in vivo biology. Recent progress in three-dimensional [...] Read more.
While two-dimensional (2D) cell cultures, such as Caco-2 and Madin–Darby canine kidney (MDCK) cells are widely used in a variety of biological models, these two-dimensional in vitro systems present inherent limitations in replicating the complexities of in vivo biology. Recent progress in three-dimensional organoid technology has the potential to address these limitations. In this study, the characteristics of conventional 2D cell culture systems were compared to those of canine intestinal organoids (enteroids, ENT, and colonoids, COL). Light microscopy and transmission electron microscopy were employed to evaluate the microanatomy of ENT, COL, Caco-2, and MDCK cell monolayers, while transepithelial electrical resistance (TEER) values were measured to assess monolayer integrity. The TEER values of canine ENT monolayers more closely approximated reported TEER values for human small intestines compared to Caco-2 and MDCK monolayers. Additionally, canine ENT demonstrated greater monolayer stability than Caco-2 and MDCK cells. Notably, while all systems displayed desmosomes, canine ENT and COL exclusively produced mucus. These findings highlight the potential of the canine organoid system as a more biologically relevant model for in vitro studies, addressing the limitations of conventional 2D cell culture systems. Full article
(This article belongs to the Special Issue Animal Models in Toxicology)
Show Figures

Figure 1

12 pages, 2219 KB  
Article
Oxidized Low-Density Lipoprotein Induces Reactive Oxygen Species-Dependent Proliferation of Intestinal Epithelial Cells
by Eddy E. Gonzalez-Horta, Juan F. Burgueno, María J. Leiva, Carla Villavicencio, Fernando I. Kawaguchi, Hajar Hazime, Fátima Reyes, Viana Manrique-Suárez, Natalie C. Parra, Maria T. Abreu and Jorge R. Toledo
Pharmaceuticals 2024, 17(11), 1466; https://doi.org/10.3390/ph17111466 - 1 Nov 2024
Cited by 1 | Viewed by 1850
Abstract
Background/Objectives: Oxidized low-density lipoprotein (ox-LDL) is a proinflammatory particle associated with various diseases and affects cell proliferation and viability in multiple cell types. However, its impact on intestinal epithelial cells remains underexplored. This study investigates the effect of ox-LDL on colonic epithelial [...] Read more.
Background/Objectives: Oxidized low-density lipoprotein (ox-LDL) is a proinflammatory particle associated with various diseases and affects cell proliferation and viability in multiple cell types. However, its impact on intestinal epithelial cells remains underexplored. This study investigates the effect of ox-LDL on colonic epithelial cell proliferation and viability, as well as the underlying mechanisms involved. Methods: The expression levels of ox-LDL receptors in human colonoids were analyzed at baseline and in response to proinflammatory signals by qRT-PCR. The effect of ox-LDL on organoid proliferation was analyzed using morphometric measurements, viability assays, and the incorporation of a thymidine analog into DNA. The generation of reactive oxygen species (ROS) was determined by Amplex Red assays. Additionally, ox-LDL-induced ROS-dependent organoid proliferation was studied by exposing colonoids to an antioxidant or ROS inhibitors. Results: Colonic epithelial cells express ox-LDL receptors. Ox-LDL significantly induces the proliferation of colonic epithelial cells, which are dependent on ROS generation. Notably, ROS scavengers and NADPH inhibitors reduced ox-LDL-induced proliferation, highlighting the crucial role of oxidative stress in this process. Conclusions: This study demonstrates for the first time that ox-LDL stimulates CEC proliferation mediated by ROS production and validates that the colonic organoid model enables the analysis of potential pharmacological strategies for intestinal diseases characterized by oxidative stress and inflammation. Full article
(This article belongs to the Special Issue New and Emerging Treatment Strategies for Gastrointestinal Diseases)
Show Figures

Graphical abstract

18 pages, 3513 KB  
Article
Cystathionine Gamma-Lyase Regulates TNF-α-Mediated Injury Response in Human Colonic Epithelial Cells and Colonoids
by Francisco Arroyo Almenas, Gábor Törő, Peter Szaniszlo, Manjit Maskey, Ketan K. Thanki, Walter A. Koltun, Gregory S. Yochum, Irina V. Pinchuk, Celia Chao, Mark R. Hellmich and Katalin Módis
Antioxidants 2024, 13(9), 1067; https://doi.org/10.3390/antiox13091067 - 31 Aug 2024
Cited by 1 | Viewed by 1692
Abstract
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated [...] Read more.
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated by CSE and TNF-α are poorly understood. In the present study, we investigated these interactions in normal colonocytes and an organoid model of the healthy human colon using CSE-specific pharmacological inhibitors and siRNA-mediated transient gene silencing in analytical and functional assays in vitro. We demonstrated that CSE and TNF-α mutually regulated each other’s functions in colonic epithelial cells. TNF-α treatment stimulated CSE activity within minutes and upregulated CSE expression after 24 h, increasing endogenous CSE-derived H2S production. In turn, CSE activity promoted TNF-α-induced NF-ĸB and ERK1/2 activation but did not affect the p38 MAPK signaling pathway. Inhibition of CSE activity completely abolished the TNF-α-induced increase in transepithelial permeability and wound healing. Our data suggest that CSE activity may be essential for effective TNF-α-mediated intestinal injury response. Furthermore, CSE regulation of TNF-α-controlled intracellular signaling pathways could provide new therapeutic targets in diseases of the colon associated with impaired epithelial wound healing. Full article
(This article belongs to the Special Issue Hydrogen Sulfide Signaling in Biological Systems)
Show Figures

Figure 1

12 pages, 4303 KB  
Article
SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells
by Avan Antia, David M. Alvarado, Qiru Zeng, Luis A. Casorla-Perez, Deanna L. Davis, Naomi M. Sonnek, Matthew A. Ciorba and Siyuan Ding
Viruses 2024, 16(4), 634; https://doi.org/10.3390/v16040634 - 19 Apr 2024
Cited by 5 | Viewed by 3060
Abstract
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in [...] Read more.
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2: 2nd Edition)
Show Figures

Figure 1

16 pages, 9107 KB  
Article
Near-Infrared In Vivo Imaging of Claudin-1 Expression by Orthotopically Implanted Patient-Derived Colonic Adenoma Organoids
by Sangeeta Jaiswal, Fa Wang, Xiaoli Wu, Tse-Shao Chang, Ahmad Shirazi, Miki Lee, Michael K. Dame, Jason R. Spence and Thomas D. Wang
Diagnostics 2024, 14(3), 273; https://doi.org/10.3390/diagnostics14030273 - 26 Jan 2024
Viewed by 2014
Abstract
Background: Claudin-1 becomes overexpressed during the transformation of normal colonic mucosa to colorectal cancer (CRC). Methods: Patient-derived organoids expressed clinically relevant target levels and genetic heterogeneity, and were established from human adenoma and normal colons. Colonoids were implanted orthotopically in the colon of [...] Read more.
Background: Claudin-1 becomes overexpressed during the transformation of normal colonic mucosa to colorectal cancer (CRC). Methods: Patient-derived organoids expressed clinically relevant target levels and genetic heterogeneity, and were established from human adenoma and normal colons. Colonoids were implanted orthotopically in the colon of immunocompromised mice. This pre-clinical model of CRC provides an intact microenvironment and representative vasculature. Colonoid growth was monitored using white light endoscopy. A peptide specific for claudin-1 was fluorescently labeled for intravenous administration. NIR fluorescence images were collected using endoscopy and endomicroscopy. Results: NIR fluorescence images collected using wide-field endoscopy showed a significantly greater target-to-background (T/B) ratio for adenoma versus normal (1.89 ± 0.35 and 1.26 ± 0.06) colonoids at 1 h post-injection. These results were confirmed by optical sections collected using endomicroscopy. Optical sections were collected in vivo with sub-cellular resolution in vertical and horizontal planes. Greater claudin-1 expression by individual epithelial cells in adenomatous versus normal crypts was visualized. A human-specific cytokeratin stain ex vivo verified the presence of human tissues implanted adjacent to normal mouse colonic mucosa. Conclusions: Increased claudin-1 expression was observed from adenoma versus normal colonoids in vivo using imaging with wide field endoscopy and endomicrosopy. Full article
(This article belongs to the Special Issue Fluorescence Optical Imaging, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2912 KB  
Article
Near-Infrared Imaging of Colonic Adenomas In Vivo Using Orthotopic Human Organoids for Early Cancer Detection
by Xiaoli Wu, Chun-Wei Chen, Sangeeta Jaiswal, Tse-Shao Chang, Ruoliu Zhang, Michael K. Dame, Yuting Duan, Hui Jiang, Jason R. Spence, Sen-Yung Hsieh and Thomas D. Wang
Cancers 2023, 15(19), 4795; https://doi.org/10.3390/cancers15194795 - 29 Sep 2023
Cited by 2 | Viewed by 1861
Abstract
Colorectal cancer is a leading cause of cancer-related morbidity and mortality worldwide. Premalignant lesions that are flat and subtle in morphology are often missed in conventional colonoscopies. Patient-derived adenoma colonoids with high and low cMet expression and normal colonoids were implanted orthotopically in [...] Read more.
Colorectal cancer is a leading cause of cancer-related morbidity and mortality worldwide. Premalignant lesions that are flat and subtle in morphology are often missed in conventional colonoscopies. Patient-derived adenoma colonoids with high and low cMet expression and normal colonoids were implanted orthotopically in the colon of immunocompromised mice to serve as a preclinical model system. A peptide specific for cMet was labeled with IRDye800, a near-infrared (NIR) fluorophore. This peptide was administered intravenously, and in vivo imaging was performed using a small animal fluorescence endoscope. Quantified intensities showed a peak target-to-background ratio at ~1 h after intravenous peptide injection, and the signal cleared by ~24 h. The peptide was stable in serum with a half-life of 3.6 h. Co-staining of adenoma and normal colonoids showed a high correlation between peptide and anti-cMet antibody. A human-specific cytokeratin stain verified the presence of human tissues implanted among surrounding normal mouse colonic mucosa. Peptide biodistribution was consistent with rapid renal clearance. No signs of acute toxicity were found on either animal necropsy or serum hematology and chemistries. Human colonoids provide a clinically relevant preclinical model to evaluate the specific uptake of a NIR peptide to detect premalignant colonic lesions in vivo. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Graphical abstract

21 pages, 11662 KB  
Article
The Anion Channel TMEM16a/Ano1 Modulates CFTR Activity, but Does Not Function as an Apical Anion Channel in Colonic Epithelium from Cystic Fibrosis Patients and Healthy Individuals
by Azam Salari, Renjie Xiu, Mahdi Amiri, Sophia Theres Pallenberg, Rainer Schreiber, Anna-Maria Dittrich, Burkhard Tümmler, Karl Kunzelmann and Ursula Seidler
Int. J. Mol. Sci. 2023, 24(18), 14214; https://doi.org/10.3390/ijms241814214 - 18 Sep 2023
Cited by 11 | Viewed by 2362
Abstract
Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating [...] Read more.
Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating this alternative pathway? Two-dimensional nondifferentiated colonoid–myofibroblast cocultures resembling transit amplifying/progenitor (TA/PE) cells, as well as differentiated monolayer (DM) cultures resembling near-surface cells, were established from both healthy controls (HLs) and patients with severe functional defects in the CFTR gene (PwCF). F508del mutant and CFTR knockout (null) mice ileal and colonic mucosa was also studied. HL TA/PE monolayers displayed a robust short-circuit current response (ΔIeq) to UTP (100 µM), forskolin (Fsk, 10 µM) and carbachol (CCH, 100 µM), while ΔIeq was much smaller in differentiated monolayers. The selective TMEM16a inhibitor Ani9 (up to 30 µM) did not alter the response to luminal UTP, significantly decreased Fsk-induced ΔIeq, and significantly increased CCH-induced ΔIeq in HL TA/PE colonoid monolayers. The PwCF TA/PE and the PwCF differentiated monolayers displayed negligible agonist-induced ΔIeq, without a significant effect of Ani9. When TMEM16a was localized in intracellular structures, a staining in the apical membrane was not detected. TMEM16a is highly expressed in human colonoid monolayers resembling transit amplifying cells of the colonic cryptal neck zone, from both HL and PwCF. While it may play a role in modulating agonist-induced CFTR-mediated anion currents, it is not localized in the apical membrane, and it has no function as an apical anion channel in cystic fibrosis (CF) and healthy human colonic epithelium. Full article
(This article belongs to the Special Issue Epithelial Ion Transport in Health and Disease)
Show Figures

Figure 1

19 pages, 2910 KB  
Review
Inflammatory Bowel Disease-Associated Colorectal Cancer: Translational and Transformational Risks Posed by Exogenous Free Hemoglobin Alpha Chain, a By-Product of Extravasated Erythrocyte Macrophage Erythrophagocytosis
by Maya A. Bragg, Williams A. Breaux and Amosy E. M’Koma
Medicina 2023, 59(7), 1254; https://doi.org/10.3390/medicina59071254 - 6 Jul 2023
Cited by 2 | Viewed by 3170
Abstract
Colonic inflammatory bowel disease (IBD) encompasses ulcerative colitis (UC) and Crohn’s colitis (CC). Patients with IBD are at increased risk for colitis-associated colorectal cancer (CACRC) compared to the general population. CACRC is preceded by IBD, characterized by highly heterogenous, pharmacologically incurable, pertinacious, worsening, [...] Read more.
Colonic inflammatory bowel disease (IBD) encompasses ulcerative colitis (UC) and Crohn’s colitis (CC). Patients with IBD are at increased risk for colitis-associated colorectal cancer (CACRC) compared to the general population. CACRC is preceded by IBD, characterized by highly heterogenous, pharmacologically incurable, pertinacious, worsening, and immune-mediated inflammatory pathologies of the colon and rectum. The molecular and immunological basis of CACRC is highly correlated with the duration and severity of inflammation, which is influenced by the exogenous free hemoglobin alpha chain (HbαC), a byproduct of infiltrating immune cells; extravasated erythrocytes; and macrophage erythrophagocytosis. The exogenous free HbαC prompts oxygen free radical-arbitrated DNA damage (DNAD) through increased cellular reactive oxygen species (ROS), which is exacerbated by decreased tissue antioxidant defenses. Mitigation of the Fenton Reaction via pharmaceutical therapy would attenuate ROS, promote apoptosis and DNAD repair, and subsequently prevent the incidence of CACRC. Three pharmaceutical options that attenuate hemoglobin toxicity include haptoglobin, deferoxamine, and flavonoids (vitamins C/E). Haptoglobin’s clearance rate from plasma is inversely correlated with its size; the smaller the size, the faster the clearance. Thus, the administration of Hp1-1 may prove to be beneficial. Further, deferoxamine’s hydrophilic structure limits its ability to cross cell membranes. Finally, the effectiveness of flavonoids, natural herb antioxidants, is associated with the high reactivity of hydroxyl substituents. Multiple analyses are currently underway to assess the clinical context of CACRC and outline the molecular basis of HbαC-induced ROS pathogenesis by exposing colonocytes and/or colonoids to HbαC. The molecular immunopathogenesis pathways of CACRC herein reviewed are broadly still not well understood. Therefore, this timely review outlines the molecular and immunological basis of disease pathogenesis and pharmaceutical intervention as a protective measure for CACRC. Full article
(This article belongs to the Special Issue Ulcerative Colitis: Diagnosis and Management)
Show Figures

Figure 1

14 pages, 1503 KB  
Communication
Theratyping of the Rare CFTR Genotype A559T in Rectal Organoids and Nasal Cells Reveals a Relevant Response to Elexacaftor (VX-445) and Tezacaftor (VX-661) Combination
by Karina Kleinfelder, Valeria Rachela Villella, Anca Manuela Hristodor, Carlo Laudanna, Giuseppe Castaldo, Felice Amato, Paola Melotti and Claudio Sorio
Int. J. Mol. Sci. 2023, 24(12), 10358; https://doi.org/10.3390/ijms241210358 - 19 Jun 2023
Cited by 19 | Viewed by 2508
Abstract
Despite the promising results of new CFTR targeting drugs designed for the recovery of F508del- and class III variants activity, none of them have been approved for individuals with selected rare mutations, because uncharacterized CFTR variants lack information associated with the ability of [...] Read more.
Despite the promising results of new CFTR targeting drugs designed for the recovery of F508del- and class III variants activity, none of them have been approved for individuals with selected rare mutations, because uncharacterized CFTR variants lack information associated with the ability of these compounds in recovering their molecular defects. Here we used both rectal organoids (colonoids) and primary nasal brushed cells (hNEC) derived from a CF patient homozygous for A559T (c.1675G>A) variant to evaluate the responsiveness of this pathogenic variant to available CFTR targeted drugs that include VX-770, VX-809, VX-661 and VX-661 combined with VX-445. A559T is a rare mutation, found in African-Americans people with CF (PwCF) with only 85 patients registered in the CFTR2 database. At present, there is no treatment approved by FDA (U.S. Food and Drug Administration) for this genotype. Short-circuit current (Isc) measurements indicate that A559T-CFTR presents a minimal function. The acute addition of VX-770 following CFTR activation by forskolin had no significant increment of baseline level of anion transport in both colonoids and nasal cells. However, the combined treatment, VX-661-VX-445, significantly increases the chloride secretion in A559T-colonoids monolayers and hNEC, reaching approximately 10% of WT-CFTR function. These results were confirmed by forskolin-induced swelling assay and by western blotting in rectal organoids. Overall, our data show a relevant response to VX-661-VX-445 in rectal organoids and hNEC with CFTR genotype A559T/A559T. This could provide a strong rationale for treating patients carrying this variant with VX-661-VX-445-VX-770 combination. Full article
(This article belongs to the Special Issue Organoids: The New 3D-Frontier to Model Different Diseases In Vitro)
Show Figures

Figure 1

20 pages, 3051 KB  
Article
The Air–Liquid Interface Reorganizes Membrane Lipids and Enhances the Recruitment of Slc26a3 to Lipid-Rich Domains in Human Colonoid Monolayers
by C. Ming Tse, Zixin Zhang, Ruxian Lin, Rafiquel Sarker, Mark Donowitz and Varsha Singh
Int. J. Mol. Sci. 2023, 24(9), 8273; https://doi.org/10.3390/ijms24098273 - 5 May 2023
Cited by 4 | Viewed by 2407
Abstract
Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms [...] Read more.
Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl/HCO3 antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air–liquid interface (ALI) was created by removing apical media for a specified number of days; from 12–14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids. Full article
(This article belongs to the Special Issue Stem Cell Biology & Regenerative Medicine)
Show Figures

Figure 1

31 pages, 28033 KB  
Article
Canine Intestinal Organoids as a Novel In Vitro Model of Intestinal Drug Permeability: A Proof-of-Concept Study
by Dipak Kumar Sahoo, Marilyn N. Martinez, Kimberly Dao, Vojtech Gabriel, Christopher Zdyrski, Albert E. Jergens, Todd Atherly, Chelsea A. Iennarella-Servantez, Laura E. Burns, Dwayne Schrunk, Donna A. Volpe, Karin Allenspach and Jonathan P. Mochel
Cells 2023, 12(9), 1269; https://doi.org/10.3390/cells12091269 - 27 Apr 2023
Cited by 18 | Viewed by 5299
Abstract
A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug–intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available [...] Read more.
A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug–intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available for similar evaluations in support of veterinary pharmaceuticals. There is, therefore, a critical need to develop novel approaches for evaluating drug–gut interactions in veterinary medicine. Three-dimensional (3D) organoids can address these difficulties in a reasonably affordable system that circumvents the need for more invasive in vivo assays in live animals. However, a first step in developing such systems is understanding organoid interactions in a 2D monolayer. Given the importance of orally administered medications for meeting the therapeutic need of companion animals, we demonstrate growth conditions under which canine-colonoid-derived intestinal epithelial cells survive, mature, and differentiate into confluent cell systems with high monolayer integrity. We further examine the applicability of this canine-colonoid-derived 2D model to assess the permeability of three structurally diverse, passively absorbed β-blockers (e.g., propranolol, metoprolol, and atenolol). Both the absorptive and secretive apparent permeability (Papp) of these drugs at two different pH conditions were evaluated in canine-colonoid-derived monolayers and compared with that of Caco-2 cells. This proof-of-concept study provides promising preliminary results with regard to the utility of canine-derived organoid monolayers for species-specific assessments of therapeutic drug passive permeability. Full article
Show Figures

Figure 1

14 pages, 1967 KB  
Case Report
CFTR Modulators Rescue the Activity of CFTR in Colonoids Expressing the Complex Allele p.[R74W;V201M;D1270N]/dele22_24
by Karina Kleinfelder, Elena Somenza, Alessia Farinazzo, Jessica Conti, Virginia Lotti, Roberta Valeria Latorre, Luca Rodella, Arianna Massella, Francesco Tomba, Marina Bertini, Claudio Sorio and Paola Melotti
Int. J. Mol. Sci. 2023, 24(6), 5199; https://doi.org/10.3390/ijms24065199 - 8 Mar 2023
Cited by 9 | Viewed by 2621
Abstract
An Italian, 46-year-old female patient carrying the complex allele p.[R74W;V201M;D1270N] in trans with CFTR dele22_24 was diagnosed at the Cystic Fibrosis (CF) Center of Verona as being affected by CF-pancreatic sufficient (CF-PS) in 2021. The variant V201M has unknown significance, while both of [...] Read more.
An Italian, 46-year-old female patient carrying the complex allele p.[R74W;V201M;D1270N] in trans with CFTR dele22_24 was diagnosed at the Cystic Fibrosis (CF) Center of Verona as being affected by CF-pancreatic sufficient (CF-PS) in 2021. The variant V201M has unknown significance, while both of the other variants of this complex allele have variable clinical consequences, according to the CFTR2 database, with reported clinical benefits for treatment with ivacaftor + tezacaftor and ivacaftor + tezacaftor + elexacaftor in patients carrying the R74W-D1270N complex allele, which are currently approved (in USA, not yet in Italy). She was previously followed up by pneumologists in northern Italy because of frequent bronchitis, hemoptysis, recurrent rhinitis, Pseudomonas aeruginosa lung colonization, bronchiectasis/atelectasis, bronchial arterial embolization and moderately compromised lung function (FEV1: 62%). Following a sweat test with borderline results, she was referred to the Verona CF Center where she presented abnormal values in both optical beta-adrenergic sweat tests and intestinal current measurement (ICM). These results were consistent with a diagnosis of CF. CFTR function analyses were also performed in vitro by forskolin-induced swelling (FIS) assay and short-circuit currents (Isc) in the monolayers of the rectal organoids. Both of these assays showed significantly increased CFTR activity following treatment with the CFTR modulators. Western-blot analysis revealed increased fully glycosylated CFTR protein after treatment with correctors, in line with the functional analysis. Interestingly, tezacaftor, together with elexacaftor, rescued the total organoid area under steady-state conditions, even in the absence of the CFTR agonist forskolin. In conclusion, in ex vivo and in vitro assays, we measured a residual function that was significantly enhanced by in vitro incubation with CFTR modulators, especially by ivacaftor + tezacaftor + elexacaftor, suggesting this combination as a potentially optimal treatment for this case. Full article
Show Figures

Figure 1

16 pages, 4563 KB  
Article
Human Colonoid–Myofibroblast Coculture for Study of Apical Na+/H+ Exchangers of the Lower Cryptal Neck Region
by Azam Salari, Kunyan Zhou, Katerina Nikolovska, Ursula Seidler and Mahdi Amiri
Int. J. Mol. Sci. 2023, 24(5), 4266; https://doi.org/10.3390/ijms24054266 - 21 Feb 2023
Cited by 10 | Viewed by 2658
Abstract
Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is [...] Read more.
Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is scarce. The aim of this study was to establish an in vitro model of the colonic lower crypt compartment, which expresses the transit amplifying/progenitor (TA/PE) cells, with accessibility of the apical membrane for functional study of lower crypt-expressed Na+/H+ exchangers (NHEs). Colonic crypts and myofibroblasts were isolated from human transverse colonic biopsies, expanded as three-dimensional (3D) colonoids and myofibroblast monolayers, and characterized. Filter-grown colonic myofibroblast–colonic epithelial cell (CM-CE) cocultures (myofibroblasts on the bottom of the transwell and colonocytes on the filter) were established. The expression pattern for ion transport/junctional/stem cell markers of the CM-CE monolayers was compared with that of nondifferentiated (EM) and differentiated (DM) colonoid monolayers. Fluorometric pHi measurements were performed to characterize apical NHEs. CM-CE cocultures displayed a rapid increase in transepithelial electrical resistance (TEER), paralleled by downregulation of claudin-2. They maintained proliferative activity and an expression pattern resembling TA/PE cells. The CM-CE monolayers displayed high apical Na+/H+ exchange activity, mediated to >80% by NHE2. Human colonoid–myofibroblast cocultures allow the study of ion transporters that are expressed in the apical membrane of the nondifferentiated colonocytes of the cryptal neck region. The NHE2 isoform is the predominant apical Na+/H+ exchanger in this epithelial compartment. Full article
(This article belongs to the Special Issue The Role of Ion-Transporting Proteins in Human Disease)
Show Figures

Figure 1

17 pages, 3760 KB  
Article
Lactobacillus rhamnosus GG Promotes Recovery of the Colon Barrier in Septic Mice through Accelerating ISCs Regeneration
by Lufang Chen, Shumin Li, Chunting Peng, Qifeng Gui, Jinyou Li, Zherong Xu and Yunmei Yang
Nutrients 2023, 15(3), 672; https://doi.org/10.3390/nu15030672 - 28 Jan 2023
Cited by 22 | Viewed by 4640
Abstract
Disruption of the intestinal barrier is both the cause and result of sepsis. The proliferation and differentiation of intestinal stem cells (ISCs) promote the regenerative nature of intestinal epithelial cells, repairing the injured intestinal mucosal barrier; however, it is uncertain whether the recovery [...] Read more.
Disruption of the intestinal barrier is both the cause and result of sepsis. The proliferation and differentiation of intestinal stem cells (ISCs) promote the regenerative nature of intestinal epithelial cells, repairing the injured intestinal mucosal barrier; however, it is uncertain whether the recovery effects mediated by the ISCs are related to the gut microbiota. This research found that the survival rate of septic mice was improved with a Lactobacillus rhamnosus GG (LGG) treatment. Furthermore, an increased proliferation and decreased apoptosis in colon epithelial cells were observed in the LGG-treated septic mice. In vitro, we found that a LGG supernatant was effective in maintaining the colonoid morphology and proliferation under the damage of TNF-α. Both in the mice colon and the colonoid, the LGG-induced barrier repair process was accompanied by an increased expression of Lgr5+ and lysozyme+ cells. This may be attributed to the upregulation of the IL-17, retinol metabolism, NF-kappa B and the MAPK signaling pathways, among which, Tnfaip3 and Nfkbia could be used as two potential biomarkers for LGG in intestinal inflammation therapy. In conclusion, our finding suggests that LGG protects a sepsis-injured intestinal barrier by promoting ISCs regeneration, highlighting the protective mechanism of oral probiotic consumption in sepsis. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

17 pages, 2371 KB  
Article
Fecal Luminal Factors from Patients with Gastrointestinal Diseases Alter Gene Expression Profiles in Caco-2 Cells and Colonoids
by Luiza Moraes Holst, Cristina Iribarren, Maria Sapnara, Otto Savolainen, Hans Törnblom, Yvonne Wettergren, Hans Strid, Magnus Simrén, Maria K. Magnusson and Lena Öhman
Int. J. Mol. Sci. 2022, 23(24), 15505; https://doi.org/10.3390/ijms232415505 - 7 Dec 2022
Cited by 8 | Viewed by 4713
Abstract
Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) [...] Read more.
Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) and irritable bowel syndrome (IBS) contain distinct metabolite profiles and establish their effects on Caco-2 cells and human-derived colon organoids (colonoids). The metabolite profiles of fecal supernatants were analyzed by liquid chromatography–mass spectrometry and distinguished patients with CC (n = 6), UC (n = 6), IBS (n = 6) and healthy subjects (n = 6). Caco-2 monolayers and human apical-out colonoids underwent stimulation with fecal supernatants from different patient groups and healthy subjects. Their addition did not impair monolayer integrity, as measured by transepithelial electrical resistance; however, fecal supernatants from different patient groups and healthy subjects altered the gene expression of Caco-2 monolayers, as well as colonoid cultures. In conclusion, the stimulation of Caco-2 cells and colonoids with fecal supernatants derived from CC, UC and IBS patients altered gene expression profiles, potentially reflecting the luminal microenvironment of the fecal sample donor. This experimental approach allows for investigating the crosstalk at the gut barrier and the effects of the gut microenvironment in the pathogenesis of intestinal diseases. Full article
Show Figures

Figure 1

Back to TopTop