Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,683)

Search Parameters:
Keywords = combination immunotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1915 KB  
Review
From Incision to Immunity: Integrating Surgery and Immunotherapy in Non-Small Cell Lung Cancer
by Michael J. Janes, Aidan A. Schmidt, Garret A. Krieg, Amitoj S. Chouhan, Mark R. Wakefield and Yujiang Fang
Immuno 2025, 5(4), 48; https://doi.org/10.3390/immuno5040048 (registering DOI) - 14 Oct 2025
Abstract
Lung cancer is the most common cause of death due to cancer in the world, and non-small cell lung cancer (NSCLC) is the most common form of lung cancer, representing approximately 84% of all cases. Due to its frequency and mortality, the amount [...] Read more.
Lung cancer is the most common cause of death due to cancer in the world, and non-small cell lung cancer (NSCLC) is the most common form of lung cancer, representing approximately 84% of all cases. Due to its frequency and mortality, the amount of research on this subject has been greatly increased and new techniques to improve health outcomes have been established. While surgery remains the gold standard of treatment, immunotherapy used alone or in conjunction with surgery shows promising results. This review aims to give an overview of current and new surgical and immunotherapy methods used for the treatment of NSCLC, as well as ways in which they can be combined and the clinical outcomes for patients with each treatment modality. Additionally, it will seek to highlight any gaps in current knowledge of treatment and propose further studies to improve the efficacy of NSCLC treatments. Full article
Show Figures

Figure 1

16 pages, 2463 KB  
Article
Thymopentin Enhances Antitumor Immunity Through Thymic Rejuvenation and T Cell Functional Reprogramming
by Md Amir Hossain, Ye Zhang, Li Ji, Yumei Chen, Yue Luan, Yaxuan Si, Yuqing Fang, Junlan Qiu, Zhuo Wang and Guilai Liu
Biomedicines 2025, 13(10), 2494; https://doi.org/10.3390/biomedicines13102494 - 13 Oct 2025
Abstract
Background/Objectives: T cell dysfunction represents a fundamental barrier to effective cancer immunotherapy. Although immune checkpoint blockades and adoptive cell transfer have achieved clinical success, therapeutic resistance remains prevalent across cancer types. Thymopentin (TP5), a synthetic immunomodulatory pentapeptide (Arg-Lys-Asp-Val-Tyr), has demonstrated immunostimulatory properties, [...] Read more.
Background/Objectives: T cell dysfunction represents a fundamental barrier to effective cancer immunotherapy. Although immune checkpoint blockades and adoptive cell transfer have achieved clinical success, therapeutic resistance remains prevalent across cancer types. Thymopentin (TP5), a synthetic immunomodulatory pentapeptide (Arg-Lys-Asp-Val-Tyr), has demonstrated immunostimulatory properties, yet its anticancer potential remains unexplored. The aim of this study was to investigate TP5’s antitumor efficacy and underlying immunological mechanisms. Methods: We evaluated TP5’s therapeutic effects in multiple murine tumor models, including B16-F10 melanoma, MC38 colorectal carcinoma, Hepa 1-6, and LM3 hepatocellular carcinoma. Immune cell populations and functional states were characterized using flow cytometry, ELISAs, and immunofluorescence analyses. The potential of TP5 as an adjuvant for T cell-based therapies was also systematically assessed. Results: The TP5 treatment markedly suppressed tumor growth across caner models through strictly T cell-dependent mechanisms. Critically, TP5 promoted thymic rejuvenation under immunocompromised conditions, restoring the thymus–tumor immunological balance and revitalizing peripheral T cell immunity. TP5 functionally reprogrammed T cell states, preserving effector function while ameliorating exhaustion. Furthermore, TP5 demonstrated synergistic efficacy when combined with adoptive T cell therapies, enhancing both proliferation and effector functions. Conclusions: TP5 represents a promising immunomodulator that addresses fundamental limitations of current T cell therapies by simultaneously enhancing T cell function and reversing thymic involution under immunocompromised conditions. Our findings provide compelling evidence for TP5’s clinical translation in cancer treatment. Full article
43 pages, 2880 KB  
Review
Relevance of AKT and RAS Signaling Pathways for Antibody–Drug Conjugate Immunotherapies in Acute Lymphoblastic Leukemia
by Patrick A. H. Ehm and Christoph Rehbach
Lymphatics 2025, 3(4), 33; https://doi.org/10.3390/lymphatics3040033 - 13 Oct 2025
Abstract
Acute lymphoblastic leukemia is the most common cause of cancer-related death in children and represents a poor prognosis for patients in high-risk groups. Current treatment protocols are based on intensive polychemotherapy, which is associated with a significant toxicity profile. Due to their higher [...] Read more.
Acute lymphoblastic leukemia is the most common cause of cancer-related death in children and represents a poor prognosis for patients in high-risk groups. Current treatment protocols are based on intensive polychemotherapy, which is associated with a significant toxicity profile. Due to their higher specificity and lower toxicity, immunotherapies based on monoclonal antibodies, in particular antibody–drug conjugates (ADCs), are revolutionizing cancer therapy. However, reports on the potential efficacy of ADC-targeted therapy in ALL and its subgroups are limited. Gene expression data suggest that potentially new ADC antigens are highly abundant in ALL subgroups and represent promising targets for cancer therapy. In addition, the PI3K/AKT and RAS/MAPK signaling pathways are often persistently activated in ALL and recent data showed that active feedback loops following inhibition of these pathways can lead to redundancy of cell surface receptors that can potentially serve as antigens for ADC treatment. Therefore, we provide here an overview of the most interesting receptors of the various ALL subgroups and discuss the influence that feedback loops of the PI3K/AKT and RAS/MAPK signaling pathways may have on increasing protein expression of the aforementioned receptors, which could lead to targeted combination therapy approaches in the future. Full article
Show Figures

Figure 1

24 pages, 1384 KB  
Review
Breast Cancer Treatments: Drugs Targeting the PI3K/AKT/mTOR Pathway, TNBC Therapy and Future Directions: A Review
by Klaudia Dynarowicz, Dorota Bartusik-Aebisher, Katarzyna Koszarska, Aleksandra Kotlińska and David Aebisher
Life 2025, 15(10), 1583; https://doi.org/10.3390/life15101583 - 10 Oct 2025
Viewed by 349
Abstract
Breast cancer affects women at an increasingly younger age, with genetic predispositions and other factors contributing to its second-highest cancer mortality rate. The diversity of pharmacological treatment stems from its heterogeneity, which favors a more precise approach to each subtype. Despite the extensive [...] Read more.
Breast cancer affects women at an increasingly younger age, with genetic predispositions and other factors contributing to its second-highest cancer mortality rate. The diversity of pharmacological treatment stems from its heterogeneity, which favors a more precise approach to each subtype. Despite the extensive advances in medicine in recent decades, the problem of treating cancer patients remains significant. The problem with modern therapeutic methods is low effectiveness, emerging side effects, difficulty in eliminating all cancer cells, and the quite common use of monotherapy and the associated drug resistance, which may lead to disease progression. The aim of this review is to present the latest therapeutic strategies (combination therapies) used in the treatment of breast cancer. PubMed databases and clinical data from ClinicalTrials.gov were used for this purpose. The review included characteristics of the latest clinical trials from the last year (2024–2025), which present currently recruiting studies of breast cancer treatment with immunotherapy. The review also presented characteristics of clinical trials from the last 5 years (2020–2025) using nanoparticles as an adjunct to breast cancer treatment. Articles published between 2016 and August 2025 (excluding articles that describe the first use of a given drug) were included in the review. The review analyzed drugs targeting molecular targets, including intracellular pathways responsible for cell cycle regulation, as well as new directions such as nanotechnology in treatment breast cancer. Full article
Show Figures

Figure 1

22 pages, 3771 KB  
Article
Inhibiting Fatty Acid Oxidation Suppresses Acquired Resistance to Standard Chemotherapy in Melanoma
by Wonyoung Choi, Woojin Ham, Jeong Hwan Park, Sung Hoon Sim, Jung Won Chun, Mingyu Kang, Chaeyoung Kim, Woosol Hong, Eun-Byeol Koh, Joon Hee Kang, Sang Myung Woo and Soo-Youl Kim
Int. J. Mol. Sci. 2025, 26(20), 9873; https://doi.org/10.3390/ijms26209873 (registering DOI) - 10 Oct 2025
Viewed by 156
Abstract
Immunotherapy and RAF-targeted therapy have become standard treatments for melanoma, significantly improving outcomes compared to earlier therapies. When resistance to initial treatment develops, the older chemotherapy drug Dacarbazine is used. However, resistance to both therapies has emerged, promoting ongoing research to further enhance [...] Read more.
Immunotherapy and RAF-targeted therapy have become standard treatments for melanoma, significantly improving outcomes compared to earlier therapies. When resistance to initial treatment develops, the older chemotherapy drug Dacarbazine is used. However, resistance to both therapies has emerged, promoting ongoing research to further enhance survival rates. Among various theories, autophagy is believed to play a critical role in acquired drug resistance, as increased autophagy has been observed in resistance to multiple anticancer agents. In this study, Dabrafenib was administered to melanoma cells with an RAF mutation, while Dacarbazine was given to cells with an Raf wild type. Both cell lines showed increased autophagy and FAO following treatment with the anticancer drugs. When FAO was blocked during drug treatment, melanoma cells became more susceptible to cell death. In xenograft models, B16F10 melanoma (Raf wild type) demonstrated regrowth due to acquired resistance after two weeks of Dacarbazine treatment. Conversely, a combination of Dacarbazine and the FAO inhibitors KN510 and KN713 (a combination of KN510 and KN713:KN510713) caused near-complete remission without regrowth. A375 melanoma (BRAFV600E) developed resistance after four weeks of Dabrafenib treatment, yet the combination of Dabrafenib and KN510713 resulted in near-complete remission with no signs of regrowth. Based on these findings, combining FAO inhibitors with first-line therapies may be a promising approach for managing melanoma, regardless of RAF mutation status. Full article
(This article belongs to the Special Issue Mitochondria: Central Players in Cancer)
Show Figures

Figure 1

13 pages, 1092 KB  
Article
Real-World Effectiveness of Racotumomab as Maintenance Therapy in Advanced Non-Small Cell Lung Cancer Patients
by Sailyn Alfonso Alemán, Haslen Cáceres Lavernia, Kirenia Camacho Sosa, Soraida C. Acosta Brooks, Orestes Santos Morales, Carmen E. Viada González, Meylán Cepeda Portales, Mayelín Troche Concepción, Loipa Medel Pérez, Leticia Cabrera Benítez, Milagros C. Domecq Salmón, Daymys Estévez Iglesias, Mayra Ramos Suzarte and Tania Crombet Ramos
Vaccines 2025, 13(10), 1035; https://doi.org/10.3390/vaccines13101035 - 7 Oct 2025
Viewed by 400
Abstract
Background: Advanced non-small cell lung cancer (NSCLC) has limited curative options and poor survival. Racotumomab, an anti-idiotype monoclonal antibody vaccine targeting tumor gangliosides, has shown efficacy in clinical trials. This study evaluated its real-world effectiveness as maintenance therapy following first-line chemotherapy. Materials and [...] Read more.
Background: Advanced non-small cell lung cancer (NSCLC) has limited curative options and poor survival. Racotumomab, an anti-idiotype monoclonal antibody vaccine targeting tumor gangliosides, has shown efficacy in clinical trials. This study evaluated its real-world effectiveness as maintenance therapy following first-line chemotherapy. Materials and Methods: A multi-center observational study was conducted on 162 patients with advanced NSCLC who received racotumomab from 2012 to 2024. Effectiveness was evaluated in the intention-to-treat (ITT) cohort. Overall survival (OS) was estimated, with subgroup analyses conducted according to clinical and demographic factors. Results: The median OS was 14.9 months (95% CI: 11.7–18.1), and the 5-year survival rate reached 20%. Patients diagnosed with stage III disease, those with better Eastern Cooperative Oncology Group (ECOG) performance status, and individuals younger than 65 years experienced significantly longer survival. Racotumomab demonstrated a favorable hazard ratio compared to historical controls (HR 0.44 vs. supportive care; HR 0.55 vs. docetaxel). Conclusions: In the era of immune checkpoint inhibitors, these real-world results indicate a promising role for racotumomab in the maintenance setting for advanced NSCLC. These findings provide a strong rationale for further investigation of racotumomab in the context of modern immunotherapy, particularly in combination trials with other immunomodulatory antibodies, along with the validation of clinical and biologic predictive biomarkers. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

14 pages, 1263 KB  
Article
Impact of 6 MV-LINAC Radiation on Lymphocyte Phenotypes and Cytokine Profiles
by Papichaya Yudech, Wisawa Phongprapun, Pittaya Dankulchai, Duangporn Polpanich, Abdelhamid Elaissari, Rujira Wanotayan and Kulachart Jangpatarapongsa
Radiation 2025, 5(4), 29; https://doi.org/10.3390/radiation5040029 - 7 Oct 2025
Viewed by 283
Abstract
Radiotherapy employs high-energy X-rays to precisely target tumor tissues while minimizing damage to the surrounding healthy structures. Although its clinical efficacy is well established, the immunomodulatory effects of ionizing radiation remain complex and context-dependent. This study investigated the biological effects of radiotherapeutic doses [...] Read more.
Radiotherapy employs high-energy X-rays to precisely target tumor tissues while minimizing damage to the surrounding healthy structures. Although its clinical efficacy is well established, the immunomodulatory effects of ionizing radiation remain complex and context-dependent. This study investigated the biological effects of radiotherapeutic doses on immune cells by evaluating lymphocyte viability, phenotypic profiles, and cytokine expression levels. Peripheral blood mononuclear cells (PBMCs) were isolated from six healthy donors and irradiated with 0, 2, or 6 Gy using a 6 MV linear accelerator (LINAC). Dose validation with an ionization chamber demonstrated strong agreement between estimated and measured values (intraclass correlation coefficient = 1, 95% CI). Immune subsets, including T cells (CD3+), helper T cells (CD3+CD4+), cytotoxic T cells (CD3+CD8+), regulatory T cells (CD3+CD4+Foxp3+), and natural killer (CD3-CD56+) cells, along with intracellular cytokines interleukin-12 (IL-12) and interferon-gamma (IFN-γ), were analyzed via flow cytometry at multiple time points. The results showed a significant, dose-dependent decline in overall lymphocyte viability (p < 0.01) compared to control. Cytotoxic T cells were the most radiosensitive, followed by helper and regulatory T cells, while NK cells were the most radioresistant. IL-12 expression initially increased post-irradiation, while IFN-γ levels remained variable. These findings demonstrate that radiation induces distinct alterations in immune phenotypes and cytokine profiles, which may shape the immune response. Immune profiling following irradiation may therefore provide valuable insights for optimizing combination strategies that integrate radiotherapy and immunotherapy in cancer treatment. Full article
Show Figures

Graphical abstract

15 pages, 705 KB  
Article
Hepatic Arterial Infusion Chemotherapy with Serplulimab and the Bevacizumab Biosimilar HLX04 for Advanced Hepatocellular Carcinoma: A Prospective, Observational Phase II Clinical Trial
by Huikai Li, Tongguo Si, Rentao Li, Xiaojing Xie, Yang Liu, Linlin Fu, Yu Bai, Junchao Yao, Xihao Zhang, Mao Yang and Xiaofeng Mu
Cancers 2025, 17(19), 3235; https://doi.org/10.3390/cancers17193235 - 5 Oct 2025
Viewed by 528
Abstract
Background/Objectives: Advanced hepatocellular carcinoma (HCC) presents limited treatment options; however, immunotherapy demonstrates encouraging outcomes and acceptable adverse reactions in advanced HCC. This study evaluates the efficacy and safety of combining serplulimab, the bevacizumab biosimilar HLX04, and hepatic arterial infusion chemotherapy (HAIC) as a [...] Read more.
Background/Objectives: Advanced hepatocellular carcinoma (HCC) presents limited treatment options; however, immunotherapy demonstrates encouraging outcomes and acceptable adverse reactions in advanced HCC. This study evaluates the efficacy and safety of combining serplulimab, the bevacizumab biosimilar HLX04, and hepatic arterial infusion chemotherapy (HAIC) as a first-line therapy. Methods: This prospective, observational, single-center phase II trial enrolled untreated HCC patients with Barcelona Clinic Liver Cancer (BCLC) stage C. All patients received serplulimab (4.5 mg/kg) and HLX04 (15.0 mg/kg) every 3 weeks, followed by the HAIC-FOLFOX regimen. The primary endpoint was the objective response rate (ORR). Secondary endpoints included the disease control rate (DCR), progression-free survival (PFS), and safety. Results: A total of 32 patients were enrolled. The best outcomes showed an ORR of 53.1%, including 17 partial responses (PR, 53.1%) and 12 stable diseases (SD, 37.5%), resulting in a DCR of 90.6%. Subgroup analysis showed a higher ORR in patients with a single lesion and those receiving ≥3 treatment cycles, with an ORR of 60.7% in the latter group. Additionally, five patients underwent successful hepatectomy after ≥3 treatment cycles, with postoperative pathology confirming extensive tumor necrosis. Kaplan–Meier analysis estimated PFS rates of 89.9% (95% CI: 79.5–100.0%) at 6 months and 70.8% (95% CI: 54.2–92.4%) at 12 months. No deaths related to adverse events (AEs) occurred; four (12.5%) patients experienced grade IV AEs and twelve (37.5%) patients experienced grade III AEs. Conclusions: Serplulimab, HLX04, and HAIC combined as a first-line treatment for advanced HCC have demonstrated promising efficacy, particularly in patients completing ≥3 cycles, with an acceptable safety profile. Further investigation in larger trials is required. Full article
Show Figures

Figure 1

19 pages, 2497 KB  
Article
Multi-Modal Biomarker Profiling of Tumor Microenvironment and Genomic Alterations to Enhance Immunotherapy Stratification in Melanoma
by Meshack Bida, Thabiso Victor Miya, Tebogo Marutha, Rodney Hull, Mohammed Alaouna and Zodwa Dlamini
Curr. Issues Mol. Biol. 2025, 47(10), 821; https://doi.org/10.3390/cimb47100821 (registering DOI) - 3 Oct 2025
Viewed by 426
Abstract
Tumor mutational burden (TMB) and tumor-infiltrating lymphocytes (TILs) are key biomarkers for predicting immunotherapy responses in cutaneous melanoma. The discordance between brisk TIL morphology and absent cytokine signals complicates immune profiling. We examined the interactions between TMB, TIL patterns, cytokine expression, and genomic [...] Read more.
Tumor mutational burden (TMB) and tumor-infiltrating lymphocytes (TILs) are key biomarkers for predicting immunotherapy responses in cutaneous melanoma. The discordance between brisk TIL morphology and absent cytokine signals complicates immune profiling. We examined the interactions between TMB, TIL patterns, cytokine expression, and genomic alterations to uncover immune escape mechanisms and refine prognostic tools. A structure-based BRAF druggability analysis was performed to anchor the genomic findings in a therapeutic context. Primary cutaneous melanoma cases (N = 205) were classified as brisk (n = 65), non-brisk (n = 60), or absent TILs (n = 80) according to the American association for cancer research (AACR) guidelines. Inter-observer concordance was measured using intraclass correlation. Tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) levels were graded using immunohistochemistry. Eleven brisk TIL cases lacking TNF-α expression were analyzed using the (Illumina TruSight Oncology 500, Illumina-San Diego, CA, USA). Dabrafenib docking to the BRAF ATP site was performed with Glide SP/XP and rescored with Prime MM-GBSA. Brisk TILs lacking cytokine signals suggested post-translational silencing of TNF-α/IFN-γ. Among the 11 profiled cases, eight exhibited high TMB and copy number alterations, with enrichment of nine metastasis/immune regulation genes. Inter-observer concordance was high (absent TILs, 95%; brisk TILs, 90.7%). BRAF docking yielded a canonical type-I pose and strong ATP pocket engagement (ΔG_bind −84.93 kcal·mol−1). Single biomarkers are insufficient for diagnosis. A multiparametric framework combining histology, cytokine immunohistochemistry (IHC), and genomic profiling enhances stratification and reveals immune escape pathways, with BRAF modeling providing a mechanistic anchor for the targeted therapy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

26 pages, 1887 KB  
Review
Design and Efficacy of Oncolytic Viruses and Antitumor Vaccines: A Dead End in the Immunotherapy of Pancreatic Cancer?
by Eduard Achim, Elena Pîrlici, Cecilia Cristea and Mihaela Tertis
Int. J. Mol. Sci. 2025, 26(19), 9640; https://doi.org/10.3390/ijms26199640 - 2 Oct 2025
Viewed by 305
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies, marked by late diagnosis, limited responsiveness to conventional therapies, and an immunosuppressive tumor microenvironment. While immunotherapy has transformed treatment paradigms in several cancers, its efficacy in PDAC has been minimal. Oncolytic viruses and [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies, marked by late diagnosis, limited responsiveness to conventional therapies, and an immunosuppressive tumor microenvironment. While immunotherapy has transformed treatment paradigms in several cancers, its efficacy in PDAC has been minimal. Oncolytic viruses and therapeutic cancer vaccines have emerged as promising immunotherapeutic strategies designed to stimulate robust, tumor-specific immune responses and reshape the immune landscape. However, despite encouraging preclinical data, clinical translation in PDAC has been largely disappointing. This review critically evaluates the design, delivery, and efficacy of oncolytic virotherapy and cancer vaccines in PDAC, examining barriers such as stromal desmoplasia, immune exclusion, and tumor heterogeneity. We also explore combination strategies integrating checkpoint inhibitors, chemotherapy, radiotherapy, and stromal modulation to overcome resistance. Ultimately, the viability of these approaches hinges on a clearer understanding of their mechanistic limitations and the refinement of delivery platforms. These factors will determine whether oncolytic viruses and cancer vaccines can be successfully repositioned within the therapeutic arsenal or warrant reevaluation in the evolving landscape of PDAC treatment. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

41 pages, 3113 KB  
Review
Flavonoid-Based Combination Therapies and Nano-Formulations: An Emerging Frontier in Breast Cancer Treatment
by Priyanka Uniyal, Ansab Akhtar and Ravi Rawat
Pharmaceuticals 2025, 18(10), 1486; https://doi.org/10.3390/ph18101486 - 2 Oct 2025
Viewed by 683
Abstract
Cancer has remained a major global health challenge, with around 20 million new cases and 9.7 million fatalities recorded each year. Even though there has been recent progress in therapies such as radiotherapy, chemotherapy, immunotherapy, and gene therapy, cancer remains a major treatment [...] Read more.
Cancer has remained a major global health challenge, with around 20 million new cases and 9.7 million fatalities recorded each year. Even though there has been recent progress in therapies such as radiotherapy, chemotherapy, immunotherapy, and gene therapy, cancer remains a major treatment challenge due to late diagnosis and difficulties in therapeutic effectiveness. Flavonoids, a substantial category of naturally occurring polyphenols, have received considerable interest in recent years for their potential involvement in cancer management and prevention, especially concerning breast cancer. These bioactive compounds, abundant in vegetables, fruits, and herbs, exhibit various therapeutic actions, including antioxidant, anti-inflammatory, and antimutagenic effects. The advanced therapeutic potential of flavonoids, when combined with FDA-approved medicines, offers synergistic effects and enhanced clinical results. Additionally, flavonoid-loaded nano-formulations, involving co-delivery systems, are being explored to increase solubility, stability, and bioavailability, enabling targeted delivery to cancer cells while reducing off-target adverse effects. This review examines the role of flavonoids in the prevention and management of breast cancer, focusing on their dietary sources, metabolism, and pharmacokinetic properties. Furthermore, we explore novel strategies, such as combination therapies with FDA-approved drugs and the application of flavonoid-based nanoformulations, which have the potential to enhance therapeutic outcomes. The clinical application of these strategies has the potential to improve breast cancer treatment and create new opportunities for the advancement of flavonoid-based therapies. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

12 pages, 4050 KB  
Article
Low Radiation Doses to Gross Tumor Volume in Metabolism Guided Lattice Irradiation Based on Lattice-01 Study: Dosimetric Evaluation and Potential Clinical Research Implication
by Giuseppe Iatì, Giacomo Ferrantelli, Stefano Pergolizzi, Gianluca Ferini, Valeria Venuti, Federico Chillari, Miriam Sciacca, Valentina Zagardo, Carmelo Siragusa, Anna Santacaterina, Anna Brogna and Silvana Parisi
J. Pers. Med. 2025, 15(10), 470; https://doi.org/10.3390/jpm15100470 - 2 Oct 2025
Viewed by 249
Abstract
Purpose: This paper aims to calculate the gross tumor volume (GTV) receiving low radiation doses in patients submitted to “metabolism-guided” lattice radiation therapy and relative possible implications with clinical outcomes. Material and Methods: We reviewed plans for treating voluminous masses via [...] Read more.
Purpose: This paper aims to calculate the gross tumor volume (GTV) receiving low radiation doses in patients submitted to “metabolism-guided” lattice radiation therapy and relative possible implications with clinical outcomes. Material and Methods: We reviewed plans for treating voluminous masses via “metabolism-guided” LATTICE-01 irradiation. The aim was to deliver high-dose radiation to spherical deposits (vertices) within a bulky tumor mass. These were placed at tumor areas with differing PET metabolism. We evaluated the relationships between GTV volumes and dose-volumetric histograms (mean, maximum, minimum, and % GTV received 0.5, 1, 2, 3 Gy). Results: Sixty-two plans of treatment met the inclusion criteria as established. The median GTV volume was 315.9 cc (range = 10.54–2605.9 cc). A median of two Vertices was allocated within the GTVs (range 1–9) and were planned to receive a dose of ≥10 Gy/1 fraction (median 12 Gy, range 10–15 Gy). Median V3Gy percentage was 51.58% (range 2–100%), median V2Gy percentage was 67.80% (range 1.60–100%), median V1Gy percentage was 83.70% (range 0.80–100%), and median V0.5Gy percentage was 88.49% (range 17.60–100%). Conclusions: In the present series, we performed a dosimetric evaluation of the GTV’s volume exposed to low doses during the metabolic guided lattice irradiation process. Combining high- and low-dose radiotherapy based on a spatially fractionated (LATTICE) approach could reactivate the immune system against cancer cells. These observations could be useful for planning prospective studies on immunotherapy combined with the lattice technique. Full article
Show Figures

Figure 1

16 pages, 2918 KB  
Article
Surface Engineering of Natural Killer Cells with Lipid-Based Antibody Capture Platform for Targeted Chemoimmunotherapy
by Su Yeon Lim, Yeongbeom Kim, Hongbin Kim, Seungmin Han, Jina Yun, Hyun-Ouk Kim, Suk-Jin Ha, Sehyun Chae, Young-Wook Won and Kwang Suk Lim
Pharmaceutics 2025, 17(10), 1285; https://doi.org/10.3390/pharmaceutics17101285 - 1 Oct 2025
Viewed by 415
Abstract
Next-generation cancer immunotherapy increasingly combines tumor-targeting antibodies or antibody–drug conjugates (ADCs) with immune effector cells to enhance therapeutic precision. However, many existing approaches rely on genetic modification or complex manufacturing, limiting their clinical scalability and rapid deployment. To address this issue, we developed [...] Read more.
Next-generation cancer immunotherapy increasingly combines tumor-targeting antibodies or antibody–drug conjugates (ADCs) with immune effector cells to enhance therapeutic precision. However, many existing approaches rely on genetic modification or complex manufacturing, limiting their clinical scalability and rapid deployment. To address this issue, we developed an antibody capture protein (ACP)-based surface engineering platform that enables the rapid, reversible, and non-genetic functionalization of NK cells with therapeutic antibodies or ADCs. This approach uses a DMPE-PEG-lipid conjugate to anchor thiolated protein A (ACP) to the NK cell membrane via hydrophobic insertion, thereby stably and selectively binding to the Fc region of IgG molecules. Using this strategy, we developed ACP-modified NK cells (AC-NKs) that can selectively capture therapeutic antibodies (trastuzumab (TZ), trastuzumab-emtansine (T-DM1), and sacituzumab (SZ)) pre-bound to each target antigen on tumor cells and induce antigen-specific cytotoxic responses. The resulting AC-NKs exhibited enhanced tumor recognition and cytotoxicity against HER2-positive and Trop-2-positive cancer cells in vitro. Compared with conventional combination therapies, AC-NKs enhanced immune activation, as demonstrated by effective delivery of cytotoxic agents, enhanced cancer cell engagement, and upregulation of CD107a expression. Notably, the system supports multiple antigen targeting and tunable antibody loading, enabling adaptation to tumor heterogeneity and resistant phenotypes. This platform might also provide a simple, scalable, and safe method for rapidly developing programmable immune cell therapies without genetic modification. Its versatility supports multi-antigen targeting and broad applicability across NK and T cell therapies, offering a promising path toward personalized, off-the-shelf chemoimmunotherapy. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Targeted Immunotherapy)
Show Figures

Figure 1

27 pages, 2302 KB  
Review
Crossroads of Iron Metabolism and Inflammation in Colorectal Carcinogenesis: Molecular Mechanisms and Therapeutic Perspectives
by Nahid Ahmadi, Gihani Vidanapathirana and Vinod Gopalan
Genes 2025, 16(10), 1166; https://doi.org/10.3390/genes16101166 - 1 Oct 2025
Viewed by 640
Abstract
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and DNA damage, while inflammation driven by cytokine-regulated pathways accelerates tumourigenesis. We therefore conducted this narrative review to collate the available evidence on the link between iron homeostasis and inflammatory signalling in CRC and highlight potential diagnostic and therapeutic applications. Methods: This narrative review of preclinical and clinical studies explores the molecular and cellular pathways that connect iron regulation and inflammation to CRC. Key regulatory molecules, such as the transferrin receptor (TFRC), ferroportin (SLC40A1), ferritin (FTH/FTL), hepcidin, and IL-6, were reviewed. Additionally, we summarised the findings of transcriptomic, epigenomic, and proteomic studies. Relevant therapeutic approaches, including iron chelation, ferroptosis induction, and anti-inflammatory strategies, were also discussed. Results: Evidence suggests that CRC cells exhibit altered iron metabolism, marked by the upregulation of transferrin receptor (TFRC), downregulation of ferroportin, and dysregulated expression of ferritin. Inflammatory mediators such as IL-6 activate hepcidin and STAT3 signalling, which reinforce intracellular iron retention and oxidative stress. Increased immune evasion, epithelial proliferation, and genomic instability appear to be linked to the interaction between inflammation and iron metabolism. Other promising biomarkers include ferritin, hepcidin, and composite gene expression signatures; however, their clinical application remains limited. Although several preclinical studies support the use of targeted iron therapies and combination approaches with anti-inflammatory agents or immunotherapy, there is a lack of comprehensive clinical validation confirming their efficacy and safety in humans. Conclusion: Although preclinical studies suggest that iron metabolism and inflammatory signalling form an interconnected axis closely linked to CRC, translating this pathway into reliable clinical biomarkers and effective therapeutic strategies remains a significant challenge. Future biomarker-guided clinical trials are essential to determine the clinical relevance and to establish precision medicine strategies targeting the iron–inflammation crosstalk in CRC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

37 pages, 2374 KB  
Review
Tumor Microenvironment: Recent Advances in Immunotherapies of Pancreatic Cancer
by Sharon Varghese Thankachan, Vijayalakshmi Jayaraman, Liza Datta, Soniga Apthi, Binish Fatima Zaman, Raghav Gurunathan, Anuppama Suresh, Parthasarathy Chandrakesan, Ramachandran Vinayagam, Sang Gu Kang, Kanagaraj Palaniyandi and Dhanavathy Gnanasampanthapandian
Medicina 2025, 61(10), 1776; https://doi.org/10.3390/medicina61101776 - 1 Oct 2025
Viewed by 788
Abstract
The progression of pancreatic cancer (PC) is significantly influenced by the immune system. In the United States, PC is the third leading cause of cancer-related mortality. The high lethality of PC is attributed to its immunological advantage, which is facilitated by an immunosuppressive [...] Read more.
The progression of pancreatic cancer (PC) is significantly influenced by the immune system. In the United States, PC is the third leading cause of cancer-related mortality. The high lethality of PC is attributed to its immunological advantage, which is facilitated by an immunosuppressive microenvironment, a low mutational burden, and minimal T-cell infiltration. Although immunotherapies, such as checkpoint blockades or genetically engineered T cells, have not yet demonstrated viability, there is a growing body of evidence suggesting that innovative combinations of conventional therapies and various procedures may lead to effective immunotherapy in the treatment of PC. This review focuses on the importance of the tumor microenvironment and the promising role of immunotherapies in PC. Full article
(This article belongs to the Special Issue Pancreatic Cancer: Advances in Treatment and Future Prospects)
Show Figures

Graphical abstract

Back to TopTop