Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = colorectal cancer mouse model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5673 KB  
Article
Liver-Specific Nanoparticle-Mediated Delivery and MMP-Triggered Release of Veratridine to Effectively Target Metastatic Colorectal Cancer
by Mahadi Hasan, Morgan Eikanger, Sanam Sane, Krishantha S. K. Wijewardhane, John L. Slunecka, Jessica Freeling, Khosrow Rezvani and Grigoriy Sereda
Cancers 2025, 17(19), 3253; https://doi.org/10.3390/cancers17193253 - 8 Oct 2025
Viewed by 317
Abstract
Background: Despite considerable advances to improve colorectal cancer (CRC) survival over the last decade, therapeutic challenges remain due to the rapid metastatic dissemination of primary tumors. This study revealed the apoptotic and anti-growth mechanism of VTD, a previously used anti-hypertensive supplement, can elevate [...] Read more.
Background: Despite considerable advances to improve colorectal cancer (CRC) survival over the last decade, therapeutic challenges remain due to the rapid metastatic dissemination of primary tumors. This study revealed the apoptotic and anti-growth mechanism of VTD, a previously used anti-hypertensive supplement, can elevate UBXN2A, a known tumor suppressor protein in CRC, and simultaneously enhance intrinsic and extrinsic apoptosis in metastatic cancer cells. Methods and Results: An AOM/DSS mouse model of CRC showed that UBXN2A haplosufficient (UBXN2A +/−) mice treated with VTD had less tumor burden than mice with the full UBXN2A gene treated with vehicle. We have previously shown that casein-coated mesoporous silica nanoparticles (MSNs) offer an effective local delivery of drugs at tumor sites. Our findings demonstrate that the high rate of extracellular release of matrix metalloproteinases (MMPs), particularly MMP-7, by metastatic colon cancer cells, triggers the release of VTD from casein-coated mesoporous MSNs. This shows the “Zip Code” mechanism for the local enrichment of VTD at the tumor sites. After in vitro drug release verification, two independent mouse experiments, a xenograft and a splenolepatic metastatic mouse model of CRC, were used to evaluate the therapeutic efficacy of VTD-loaded and casein-coated carboxylated mesoporous silica nanoparticles, MSN-COOH/VTD/CAS (VTD, 0.2 mg/kg). Animal experiments revealed that MSN-COOH/VTD/CAS (VTD, 0.2 mg/kg) slows down the progress of tumors. Mass spectrometry (MS) revealed improved pharmacokinetics (PK) profile as MSN-COOH/VTD/CAS had less VTD accumulation in non-cancerous organs compared to pure VTD. We further improved nanoparticle targeting and drug release by shifting to calcium-based particles (CBPs). The engineered CBPs demonstrated higher drug-releasing performance. Without the MMPs trigger, MSNs show slow and continuous “drug leak” over longer period of time whereas CCSMPs stops leakage within an hour. Additionally, CBPs showed higher sensitivity to MMP-7 than MMP-9, enhancing the targetability of CBPs for CRC metastatic tumors with excessive extracellular MMP-7. Conclusions: This study introduces a new platform utilizing nanoparticle-based site-specific delivery of a plant-based anti-metastatic molecule, veratridine, with enhanced safety and therapeutic efficacy for the treatment of metastatic CRC. Full article
Show Figures

Figure 1

18 pages, 4909 KB  
Article
MM-129 Counteracts 5-Fluorouracil-Induced Cellular Senescence in Colon Cancer via SIRT1/STAT3 Signaling Pathway
by Hubert Klepacki, Beata Sieklucka, Joanna Kalafut, Krystyna Kowalczuk, Arkadiusz Surazynski, Mariusz Mojzych, Anna Pryczynicz, Dariusz Pawlak, Natascia Tiso and Justyna Magdalena Hermanowicz
Cells 2025, 14(19), 1498; https://doi.org/10.3390/cells14191498 - 24 Sep 2025
Viewed by 415
Abstract
Cellular senescence plays a critical role in tumorigenesis and is recognized as a hallmark of colorectal cancer (CRC). Emerging evidence suggests that 5-fluorouracil (5-FU)-induced senescence may contribute to chemoresistance and tumor recurrence. Here, we investigated the effect of 5-FU on colon cancer cell [...] Read more.
Cellular senescence plays a critical role in tumorigenesis and is recognized as a hallmark of colorectal cancer (CRC). Emerging evidence suggests that 5-fluorouracil (5-FU)-induced senescence may contribute to chemoresistance and tumor recurrence. Here, we investigated the effect of 5-FU on colon cancer cell senescence and whether MM-129 (pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide) can antagonize this activity. Senescence was identified by the expression of senescence-associated β-galactosidase (SA-β-gal) and cyclin-dependent kinase inhibitor 1A (p21) using qPCR, microscopy, flow cytometry, and immunohistochemistry. We also measured interleukin 6 (IL-6) and tumor necrosis factor (TNF-α) as key SASP cytokines, along with E-cadherin (CDH1), a marker of epithelial integrity. The SIRT1/STAT3 pathway was evaluated to elucidate the mechanism of MM-129′s action. MM-129 counteracted 5-FU-induced senescence in colon cancer models, reducing p21 levels in zebrafish xenografts and the number of SA-β-gal-positive cells in vitro and in tumor tissues from DLD-1 and HT-29 mouse xenografts. MM-129 also inhibited senescence-associated responses by suppressing SASP cytokines (IL-6, TNF-α) and restoring E-cadherin (CDH1), and it modulated the SIRT1/STAT3 axis, which may underlie the observed senotherapeutic effects. In conclusion, MM-129 represents a novel senotherapeutic candidate. By modulating the SIRT1/STAT3 axis, it may suppress the SASP and weaken pro-survival signaling, thereby facilitating selective clearance of senescent cells. Integrating senotherapeutics with conventional cancer therapies may enhance efficacy and open new avenues for translational research. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

17 pages, 2575 KB  
Article
Murine Cell Line Models for Vascular Mimicry: The Role of YAP/TAZ Signaling
by Matilde Righetti, Ana-Maria Primorac, Janine Terra Erler and Victor Oginga Oria
Int. J. Mol. Sci. 2025, 26(18), 9129; https://doi.org/10.3390/ijms26189129 - 18 Sep 2025
Viewed by 384
Abstract
Vascular mimicry (VM) refers to the formation of vessel-like structures by tumor cells independent of endothelial cells. These VM channels connect to the host’s vascular network and are associated with aggressive tumors and poor patient prognosis. Most VM research has been conducted on [...] Read more.
Vascular mimicry (VM) refers to the formation of vessel-like structures by tumor cells independent of endothelial cells. These VM channels connect to the host’s vascular network and are associated with aggressive tumors and poor patient prognosis. Most VM research has been conducted on melanoma, relying on patient-derived and mouse cell lines. In other solid tumors, VM studies rely on human cell lines, which have certain limitations for in vivo studies. Specifically, most in vivo VM research involving human cells uses subcutaneous mouse models that fail to recapitulate organ-specific tumor microenvironments. As the microenvironment is an essential driver of tumor vascularization, including VM, murine cell lines could facilitate VM investigations in syngeneic mouse models. Here, we present CT26 and KPC, well-characterized murine colorectal and pancreatic cancer cell lines, as cell models for VM investigations. Using in vitro cell-based assays, we demonstrate that CT26 and KPC undergo VM, a cell-intrinsic process that is enhanced by serum deprivation and exposure to hypoxia and is independent of tumor-secreted growth factors. Additionally, we demonstrate the importance of YAP/TAZ signaling in VM formation, as inhibition at non-cytotoxic concentrations attenuated VM formation. Remarkably, CA3, the most potent of the two inhibitors, significantly reduced cell proliferation in both cell lines at the IC50 concentration. This reduction in cell proliferation was associated with the induction of apoptosis in CT26 cells and changes in the cell cycle in both CT26 and KPC cells. Finally, dual YAP/TAZ knockdown in both cell lines significantly abrogated VM formation, validating our initial findings using inhibitors. These results show that CT26 and KPC cells undergo VM, and given their extensive use in cancer research, can be used to investigate VM in vivo using syngeneic models. Full article
Show Figures

Figure 1

20 pages, 3174 KB  
Article
Modulation of Human Immune Cells by Propyl-Propane Thiosulfonate (PTSO) Inhibits Colorectal Tumor Progression in a Humanized Mouse Model
by María Jesús Rodríguez-Sojo, Luckman Gbati, Jose Alberto Molina-Tijeras, Ailec Ho-Plágaro, Teresa Vezza, Laura López-Escánez, Carmen Griñán-Lisón, Juan Antonio Marchal, Alberto Baños, María José Rodríguez-Sánchez, Jorge García-García, Antonio Jesús Ruiz-Malagón, Julio Gálvez, María Elena Rodríguez-Cabezas and Alba Rodríguez-Nogales
Nutrients 2025, 17(18), 2993; https://doi.org/10.3390/nu17182993 - 18 Sep 2025
Viewed by 425
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a major global health challenge and current therapies are not always effective. In addition, certain immune cell populations, such as myeloid-derived suppressor cells (MDSCs), pose a significant barrier to immune-based treatments. Some phytochemicals, particularly compounds derived from [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a major global health challenge and current therapies are not always effective. In addition, certain immune cell populations, such as myeloid-derived suppressor cells (MDSCs), pose a significant barrier to immune-based treatments. Some phytochemicals, particularly compounds derived from Allium spp. like Propyl-Propane Thiosulfonate (PTSO), have shown strong immunomodulatory potential in digestive disorders. This study aims to investigate the capacity of PTSO to modulate immune responses and affect tumor progression in CRC models, in vitro and in vivo, with a focus on the immune cell populations that comprise the tumor microenvironment. Methods: Human peripheral blood mononuclear cells (hPBMCs) were incubated with PTSO (25 μM for 48 h) and characterized by flow cytometry. These cells (1 × 106) were then injected into NOD scid gamma (NSG) immunodeficient mice, which were simultaneously induced to develop a subcutaneous tumor by injection of HCT116 enriched cancer stem cells (CSCs) colonospheres (60,000 cells/mouse). Results: PTSO reduced MDSC populations, specifically, it significantly reduced monocytic (M-MDSCs, Control: 7.27 ± 0.53% vs. PTSO: 4.70 ± 2.39%; p = 0.0458) and polymorphonuclear (PMN-MDSCs, Control: 5.28 ± 0.99% vs. PTSO: 3.41 ± 1.58%; p = 0.0385) MDSCs. In parallel, PTSO increased T cell subpopulations, particularly interferon gamma (IFNG)-producing cytotoxic CD8+ T cells (Control: 9.52 ± 2.06% vs. PTSO: 15.04 ± 5.01%; p = 0.0685). In the humanized tumor xenograft mouse, the administration of PTSO-pretreated hPBMCs led to a significant reduction in tumor size (Control: 1.43 ± 0.82 cm3 vs. PTSO: 0.44 ± 0.35 cm3; p = 0.0068), accompanied by increased infiltration of CD4+ T lymphocytes and Natural Killer (NK) cells and downregulation of immunosuppressive genes. These effects resulted in a reduction in cancer cell proliferation and invasiveness. Conclusions: The dual effect of PTSO on immune cell populations, reducing immunosuppressive myeloid cells and enhancing effector T lymphocyte and NK cell responses, resulted in an anti-tumor effect, highlighting this bioactive compound as a promising adjuvant in CRC immunotherapy and opening avenues for future research combining immunotherapy with PTSO in alternative models to optimize dosing and enhance translational potential. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

21 pages, 6074 KB  
Article
Therapeutic Potential of Probiotic-Derived P8 Protein as an Anti-Metastatic Agent in Colorectal Cancer
by Byung Chull An, Seungwoo Kim, Jaewon Ha, Sang-Hyuk Seok, Jun Won Park, Yongku Ryu and Myung Jun Chung
Microorganisms 2025, 13(9), 2175; https://doi.org/10.3390/microorganisms13092175 - 17 Sep 2025
Viewed by 432
Abstract
We previously described the use of probiotics to deliver a Lactobacillus rhamnosus-derived therapeutic protein, P8, which has been identified as a candidate colorectal cancer (CRC) suppressor protein with anti-proliferation and anti-migration activities. P8 was found to penetrate cell membranes by endocytosis, suppressing [...] Read more.
We previously described the use of probiotics to deliver a Lactobacillus rhamnosus-derived therapeutic protein, P8, which has been identified as a candidate colorectal cancer (CRC) suppressor protein with anti-proliferation and anti-migration activities. P8 was found to penetrate cell membranes by endocytosis, suppressing cell proliferation through G2 cell cycle arrest. Despite the ability of P8 to suppress cell migration in vitro, its mechanism of action in CRC is unclear. We profiled the P8-interacting partner proteins using the pull-down method with His-tagged bait P8 and then identified them by LC-MS/MS. Among the interacting targets, we focused on the mothers against decapentaplegic homolog 1 (Smad1), which is well known as one of the important modulators of the bone morphogenetic protein (BMP)-derived migration pathway in CRC. The present study discovers that P8 prevents the phosphorylation of Smad1 or heterologous complexes within the Smad family, interfering with the importation of Smad1 or its complexes into the nucleus. Thus, P8 significantly inhibits the up-regulation of epithelial–mesenchymal transition (EMT)-related genes mediated by Smad1. P8 also inhibits the morphological changes required for cell migration or adhesion. P8 induces morphologic changes in DLD-1 cells, and their spheroid surfaces, resulting in a significant reduction of the number and length of filopodia, as well as the down-regulation of the expression of myosin X and its accumulation in filopodia tips. This phenomenon seems to be a major negative regulator of cell motility that could be of key importance in metastasis. Use of a mouse model of human CRC metastasis confirmed that P8 significantly suppresses the liver metastatic rate. Probiotic-derived protein P8 significantly suppresses CRC metastasis through inhibition of the Smad1-EMT signal pathway and cell–cell adhesion. Full article
(This article belongs to the Topic News and Updates on Probiotics)
Show Figures

Figure 1

23 pages, 7143 KB  
Article
Curcumol Targets the VHL/HIF-1α Axis to Suppress Glycolysis-Driven Progression in Colorectal Cancer
by Gang Wang, Zengyaran Yue, Gang Yin, Lifeng Zhu, Wen Zhou, Ruiqian Sun, Tingting Bi, Lin Zhao, Yong Bian and Decai Tang
Cancers 2025, 17(18), 3000; https://doi.org/10.3390/cancers17183000 - 14 Sep 2025
Viewed by 756
Abstract
Background: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. [...] Read more.
Background: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. Objective: The objective of this study was to elucidate the potential of Curcumol in inhibiting glycolytic reprogramming and impede CRC progression via regulation of the VHL/HIF-1α signaling pathway. Methods: CRC cells and orthotopic mouse models were treated with Curcumol under chemically induced hypoxic conditions. Metabolic alterations were evaluated using Seahorse extracellular flux analysis, Western blot analysis, quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC) and co-immunoprecipitation (Co-IP). Functional validation of glycolysis and epithelial–mesenchymal transition (EMT) phenotypes was conducted through in vitro and in vivo assays. Results: Curcumol inhibited HIF-1α-mediated metabolic reprogramming by upregulating VHL expression, thereby promoting HIF-1α degradation. This effect led to the downregulation of key glycolytic genes (HK2, LDHA, and GLUT1), decreased glycolytic flux, and lactate production, ultimately suppressing CRC cell proliferation and invasion. The anti-tumor efficacy of Curcumol was validated in both in vitro and in vivo models. Moreover, Curcumol effectively reversed the hypoxia-induced epithelial–mesenchymal transition (EMT) phenotype, suggesting that its metabolic regulatory effects may contribute to reduced metastatic potential. Conclusions: Curcumol suppresses glycolysis and CRC progression by activating the VHL/HIF-1α signaling axis. These findings underscore the potential of Curcumol as a natural metabolic regulator capable of reversing tumor metabolic reprogramming, offering a promising therapeutic strategy for CRC treatment. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

11 pages, 1417 KB  
Article
Biodegradable Nanoparticles Encapsulating Murine Double Minute 2 siRNA to Treat Peritoneal Dissemination of Colon Cancer
by Tomoaki Kurosaki, Akari Okada, Yuuki Takashima, Hitoshi Sasaki and Yukinobu Kodama
Int. J. Mol. Sci. 2025, 26(18), 8883; https://doi.org/10.3390/ijms26188883 - 12 Sep 2025
Viewed by 355
Abstract
The study aim was to apply murine double minute 2 (MDM2)-siRNA to a biodegradable siRNA delivery vector, ternary complex, for treating colorectal cancer peritoneal dissemination. The ternary complex containing MDM2-siRNA (MDM2-siRNA complex) was constructed by mixing MDM2-siRNA, dendrigraft poly-L-lysine, and γ-polyglutamic acid. Cellular [...] Read more.
The study aim was to apply murine double minute 2 (MDM2)-siRNA to a biodegradable siRNA delivery vector, ternary complex, for treating colorectal cancer peritoneal dissemination. The ternary complex containing MDM2-siRNA (MDM2-siRNA complex) was constructed by mixing MDM2-siRNA, dendrigraft poly-L-lysine, and γ-polyglutamic acid. Cellular uptake of the ternary complex and suppressive effect on MDM2-mRNA were determined in a mouse colorectal cancer cell line. Tumor-growth inhibition by the MDM2-siRNA complex was evaluated in peritoneal dissemination model mice. The MDM2-siRNA complex, with an approximately 177 nm particle size and −35 mV ζ-potential, prevented degradation of the inner siRNA by RNase. In the in vitro study, the ternary complex was highly taken up by the cells, and 2 μg/mL of the MDM2-siRNA complex significantly decreased MDM2-mRNA to about 30% of control cells. Intraperitoneal administration in colorectal cancer peritoneal dissemination model mice showed little effect of the ternary complex containing scramble-siRNA on cancer growth in the peritoneal cavity. Conversely, the MDM2-siRNA complex significantly reduced peritoneal dissemination to less than 1/1000th of control mice and successfully prolonged survival time. In this study, we found that the biodegradable MDM2-siRNA complex had a suppressive effect on MDM2-mRNA in cancer cells and tumor growth of peritoneal dissemination. Full article
Show Figures

Figure 1

21 pages, 2972 KB  
Article
Cocoa Polyphenols Modulate the Mouse Gut Microbiome in a Site-Specific Manner
by Marcus Hayden, Eliza C. Stewart, Mohammed F. Almatani, Jeremy Case, Samuel Rice, Giovanni Rompato, Korry J. Hintze and Abby Benninghoff
Nutrients 2025, 17(17), 2876; https://doi.org/10.3390/nu17172876 - 5 Sep 2025
Viewed by 1203
Abstract
Background/Objectives: The dietary modulation of the gut microbiome is a promising strategy for mitigating gastrointestinal diseases, such as inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Cocoa powder is rich in polyphenols, including (−)-epicatechin and (+)-catechin, which have been associated with beneficial [...] Read more.
Background/Objectives: The dietary modulation of the gut microbiome is a promising strategy for mitigating gastrointestinal diseases, such as inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Cocoa powder is rich in polyphenols, including (−)-epicatechin and (+)-catechin, which have been associated with beneficial effects on gut health and microbiome modulation. Importantly, changes in the bacterial populations associated with the gut mucosal layer may have different health impacts compared to changes in cecal or fecal microbiomes. This study investigated the effects of cocoa polyphenol supplementation on microbiome composition across the cecal, fecal, and mucosal compartments in a mouse model of colitis. Methods: Mice were fed either a healthy AIN93G diet (AIN) or a total Western diet (TWD), with or without 2.6% (w/w) CocoaVia™ Cardio Health Powder. Gut microbiomes from the cecum, feces, and colon mucosa were profiled using 16S rRNA sequencing at three time points: pre-, during, and post-colitis. Results: Microbiome composition varied substantially by site, with reduced richness and distinct taxa in the mucosal layer compared to cecal and fecal communities. The TWD significantly altered microbial composition, decreasing species evenness and shifting beta diversity. Cocoa polyphenol supplementation modulated microbial communities in a site-specific manner, increasing diversity and promoting rare taxa (e.g., Monoglobaceae, Eggerthellaceae, and RF39) primarily in cecal and fecal samples. Mucosa-associated communities were less responsive. Conclusions: These findings underscore the importance of the sampling site in gut microbiome research. Cocoa polyphenols exert site-selective effects, particularly in the gut lumen, highlighting the importance of considering anatomical context in dietary intervention studies aimed at improving gastrointestinal health. Full article
(This article belongs to the Special Issue Bioactive Food Compounds and Human Health)
Show Figures

Figure 1

13 pages, 2203 KB  
Article
A Cancer-Specific Anti-Podocalyxin Monoclonal Antibody (humPcMab-60) Demonstrated Antitumor Efficacy in Pancreatic and Colorectal Cancer Xenograft Models
by Hiroyuki Suzuki, Tomokazu Ohishi, Takuro Nakamura, Miyuki Yanaka, Saori Handa, Tomohiro Tanaka, Mika K. Kaneko and Yukinari Kato
Antibodies 2025, 14(3), 67; https://doi.org/10.3390/antib14030067 - 11 Aug 2025
Viewed by 596
Abstract
Background: Podocalyxin (PODXL) has been identified as a promising therapeutic target and a potential diagnostic biomarker in various tumors. Despite the therapeutic potential of anti-PODXL monoclonal antibodies (mAbs), their further development has been limited by concerns regarding potential on-target off-tumor toxicities. To [...] Read more.
Background: Podocalyxin (PODXL) has been identified as a promising therapeutic target and a potential diagnostic biomarker in various tumors. Despite the therapeutic potential of anti-PODXL monoclonal antibodies (mAbs), their further development has been limited by concerns regarding potential on-target off-tumor toxicities. To minimize adverse effects on normal tissues, developing a cancer-specific mAb (CasMab) against PODXL is essential. Methods: Our group established a cancer-specific anti-PODXL mAb, PcMab-60 (IgM, κ), through the screening of over one hundred hybridoma clones. In this study, PcMab-60 was engineered into a humanized IgG1-type mAb (humPcMab-60), and its antitumor activity was examined using mouse xenograft models of pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer. Results: HumPcMab-60 retains cancer-specific reactivity; humPcMab-60 reacted to PDAC cell lines (PK-45H and MIA PaCa-2) and the colorectal cancer cell line (Caco-2), but not to a normal lymphatic endothelial cell line in flow cytometry. Furthermore, humPcMab-60 exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against PODXL-expressing cell lines and showed antitumor effects against the tumor xenografts. Conclusions: A humanized anti-PODXL CasMab, humPcMab-60, could be a promising mAb-based tumor therapy. Full article
Show Figures

Figure 1

13 pages, 3790 KB  
Article
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Viewed by 837
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully [...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

14 pages, 3864 KB  
Article
Lycium barbarum Glycopeptide Inhibits Colorectal Cancer Cell Proliferation via Activating p53/p21 Pathway and Inducing Cellular Senescence
by Meng Yuan, Da Wo, Yuhang Gong, Ming Lin, En Ma, Weidong Zhu and Dan-ni Ren
Int. J. Mol. Sci. 2025, 26(15), 7091; https://doi.org/10.3390/ijms26157091 - 23 Jul 2025
Viewed by 509
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Its sustained proliferative signaling poses a major challenge for effective therapeutic intervention. Since CRC originates from aberrantly proliferating crypt cells, limiting proliferation or inducing senescence may offer a promising treatment [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Its sustained proliferative signaling poses a major challenge for effective therapeutic intervention. Since CRC originates from aberrantly proliferating crypt cells, limiting proliferation or inducing senescence may offer a promising treatment approach. Lycium barbarum glycopeptide (LbGP), a traditional Chinese medicine component, is known for its immunomodulatory and other beneficial effects. This study aims to examine the anti-tumor effects of LbGP in CRC as well as its underlying mechanisms of action. We used CT26 CRC cells to investigate the effects of LbGP on tumor proliferation both in vitro and in an allograft mouse model. LbGP treatment significantly inhibited CT26 cell proliferation in vitro and suppressed tumor growth in CT26-implanted mice. Furthermore, LbGP treatment significantly upregulated p53/p21 levels both in vitro and in vivo, leading to CT26 cell cycle arrest in the S phase and the induction of tumor cell senescence. These findings demonstrate that LbGP effectively induces CRC cell cycle arrest and senescence via the p53/p21 pathway and may serve as a promising candidate for CRC adjuvant therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 9009 KB  
Article
Cancer-Associated Fibroblasts Establish Spatially Distinct Prognostic Niches in Subcutaneous Colorectal Cancer Mouse Model
by Zhixian Lin, Jinmeng Wang, Yixin Ma, Yanan Zhu, Yuhan Li, Zhengtao Xiao and Wei Zhao
Cancers 2025, 17(14), 2402; https://doi.org/10.3390/cancers17142402 - 19 Jul 2025
Viewed by 1222
Abstract
Background/Objectives: Subcutaneous tumor models are widely used in colorectal cancer (CRC) research due to their experimental accessibility; however, the spatial organization and regulatory mechanisms of their tumor microenvironment remain poorly understood. Methods: Here, we applied spatial transcriptomics to systematically characterize spatial heterogeneity within [...] Read more.
Background/Objectives: Subcutaneous tumor models are widely used in colorectal cancer (CRC) research due to their experimental accessibility; however, the spatial organization and regulatory mechanisms of their tumor microenvironment remain poorly understood. Methods: Here, we applied spatial transcriptomics to systematically characterize spatial heterogeneity within MC38 subcutaneous tumors in a syngeneic mouse model. Results: We identified two spatially distinct tumor zones, partitioned by cancer-associated fibroblasts (CAFs), that differ markedly in cellular composition, oncogenic signaling, immune infiltration, and metabolic states. One zone exhibited features of TGF-β-driven extracellular matrix remodeling, immune exclusion, and hyperproliferative metabolism, while the other was enriched for immunosuppressive macrophages, metabolic reprogramming via PPAR and AMPK pathways, and high-risk cell populations. Spatially resolved cell–cell communication networks further revealed zone-specific ligand–receptor interactions—such as ANGPTL4–SDC2 and PROS1–AXL—that underpin stromal remodeling and immune evasion and are associated with patient prognosis. Conclusions: Collectively, our study uncovers how region-specific cellular ecosystems and intercellular crosstalk establish prognostically divergent niches within subcutaneous CRC tumors, offering insights into spatially guided therapeutic strategies. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

30 pages, 10669 KB  
Article
Integration of Untargeted Metabolomics, Network Pharmacology, Single-Cell RNA Sequencing, and Molecular Dynamics Simulation Reveals GOT1, CYP1A2, and CA2 as Potential Targets of Huang Qin Decoction Preventing Colorectal Cancer Liver Metastasis
by Tiegang Li, Zheng Yan, Mingxuan Zhou, Wenyi Zhao, Fang Zhang, Silin Lv, Yufang Hou, Zifan Zeng, Liu Yang, Yixin Zhou, Zengni Zhu, Xinyi Ren and Min Yang
Pharmaceuticals 2025, 18(7), 1052; https://doi.org/10.3390/ph18071052 - 17 Jul 2025
Viewed by 1048
Abstract
Background: Huang Qin Decoction (HQD) is a well-established Traditional Chinese Medicine (TCM) formulation recognized for its application in the treatment of colorectal cancer (CRC). However, the precise therapeutic mechanisms remain inadequately defined. Methods: This study integrates metabolomics from a mouse model and network [...] Read more.
Background: Huang Qin Decoction (HQD) is a well-established Traditional Chinese Medicine (TCM) formulation recognized for its application in the treatment of colorectal cancer (CRC). However, the precise therapeutic mechanisms remain inadequately defined. Methods: This study integrates metabolomics from a mouse model and network pharmacology to screen potential targets and bio-active ingredients of HQD. The pharmacological activity of HQD for CRC was evidenced via single-cell RNA sequencing (scRNA-seq), molecular docking, and molecular dynamics simulations. Atomic force microscopy (AFM) assays and cellular experimental validation were used to confirm the relative mechanisms. Results: The metabolite profile undergoes significant alterations, with metabolic reprogramming evident during the malignant progression of CRC liver metastasis. Network pharmacology analysis identified that HQD regulates several metabolic pathways, including arginine biosynthesis, alanine, aspartate, and glutamate metabolism, nitrogen metabolism, phenylalanine metabolism, and linoleic acid metabolism, by targeting key proteins such as aspartate aminotransferase (GOT1), cytochrome P450 1A2 (CYP1A2), and carbonic anhydrase 2 (CA2). ScRNA-seq analysis indicated that HQD may enhance the functionality of cytotoxic T cells, thereby reversing the immunosuppressive microenvironment. Virtual verification revealed a strong binding affinity between the identified hub targets and active constituents of HQD, a finding subsequently corroborated by AFM assays. Cellular experiments confirmed that naringenin treatment inhibits the proliferation, migration, and invasion of CRC cells by downregulating GOT1 expression and disrupting glutamine metabolism. Conclusions: Computational prediction and in vitro validation reveal the active ingredients, potential targets, and molecular mechanisms of HQD against CRC liver metastasis, thereby providing a scientific foundation for the application of TCM in CRC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 3057 KB  
Article
Valproic Acid Enhances the Anticancer Effect of L-Ascorbic Acid by Upregulating Sodium-Dependent Vitamin C Transporter 2 in Colorectal Cancer
by Kawalin Kantawong, Hakim Meutia Diva, Phuong T. Ho, Ahlim Lee, Misae Kiba, Mi-Gi Lee, Hee Kang, Taek-Kyun Lee and Sukchan Lee
Antioxidants 2025, 14(7), 864; https://doi.org/10.3390/antiox14070864 - 15 Jul 2025
Viewed by 1668
Abstract
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. [...] Read more.
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. The efficacy of high-dose AA therapy is frequently restricted by inadequate intracellular AA uptake, resulting from low expression of sodium-dependent vitamin C transporter 2 (SVCT2). In this study, we investigated whether valproic acid (VPA), a histone deacetylase inhibitor, could circumvent this constraint by increasing the expression of SVCT2 in colorectal cancer cells, including HCT-116 and DLD-1 with low SVCT2 levels. We found that VPA increased SVCT2 expression in both cell lines. Co-treatment with AA and VPA increased the number of apoptotic cells and enhanced intracellular AA uptake via VPA-upregulated SVCT2, followed by increased ROS production in both cell lines. Furthermore, the combination increased the synergistic anticancer effects and suppressed the hormetic dose response of AA in both cell lines. In a xenograft mouse model, co-treatment decreased tumor size and increased the tumor growth inhibition ratio compared to treatment with AA or VPA alone. Accordingly, VPA treatment enhanced SVCT2 expression in colorectal cancer cells, suppressed the hormetic dose-response effect of AA, and improved the potential of high-dose AA therapy as an anticancer agent. Full article
Show Figures

Figure 1

16 pages, 1978 KB  
Article
Establishment of an Orthotopic and Metastatic Colorectal Cancer Mouse Model Using a Tissue Adhesive-Based Implantation Method
by Sang Bong Lee, Hui-Jeon Jeon, Hoon Hyun and Yong Hyun Jeon
Cancers 2025, 17(13), 2266; https://doi.org/10.3390/cancers17132266 - 7 Jul 2025
Viewed by 1286
Abstract
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques [...] Read more.
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques often suffer from technical complexity, inconsistent tumor establishment, and limited metastatic reliability. Methods: We developed and validated a novel orthotopic and metastatic CRC model utilizing tissue adhesive for tumor transplantation. Uniform tumor fragments derived from bioluminescent HCT116/Luc xenografts were affixed to the cecum of nude mice. Tumor growth and metastasis were monitored through bioluminescence imaging and confirmed by the results of histological analysis of metastatic lesions. The model’s utility for therapeutic testing was evaluated using MK801, an NMDA receptor antagonist. Results: The biological-based model demonstrated rapid and reproducible tumor implantation (<5 min), consistent primary tumor growth, and robust metastasis to the liver and lungs. The biological-based approach achieved 80% tumor engraftment (4/5), with consistent metastasis to the liver and lungs in all mice, compared with lower and variable metastasis rates in injection (0%, 0/5) and suturing (20%, 1/5) methods. MK801 treatment significantly suppressed both primary tumor growth and metastasis, validating the model’s suitability for preclinical drug evaluation. Conclusions: By enabling rapid, reproducible, and spontaneous formation of metastatic lesions using a minimally invasive tissue adhesive technique, our model represents a significant methodological advancement that supports high-throughput therapeutic screening and bridges the gap between experimental modeling and clinical relevance in colorectal cancer research. Full article
(This article belongs to the Special Issue Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

Back to TopTop