Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = complex wave number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1718 KB  
Article
Development of a Generic Bio-Interface for Immuno-Biodetection on an Oxide Surface Targeting Pathogen Bacteria
by Thibaut Zwingelstein, Thérèse Leblois and Vincent Humblot
Molecules 2025, 30(18), 3681; https://doi.org/10.3390/molecules30183681 - 10 Sep 2025
Viewed by 304
Abstract
With the increase in contamination by microbial agents (bacteria, viruses, etc.) in the fields of agri-food, healthcare, and environment, it is necessary to detect and quantify these biological elements present in complex fluids in a short time with high selectivity, high sensitivity, and, [...] Read more.
With the increase in contamination by microbial agents (bacteria, viruses, etc.) in the fields of agri-food, healthcare, and environment, it is necessary to detect and quantify these biological elements present in complex fluids in a short time with high selectivity, high sensitivity, and, if possible, moderate cost. Acoustic wave biosensors, based on immuno-detection, appear to meet a certain number of these criteria. In this context, we are developing a generic antibody-based biointerface that can detect a wide range of pathogenic bacterial agents using a specific bioreceptor. Based on the silane–oxide chemistry, the process is transferable to any kind of surface that can be either oxidized in surface or activated with O2-plasma, for instance. For this proof of concept, we have chosen to develop our biointerface on titanium and lithium niobate surfaces. The development of the biointerface consists of grafting antibodies via a self-assembled monolayer (SAM) composed of an aminopropyltriethoxysilane (APTES) and a linker (phenylene diisothiocyanate, PDITC). Two functionalization routes were tested for grafting APTES: in anhydrous toluene followed by a heating step at 110 °C or in chloroform at room temperature. The results obtained on titanium show comparable grafting efficiency between these two routes, allowing us to consider the transposition of the route at room temperature on lithium niobate. The latest route was chosen for fragile materials that do not require the heating steps necessary when using toluene for grafting aminopropyltriethoxysilane. Different surface characterization techniques were used, such as IR spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), and contact angle (WCA), to verify the successful grafting of each layer. Biodetection experiments in static conditions were also carried out to demonstrate the specificity of pathogenic detection, testing an ideal medium with solely bacteria, with no other food sampling nutrients. This paper demonstrates the successful elaboration of a biointerface using APTES as the first anchoring layer, with chloroform as a mild solvent. The process is easily transferable to any kind of fragile surface. Moreover, following anti-L. monocytogenes antibodies, our biointerface shows a specificity of capture in static mode (at a concentration of 107 CFU/mL for an incubation time of 4 h at 37 °C) of up to 98% compared to a species negative control (E. coli) and up to 85% in terms of strain specificity (L. innocua). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

24 pages, 4061 KB  
Article
Study of Applicability in Minimising Pitch Radius Gyration for Different Hull Types to Improve Seakeeping Performance
by Muhammad Iqbal, Andi Trimulyono, Samuel and Ocid Mursid
J. Mar. Sci. Eng. 2025, 13(9), 1734; https://doi.org/10.3390/jmse13091734 - 9 Sep 2025
Viewed by 476
Abstract
This paper presents an optimisation study to determine the best centre of gravity (CoG) position to improve seakeeping performance. Two varied parameters used in this study were the longitudinal and vertical centre of gravity (LCG and VCG). The Radius Gyration in the y-axis [...] Read more.
This paper presents an optimisation study to determine the best centre of gravity (CoG) position to improve seakeeping performance. Two varied parameters used in this study were the longitudinal and vertical centre of gravity (LCG and VCG). The Radius Gyration in the y-axis (Ry) is introduced as a novel single-objective function to be minimised, avoiding the complexity of the conventional seakeeping optimisation process. The quality of the seakeeping performance was evaluated by response amplitude operators (RAOs) of the heave, pitch, and vertical motion. Two different hull forms are compared to investigate the applicability of the Ry as the objective function in seakeeping optimisation. The patrol boat and S-60 hull form are selected as representatives of a planing hull type and a displacement hull type. The optimisation was carried out by using the Central Composite Design (CCD) and response surface methodology (RSM) to model the relationship between the CoG and Ry from large and small vessels, with the objective function minimising the Ry. The finding shows that minimising the Ry is more sensitive to the planing hull type compared to the displacement hull type in reducing the vertical motion in different Froude numbers and wave headings. Full article
(This article belongs to the Special Issue Design and Analysis of Ship Structure)
Show Figures

Figure 1

29 pages, 9843 KB  
Article
Hydrodynamic Performance of Seawater Intake Structures Through Numerical Modelling and Particle Image Velocimetry
by Mahmood Rahmani Firozjaei, Zahra Hajebi, Seyed Taghi Omid Naeeni, Hassan Akbari and Gregorio Iglesias
Water 2025, 17(17), 2607; https://doi.org/10.3390/w17172607 - 3 Sep 2025
Viewed by 1046
Abstract
The performance of seawater intake systems affects the reliability and efficiency of desalination plants and water-processing systems. The objective of this work is to gain insights into improving their design by examining the flow patterns around seawater intakes using particle image velocimetry ( [...] Read more.
The performance of seawater intake systems affects the reliability and efficiency of desalination plants and water-processing systems. The objective of this work is to gain insights into improving their design by examining the flow patterns around seawater intakes using particle image velocimetry (PIV), image processing techniques, and numerical modeling. Different wave and current conditions are considered, and intake conditions are classified into categories based on hydrodynamic parameters. Numerical simulations indicate complex flow patterns under simultaneous waves and currents. The results revealed that the velocity of the approach current affects the efficiency of seawater intake, and the impact depends on the cap geometry. Square caps, characterized by sharp edges, create flow contractions and instabilities, whereas circular caps result in smoother flow patterns, enhancing efficiency. Wave action exacerbates these effects, particularly as the Keulegan–Carpenter (KC) number increases, and may compromise the stability of intake structures. Circular caps improve overall stability and performance under waves. These results contribute to better designs of seawater intake structures and, thus, improved efficiency and stability. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

26 pages, 16577 KB  
Article
Bridging Epilepsy and Cognitive Impairment: Insights from EEG and Clinical Observations in a Retrospective Case Series
by Athanasios-Christos Kalyvas, Nikoletta Smyrni, Panagiotis Ioannidis, Nikolaos Grigoriadis and Theodora Afrantou
J. Pers. Med. 2025, 15(9), 413; https://doi.org/10.3390/jpm15090413 - 2 Sep 2025
Viewed by 639
Abstract
Background: Epilepsy and cognitive impairment frequently coexist, yet their relationship remains complex and insufficiently understood. This study aims to explore the clinical and electrophysiological features of patients presenting with both conditions in order to identify patterns that may inform more accurate diagnosis [...] Read more.
Background: Epilepsy and cognitive impairment frequently coexist, yet their relationship remains complex and insufficiently understood. This study aims to explore the clinical and electrophysiological features of patients presenting with both conditions in order to identify patterns that may inform more accurate diagnosis and effective management within a personalized medicine framework. Methods: We retrospectively analyzed 14 patients with late-onset epilepsy and coexisting cognitive impairment, including mild cognitive impairment and Alzheimer’s disease. Clinical history, cognitive assessments, neuroimaging, and electroencephalographic recordings were reviewed. EEG abnormalities, seizure types, and treatment responses were systematically documented. Results: Patients were categorized into two groups: (1) those with established Alzheimer’s disease who later developed epilepsy and (2) those in whom epilepsy preceded cognitive impairment. Temporal lobe involvement was a key feature, with EEG abnormalities frequently localizing to the frontal–temporal electrodes and manifesting as background slowing, focal multiform slow waves, and epileptiform discharges. Levetiracetam was the most commonly used antiseizure medication, and it was effective across both groups. Conclusions: This case series highlights the value of EEG in characterizing patients with subclinical and overt epileptic activity and cognitive impairment comorbidity. The inclusion of a substantial number of cases with documented EEG abnormalities provides valuable insight into the interplay between epilepsy and neurodegenerative diseases. By integrating neurophysiological data with clinical and cognitive trajectories, this work aligns with the principles of precision medicine, facilitating a more comprehensive evaluation and tailored management approach. Further longitudinal studies are required to validate prognostic markers and guide optimal therapeutic strategies. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

17 pages, 1140 KB  
Article
Qualitative Study of Solitary Wave Profiles in a Dissipative Nonlinear Model
by Beenish and Fehaid Salem Alshammari
Mathematics 2025, 13(17), 2822; https://doi.org/10.3390/math13172822 - 2 Sep 2025
Viewed by 400
Abstract
The convective Cahn–Hilliard–Oono equation is analyzed under the conditions μ10 and μ3+μ40. The Lie invariance criteria are examined through symmetry generators, leading to the identification of Lie algebra, where translation symmetries exist in [...] Read more.
The convective Cahn–Hilliard–Oono equation is analyzed under the conditions μ10 and μ3+μ40. The Lie invariance criteria are examined through symmetry generators, leading to the identification of Lie algebra, where translation symmetries exist in both space and time variables. By employing Lie group methods, the equation is transformed into a system of highly nonlinear ordinary differential equations using appropriate similarity transformations. The extended direct algebraic method are utilized to derive various soliton solutions, including kink, anti-kink, singular soliton, bright, dark, periodic, mixed periodic, mixed trigonometric, trigonometric, peakon soliton, anti-peaked with decay, shock, mixed shock-singular, mixed singular, complex solitary shock, singular, and shock wave solutions. The characteristics of selected solutions are illustrated in 3D, 2D, and contour plots for specific wave number effects. Additionally, the model’s stability is examined. These results contribute to advancing research by deepening the understanding of nonlinear wave structures and broadening the scope of knowledge in the field. Full article
(This article belongs to the Special Issue Numerical Analysis of Differential Equations with Applications)
Show Figures

Figure 1

24 pages, 4629 KB  
Review
Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress
by Lingzhi Zhao and Aiwu Peng
Energies 2025, 18(17), 4615; https://doi.org/10.3390/en18174615 - 30 Aug 2025
Viewed by 700
Abstract
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end [...] Read more.
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end our dependency on fossil fuels. Many ingenious wave energy conversion methods have been put forward, and a large number of wave energy converters (WECs) have been developed. However, to date, wave energy conversion technology is still in the demonstration application stage. Key issues such as survivability, reliability, and efficient conversion still need to be solved. The major hurdle is the fact that ocean waves provide a slow-moving, high-magnitude force, whereas most electric generators operate at high rotary speed and low torque. Coupling the slow-moving, high-magnitude force of ocean waves normally requires conversion to a high-speed, low-magnitude force as an intermediate step before a rotary generator is applied. This, in general, tends to severely limit the overall efficiency and reliability of the converter and drives the capital cost of the converter well above an acceptable commercial target. Magnetohydrodynamic (MHD) wave energy conversion makes use of MHD generators in which a conducting fluid passes through a very strong magnetic field to produce an electric current. In contrast to alternatives, the relatively slow speed at which the fluid traverses the magnetic field makes it possible to directly couple to ocean waves with a high-magnitude, slowly moving force. The MHD generator provides an excellent match to the mechanical impedance of an ocean wave, and therefore, an MHD WEC has no rotating mechanical parts with high speeds, no complex control process, and has good response to low sea states and high efficiency under all working conditions. This review introduces the system composition, working process, and technical features of WECs based on MHD generators first. Then, the research development, key points, and issues of wave energy conversion technology based on MHD generators are presented in detail. Finally, the problems to be solved and the future research directions of wave energy conversion based on MHD generators are pointed out. Full article
(This article belongs to the Special Issue Advances in Ocean Energy Technologies and Applications)
Show Figures

Figure 1

27 pages, 8177 KB  
Article
A Novel Scheme for High-Accuracy Frequency Estimation in Non-Contact Heart Rate Detection Based on Multi-Dimensional Accumulation and FIIB
by Shiqing Tang, Yunxue Liu, Jinwei Wang, Shie Wu, Xuefei Dong and Min Zhou
Sensors 2025, 25(16), 5097; https://doi.org/10.3390/s25165097 - 16 Aug 2025
Viewed by 586
Abstract
This paper proposes a novel heart rate detection scheme to address key challenges in millimeter-wave radar-based vital sign monitoring, including weak signals, various types of interference, and the demand for high-precision and super-resolution frequency estimation under practical computational constraints. First, we propose a [...] Read more.
This paper proposes a novel heart rate detection scheme to address key challenges in millimeter-wave radar-based vital sign monitoring, including weak signals, various types of interference, and the demand for high-precision and super-resolution frequency estimation under practical computational constraints. First, we propose a multi-dimensional coherent accumulation (MDCA) method to enhance the signal-to-noise ratio (SNR) by fully utilizing both spatial information from multiple receiving channels and temporal information from adjacent range bins. Additionally, we are the first to apply the fast iterative interpolated beamforming (FIIB) algorithm to radar-based heart rate detection, enabling super-resolution frequency estimation with low computational complexity. Compared to the traditional fast Fourier transform (FFT) method, the FIIB achieves an improvement of 1.08 beats per minute (bpm). A reordering strategy is also introduced to mitigate potential misjudgments by FIIB. Key parameters of FIIB, including the number of frequency components L and the number of iterations Q, are analyzed and recommended. Dozens of subjects were recruited for experiments, and the root mean square error (RMSE) of heart rate estimation was less than 1.12 bpm on average at a distance of 1 m. Extensive experiments validate the high accuracy and robust performance of the proposed framework in heart rate estimation. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Graphical abstract

27 pages, 17879 KB  
Article
Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow
by Shuo Gao and Enhao Wang
J. Mar. Sci. Eng. 2025, 13(8), 1552; https://doi.org/10.3390/jmse13081552 - 13 Aug 2025
Viewed by 528
Abstract
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless [...] Read more.
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless parameter StKC, which effectively replicates the fundamental lift frequency caused by the complex vortex motion around the riser. The structural responses of the riser are described using the Euler–Bernoulli beam theory, and the van der Pol equations are used to calculate the fluid forces acting on the riser, which can replicate the nonlinear vortex dynamics. The coupled equations are discretized in both time and space with a finite difference method (FDM), enabling iterative computations of the VIV responses of the riser. A total of six cases are examined with four different Keulegan–Carpenter (KC) numbers (i.e., KC=31, 56, 121, and 178) to investigate the VIV characteristics of small-scale and large-scale risers in uniform oscillatory flow. Key features such as intermittent VIV, amplitude modulation, and hysteresis, as well as the VIV development process, are analyzed in detail. The simulation results show good agreement with the experimental data, indicating that the proposed numerical model is able to reliably reproduce the riser VIV in uniform oscillatory flow. Overall, the VIV characteristics of the large-scale riser resemble those of the small-scale riser but exhibit higher vibration modes, stronger traveling wave features, and more complex energy transfer mechanisms. Full article
Show Figures

Figure 1

19 pages, 2722 KB  
Article
Fluorene-Containing β-Diketonato Ligands and Their Rhodium(I) Complexes—A Characterization and Crystallographic Study
by Frederick Jacobus Francois Jacobs, Siyanda Khoza and Eleanor Fourie
Inorganics 2025, 13(8), 255; https://doi.org/10.3390/inorganics13080255 - 30 Jul 2025
Viewed by 597
Abstract
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized [...] Read more.
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized containing the fluorene-functional group, where the varying substituent on the β-diketone was CF3 (1), PhCF3 (2), Ph (3) and PhCH3 (4). The corresponding cyclooctadiene rhodium(I) complexes of the type [Rh(cod)((fluorene)COCHCOR)], with R = CF3 (5), PhCF3 (6), Ph (7) and PhCH3 (8) were also synthesized. A crystal structure determination of 2 and 6 was performed, highlighting important changes in the ligand structure as a result of metal complexation. The structure of 2 also showed a hydrogen interaction between the hydroxy and carboxyl groups, forming a pseudo six-membered ring that stabilizes the enol form of the compound. Cyclic voltammetry (CV) of the β-diketones 14 showed a reduction wave for the reduction of the β-diketonato backbone between −1500 mV and −2100 mV as measured against ferrocene (FcH). CVs of rhodium(I) complexes 58 showed a reduction of the β-diketonato backbone between −1800 and −2000 mV, as well as an oxidation wave for the oxidation of the rhodium(I) metal centre at approximately 300 mV. Full article
Show Figures

Graphical abstract

21 pages, 1657 KB  
Article
Heterogeneous-IRS-Assisted Millimeter-Wave Systems: Element Position and Phase Shift Optimization
by Weibiao Zhao, Qiucen Wu, Hao Wei, Dongliang Su and Yu Zhu
Sensors 2025, 25(15), 4688; https://doi.org/10.3390/s25154688 - 29 Jul 2025
Viewed by 575
Abstract
Intelligent reflecting surfaces (IRSs) have attracted extensive attention in the design of future communication networks. However, their large number of reflecting elements still results in non-negligible power consumption and hardware costs. To address this issue, we previously proposed a green heterogeneous IRS (HE-IRS) [...] Read more.
Intelligent reflecting surfaces (IRSs) have attracted extensive attention in the design of future communication networks. However, their large number of reflecting elements still results in non-negligible power consumption and hardware costs. To address this issue, we previously proposed a green heterogeneous IRS (HE-IRS) consisting of both dynamically tunable elements (DTEs) and statically tunable elements (STEs). Compared to conventional IRSs with only DTEs, the unique DTE–STE integrated structure introduces new challenges in optimizing the positions and phase shifts of the two types of elements. In this paper, we investigate the element position and phase shift optimization problems in HE-IRS-assisted millimeter-wave systems. We first propose a particle swarm optimization algorithm to determine the specific positions of the DTEs and STEs. Then, by decomposing the phase shift optimization of the two types of elements into two subproblems, we utilize the manifold optimization method to optimize the phase shifts of the STEs, followed by deriving a closed-form solution for those of the DTEs. Furthermore, we propose a low-complexity phase shift optimization algorithm for both DTEs and STEs based on the Cauchy–Schwarz bound. The simulation results show that with the tailored element position and phase shift optimization algorithms, the HE-IRS can achieve a competitive performance compared to that of the conventional IRS, but with much lower power consumption. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

24 pages, 3349 KB  
Article
Effect of Damping Plate Parameters on Liquid Sloshing in Cylindrical Tanks of Offshore Launch Platforms
by Yuxin Pan, Yuanyuan Wang, Fengyuan Liu and Gang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1448; https://doi.org/10.3390/jmse13081448 - 29 Jul 2025
Viewed by 446
Abstract
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine [...] Read more.
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine environment. The complex coupling effects of wind, waves, and currents impose severe challenges upon these platforms, causing complex phenomena such as severe rocking. These phenomena pose severe threats to and significantly interfere with the stability and normal execution of offshore rocket launch operations. This study employs CFD simulation software to analyze liquid sloshing within a cylindrical tank, both with and without baffles. Following validation of the natural frequency, the analysis focuses on the suppression effect of different baffle positions and configurations on tank sloshing. The numerical simulation results indicate the following: Incorporating baffles alters the natural frequency of liquid sloshing within the tank and effectively suppresses the free surface motion. The suppression of the wave surface motion improves as the baffle is positioned closer to the free surface and as the number of perforations in the baffle increases. However, when the number of perforations exceeds a certain threshold, further increasing it yields negligible improvement in the suppression of the sloshing wave surface motion. Full article
Show Figures

Figure 1

20 pages, 2542 KB  
Article
Rarefied Reactive Gas Flows over Simple and Complex Geometries Using an Open-Source DSMC Solver
by Rodrigo Cassineli Palharini, João Luiz F. Azevedo and Diego Vera Sepúlveda
Aerospace 2025, 12(8), 651; https://doi.org/10.3390/aerospace12080651 - 23 Jul 2025
Viewed by 571
Abstract
During atmospheric reentry, a significant number of chemical reactions are produced inside the high-temperature shock wave formed upstream of the spacecraft. Chemical reactions can significantly alter the flowfield structure surrounding the vehicle and affect surface properties, including heat transfer, pressure, and skin friction [...] Read more.
During atmospheric reentry, a significant number of chemical reactions are produced inside the high-temperature shock wave formed upstream of the spacecraft. Chemical reactions can significantly alter the flowfield structure surrounding the vehicle and affect surface properties, including heat transfer, pressure, and skin friction coefficients. In this scenario, the primary goal of this investigation is to evaluate the Quantum-Kinetic chemistry model for computing rarefied reactive gas flow over simple and complex geometries. The results are compared with well-established reaction models available for the transitional flow regime. The study focuses on two configurations, a sphere and the Orion capsule, analyzed at different altitudes to assess the impact of chemical nonequilibrium across varying flow rarefaction levels. Including chemical reactions led to lower post-shock temperatures, broader shock structures, and significant species dissociation in both geometries. These effects strongly influenced the surface heat flux, pressure, and temperature distributions. Comparison with results from the literature confirmed the validity of the implemented QK model and highlighted the importance of including chemical kinetics when simulating hypersonic flows in the upper atmosphere. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

13 pages, 1613 KB  
Article
N-Methylpyridinium Porphyrin Complexes as Sensitizers for Sonodynamic Therapy Against Planktonic and Biofilm-Forming Multidrug-Resistant Microbes
by Daniel Ziental, Francesca Giuntini, Marcin Wysocki, Patrycja Talarska-Kulczyk, Agata Kubicka, Jolanta Dlugaszewska and Lukasz Sobotta
Int. J. Mol. Sci. 2025, 26(14), 6949; https://doi.org/10.3390/ijms26146949 - 19 Jul 2025
Viewed by 566
Abstract
Porphyrins play an extremely important role in both photodynamic (PDT) and sonodynamic therapy (SDT). These techniques, which have a lot in common, are largely based on the interaction between the sensitizer and light or ultrasounds (US), respectively, resulting in the formation of reactive [...] Read more.
Porphyrins play an extremely important role in both photodynamic (PDT) and sonodynamic therapy (SDT). These techniques, which have a lot in common, are largely based on the interaction between the sensitizer and light or ultrasounds (US), respectively, resulting in the formation of reactive oxygen species (ROS) that have the ability to destroy target cells. SDT requires the use of an appropriate frequency of US waves that are able to excite the chemical compound used. In this study, five porphyrin complexes were used: free-base meso-tetra(N-methyl-pyridinium-4-yl)porphyrin (TMPyP) and its transition metal complexes containing zinc(II), palladium(II), copper(II), and chloride-iron(II). The sonodynamic activity of these compounds was studied in vitro. The obtained results confirm the significant relationship between the chemical structure of the macrocycle and its stability and ability to generate ROS. The highest efficiency in ROS generation and high stability were demonstrated by non-metalated compound and its complex with zinc(II), while complex with copper(II), although less stable, were equally effective in terms of ROS production. Antibacterial activity tests showed the unique properties of the tested compounds, including a reduction in the number of both planktonic and biofilm antibiotic-resistant microorganisms above 5 log, which is rare among sonosensitizers. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

18 pages, 1709 KB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 474
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

26 pages, 7701 KB  
Article
YOLO-StarLS: A Ship Detection Algorithm Based on Wavelet Transform and Multi-Scale Feature Extraction for Complex Environments
by Yihan Wang, Shuang Zhang, Jianhao Xu, Zhenwen Cheng and Gang Du
Symmetry 2025, 17(7), 1116; https://doi.org/10.3390/sym17071116 - 11 Jul 2025
Viewed by 542
Abstract
Ship detection in complex environments presents challenges such as sea surface reflections, wave interference, variations in illumination, and a range of target scales. The interaction between symmetric ship structures and wave patterns challenges conventional algorithms, particularly in maritime wireless networks. This study presents [...] Read more.
Ship detection in complex environments presents challenges such as sea surface reflections, wave interference, variations in illumination, and a range of target scales. The interaction between symmetric ship structures and wave patterns challenges conventional algorithms, particularly in maritime wireless networks. This study presents YOLO-StarLS (You Only Look Once with Star-topology Lightweight Ship detection), a detection framework leveraging wavelet transforms and multi-scale feature extraction through three core modules. We developed a Wavelet Multi-scale Feature Extraction Network (WMFEN) utilizing adaptive Haar wavelet decomposition with star-topology extraction to preserve multi-frequency information while minimizing detail loss. We introduced a Cross-axis Spatial Attention Refinement module (CSAR), which integrates star structures with cross-axis attention mechanisms to enhance spatial perception. We constructed an Efficient Detail-Preserving Detection head (EDPD) combining differential and shared convolutions to enhance edge detection while reducing computational complexity. Evaluation on the SeaShips dataset demonstrated YOLO-StarLS achieved superior performance for both mAP50 and mAP50–95 metrics, improving by 2.21% and 2.42% over the baseline YOLO11. The approach achieved significant efficiency, with a 36% reduction in the number of parameters to 1.67 M, a 34% decrease in complexity to 4.3 GFLOPs, and an inference speed of 162.0 FPS. Comparative analysis against eight algorithms confirmed the superiority in symmetric target detection. This work enhances real-time ship detection and provides foundations for maritime wireless surveillance networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

Back to TopTop