Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (429)

Search Parameters:
Keywords = compound casting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6961 KB  
Article
Effects of Traveling Magnetic Field on Interfacial Microstructure and Mechanical Properties of Al/Mg Bimetals Prepared by Compound Casting
by Qiantong Zeng, Guangyu Li, Jiaze Hu, Wenming Jiang, Xiuru Fan, Yuejia Wang, Xiaoqiong Wang and Xing Kang
Materials 2025, 18(17), 4077; https://doi.org/10.3390/ma18174077 - 31 Aug 2025
Viewed by 178
Abstract
In this work, the Al/Mg bimetals were prepared by traveling magnetic field (TMF)-assisted compound casting, and the effects of current intensity on the interfacial microstructure and mechanical properties of the Al/Mg bimetals were investigated. The results revealed that the Al/Mg bimetallic interface without [...] Read more.
In this work, the Al/Mg bimetals were prepared by traveling magnetic field (TMF)-assisted compound casting, and the effects of current intensity on the interfacial microstructure and mechanical properties of the Al/Mg bimetals were investigated. The results revealed that the Al/Mg bimetallic interface without the TMF consisted of an Al-Mg intermetallic compounds (IMCs) area (Al3Mg2 + Al12Mg17 + Mg2Si particles) and Al-Mg eutectic area (Al12Mg17 + δ-Mg). There was no change in the interfacial phase compositions with the TMF, but the interface thickness initially decreased and then increased with the increase in the TMF current, and the distribution of Mg2Si became more uniform, dendrites become smaller, and dendritic arms fragment. The shear strength improves from 17 MPa without the TMF to 27 MPa with the TMFed-60 A, which was increased by 58.8%. This enhancement occurs because cracks are deflected by uniformly distributed Mg2Si particles and do not coalesce into main cracks, ultimately fracturing in the eutectic region, which increases the length of the crack propagation path and thereby improves the shear strength of the Al/Mg bimetals. Full article
Show Figures

Figure 1

20 pages, 4177 KB  
Article
PEO Treatment for Improved Corrosion Resistance in a Zn-Mg Alloy: Electrochemical and Structural Analysis
by Ramona Cimpoeșu, Sorin Georgian Moga, Bogdan Istrate, Fabian Cezar Lupu, Nicanor Cimpoesu, Ana-Maria Roman, Gheorghe Bădărău, Ion Pătrașcu, Remus Diaconu and Romeu Chelariu
Materials 2025, 18(17), 4064; https://doi.org/10.3390/ma18174064 (registering DOI) - 29 Aug 2025
Viewed by 225
Abstract
Zinc-based alloys have been extensively studied for their potential applications in biodegradable materials, yet their corrosion behaviour necessitates the development of effective surface treatments. In this study, a ZnMg alloy was developed by casting in an inert medium and subsequently treating it with [...] Read more.
Zinc-based alloys have been extensively studied for their potential applications in biodegradable materials, yet their corrosion behaviour necessitates the development of effective surface treatments. In this study, a ZnMg alloy was developed by casting in an inert medium and subsequently treating it with Plasma Electrolytic Oxidation (PEO). The corrosion behaviour was characterised in a 0.9% NaCl solution through Tafel polarisation, cyclic polarisation, and electrochemical impedance spectroscopy (EIS). Additionally, the surface morphology was investigated using scanning electron microscopy (SEM) and EDX analysis. The structure and phases of the oxide layer and of the corrosion products were investigated through X-ray diffraction (XRD). The electrochemical results demonstrated a substantial decrease in the corrosion current density and an increase in the polarisation resistance for the treated samples. Electrical Impedance Spectroscopy (EIS) modelling revealed the formation of a layer exhibiting distinct capacitive behaviour, comprising two distinct regions. XRD analysis confirmed evidence of corrosion compounds characteristic of chlorinated media on the surface. The findings indicated that PEO treatment enhanced the corrosion resistance of the ZnMg alloy, suggesting its suitability for biomedical applications or exposure to marine environments characterised by high levels of corrosion. Full article
Show Figures

Graphical abstract

19 pages, 5786 KB  
Article
Improving the Interfacial Microstructure and Properties of Al/Mg Bimetal by a Novel Mo Coating Combined with Ultrasonic Field
by Jiaze Hu, Xiuru Fan, Haoheng Du, Guangyu Li, Xiaoqiong Wang, Xing Kang and Qiantong Zeng
Materials 2025, 18(17), 4005; https://doi.org/10.3390/ma18174005 - 27 Aug 2025
Viewed by 340
Abstract
To enhance the interfacial performance of Al/Mg bimetal, this study introduced a novel Mo coating and employed an ultrasonic field (UF) to regulate the interfacial microstructure. In the absence of both a Mo coating and ultrasonic treatment (referred to as the untreated specimen), [...] Read more.
To enhance the interfacial performance of Al/Mg bimetal, this study introduced a novel Mo coating and employed an ultrasonic field (UF) to regulate the interfacial microstructure. In the absence of both a Mo coating and ultrasonic treatment (referred to as the untreated specimen), the interfacial region was primarily composed of Al-Mg intermetallic compounds (Al-Mg IMCs), Al-Mg eutectic structures (ES), and Mg2Si phases, with an average interfacial layer thickness of approximately 1623 μm. Upon application of the Mo coating, the formation of both Al-Mg phases and Mg2Si phases was completely inhibited. The interfacial zone was predominantly characterized by the Mo solid solution (Mo SS) and oxide, with the average thickness significantly reduced to about 28 μm. Upon applying the UF to the Mo-coated specimen, the interfacial composition remained similar to that of the untreated specimen, except for Mo SS, with the interfacial thickness increasing to 561 μm. Shear strength tests indicated that the application of the Mo coating alone resulted in a decrease in bonding strength compared to the untreated specimen. However, subsequent ultrasonic treatment significantly improved the interfacial shear strength to 54.7 MPa, representing a 60.9% increase relative to the untreated specimen. This improvement is primarily attributed to the Mo coating and UF synergistically suppressing the formation of brittle Al-Mg IMCs and reducing oxide inclusions at the interface. Thus, the simultaneous application of Mo coatings and ultrasonic fields is required to enhance the properties of Al/Mg bimetals. Full article
Show Figures

Graphical abstract

28 pages, 954 KB  
Review
Food-Grade Liposome-Loaded Delivery Systems: Current Trends and Future Perspectives
by Erkan Mankan, Canan Yagmur Karakas, Oznur Saroglu, Mondher Mzoughi, Osman Sagdic and Ayse Karadag
Foods 2025, 14(17), 2978; https://doi.org/10.3390/foods14172978 - 26 Aug 2025
Viewed by 616
Abstract
Liposomes have emerged as versatile carriers in the food industry due to their amphiphilic structure, biocompatibility, and ability to encapsulate both hydrophilic and lipophilic bioactive compounds. They offer promising benefits by enhancing the solubility and bioavailability of food ingredients such as vitamins, polyphenols, [...] Read more.
Liposomes have emerged as versatile carriers in the food industry due to their amphiphilic structure, biocompatibility, and ability to encapsulate both hydrophilic and lipophilic bioactive compounds. They offer promising benefits by enhancing the solubility and bioavailability of food ingredients such as vitamins, polyphenols, carotenoids, peptides, and omega-3 fatty acids. However, liposomes in aqueous form often suffer from poor stability, leakage of encapsulated compounds, and sensitivity to environmental conditions. To address these challenges, hybrid delivery systems have been developed by incorporating liposomes into various solid or semi-solid encapsulation matrices such as nanofibers, particles, cast films, hydrogels, and emulsions. These combinations can offer synergistic advantages, including improved structural integrity, enhanced protection during processing and storage, extended-release profiles under digestive conditions, and versatile applicability across different applications. This review comprehensively discusses liposome structure, preparation methods, and their incorporation into various encapsulation matrices, focusing exclusively on food-grade ingredients. It highlights recent advancements in hybrid liposome-based systems tailored for food applications, with an emphasis on their functional performance and delivery efficiency. Overall, these hybrid systems hold great promise for developing next-generation functional foods with improved health benefits and shelf stability. Full article
Show Figures

Figure 1

20 pages, 5198 KB  
Article
Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery
by Nattawipa Matchimabura, Jiramate Poolsiri, Nataporn Phadungvitvatthana, Rachanida Praparatana, Ousanee Issarachot and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(17), 2301; https://doi.org/10.3390/polym17172301 - 25 Aug 2025
Viewed by 1141
Abstract
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via [...] Read more.
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via the solvent evaporation method, achieving a 24-fold increase in solubility (42.7 mg/mL) at a 1:3 drug-to-polymer ratio. Expandable gastroretentive films were subsequently formulated using starches from Hom-Nil rice, glutinous rice, and white rice, combined with chitosan as the primary film-forming agents, via the solvent casting technique. Hydroxypropyl methylcellulose (HPMC) K100 LV was incorporated as an adjuvant to achieve controlled release. At optimal concentrations (3% w/w starch, 2% w/w chitosan, and 2% w/w HPMC), the films exhibited favorable mechanical properties, swelling capacity, and unfolding behavior. Sustained release of FA over 8 h was achieved in formulations containing HPMC with either Hom-Nil or glutinous rice starch. Among the tested formulations (R6, G6, and H6), those incorporating Hom-Nil rice starch demonstrated the most significant antioxidant (10.38 ± 0.23 μg/mL) and anti-inflammatory (9.26 ± 0.14 μg/mL) effects in murine macrophage cell line (RAW 264.7), surpassing the activities of both free FA and FA-SD. These results highlight the potential of anthocyanin-rich pigmented rice starch-based expandable films as effective gastroretentive systems for enhanced FA delivery. Full article
Show Figures

Graphical abstract

19 pages, 8293 KB  
Article
Influence of Mn in Balancing the Tensile and Electrical Conductivity Properties of Al-Mg-Si Alloy
by Jiaxing He, Jiangbo Wang, Jian Ding, Yao Wang and Wenshu Qi
Metals 2025, 15(8), 923; https://doi.org/10.3390/met15080923 - 21 Aug 2025
Viewed by 328
Abstract
This study investigated the influence of manganese (Mn) on microstructure evolution and property optimization in Al-0.6Mg-0.58Si-0.24Fe-xMn alloys under both as-cast and hot-extruded conditions. The balance mechanisms of Mn in tensile properties and electrical conductivity of Al-Mg-Si alloy were elucidated, achieving synergistic optimization of [...] Read more.
This study investigated the influence of manganese (Mn) on microstructure evolution and property optimization in Al-0.6Mg-0.58Si-0.24Fe-xMn alloys under both as-cast and hot-extruded conditions. The balance mechanisms of Mn in tensile properties and electrical conductivity of Al-Mg-Si alloy were elucidated, achieving synergistic optimization of strength-elongation-conductivity. For non-equilibrium solidified as-cast alloys, JMatPro simulations coupled with Fe-rich phase size statistics reveal an inhibitory effect of Mn on β-Al5FeSi phase formation. Matthiessen’s rule analysis quantitatively clarifies Mn-induced resistivity variations through solid solution and phase morphology modifications. In hot-extruded alloys, TEM characterization was used to analyze the structure of Al-Fe-Mn-Si quaternary compounds and clarify their combined effects with typical Mg2Si phases on dislocation and subgrain configurations. The as-cast Al-0.6Mg-0.58Si-0.24Fe-0.18Mn alloy demonstrate comprehensive properties with ultimate tensile strength, elongation and electrical conductivity. The contributions of dislocations, grain boundaries and precipitates to resistivity are relatively minor, so the main source of resistivity in hot-extruded alloys is still Mn. The hot-extruded alloy containing 0.18 wt.% Mn still has better properties, with a tensile strength of 176 MPa, elongation of 24% and conductivity of 48.07 %IACS. Full article
Show Figures

Figure 1

17 pages, 4237 KB  
Article
Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment
by Viktor Nakonechnyi, Viktoriia Havryliak and Vira Lubenets
Polymers 2025, 17(16), 2238; https://doi.org/10.3390/polym17162238 - 17 Aug 2025
Viewed by 596
Abstract
The instability of many volatile organic compounds (VOCs) limits their usage in different fragrance carriers and products. In scratch-and-sniff applications, VOCs are bound so strongly that release cannot happen without an external trigger. On the other hand, other fixatives like cyclodextrins release unstable [...] Read more.
The instability of many volatile organic compounds (VOCs) limits their usage in different fragrance carriers and products. In scratch-and-sniff applications, VOCs are bound so strongly that release cannot happen without an external trigger. On the other hand, other fixatives like cyclodextrins release unstable volatile molecules too rapidly. We engineered biodegradable gelatin films whose release profile can be tuned by glycerol plasticization and alkaline protease degradation. Digitalized VOC release profiles acquired with the described near-real-time analysis toolkit are digital twins that replicate the behavior of the evaluated films in silico. Seven formulations were cast from 10% gelatin containing D-limonene, glycerol (5%, 20%), protease-C 30 kU mL−1, and samples with additional water to establish a higher hydromodule for protease catalytic activity. Release profiles were monitored for nine days at 23 ± 2 °C in parallel by metal-oxide semiconductor (MOS) e-noses, gravimetric weight loss, and near-infrared measurements (NIR). These continuous measurements were cross-checked with gel electrophoresis, FTIR spectroscopy, hardness tests, and sensory intensity ratings. Results showed acceleration of VOC release by enzymatic treatment during the first days, as well as overall impact on the release profile. Differences in low and high glycerol films were observed, and principal component analysis of NIR spectra separated low and high glycerol groups, mirroring the MOS and FTIR data. Usability of MOS data was explored in comparison to more biased and subjective intensity results from sensory panel evaluation. Overall, the created toolkit showed good cross-checked results and enabled the possibility for close to real-time analysis for bio-based VOC carriers. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Graphical abstract

28 pages, 2611 KB  
Article
Bioactive Properties of Chitosan/Nanocellulose Films Loaded with Sage Essential Oil: From In Vitro Study to In Situ Application in Shelf-Life Extension of Fresh Poultry Meat
by João R. A. Pires, Raquel Pereira, Sara Paz, Leandro A. Gomes, Victor G. L. Souza, Maria H. Godinho, Maria P. Duarte and Ana L. Fernando
J. Compos. Sci. 2025, 9(8), 428; https://doi.org/10.3390/jcs9080428 - 8 Aug 2025
Viewed by 548
Abstract
The overuse of nonrenewable resources has motivated intensive research and the development of new types of green bio-based and degradable feedstocks derived from natural sources, such as cellulose derivates, also in nanoforms. The inclusion of such nanoparticles in bio-based polymers with the aim [...] Read more.
The overuse of nonrenewable resources has motivated intensive research and the development of new types of green bio-based and degradable feedstocks derived from natural sources, such as cellulose derivates, also in nanoforms. The inclusion of such nanoparticles in bio-based polymers with the aim of providing reinforcement is a trend, which, when associated with the incorporation active compounds, creates active packaging suitable for the packaging of highly perishable food, thus contributing to the product’s shelf-life extension. Chitosan (Ch)/sage essential oil (SEO) bionanocomposite reinforced with nanocrystalline cellulose (CNC) was cast as active packaging for the preservation of fresh poultry meat. Meat samples were wrapped in different bioplastics (pristine chitosan, chitosan with commercial CNC, chitosan with CNC obtained from three different lignocellulosic crops, giant reed (G), kenaf (K), and miscanthus (M), chitosan with SEO, and chitosan with SEO and CNC), while unwrapped samples were tested as the control. Periodically, samples were evaluated in terms of their physicochemical properties and microbial growth. Additionally, bionanocomposites were also evaluated in terms of their in situ antimicrobial properties, as well as migration toward food simulants. Meat samples protected with bionanocomposites showed lower levels of microbiological growth (2–3 logs lower than control) and lipid oxidation (20–30% lower than in control), over time. This was attributed to the intrinsic antimicrobial capacity of chitosan and the high oxygen barrier properties of the films resulting from the CNC inclusion. The SEO incorporation did not significantly improve the material’s antimicrobial and antioxidant activity yet interfered directly with the meat’s color as it migrated to its surface. In the in vitro assays, all bionanocomposites demonstrated good antimicrobial activity against B. cereus (reduction of ~8.2 log) and Salmonella Choleraesuis (reduction of ~5–6 log). Through the in vitro migration assay, it was verified that the SEO release rate of phenolic compounds to ethanol 50% (dairy products simulate) was higher than to ethanol 95% (fatty food simulate). Furthermore, these migration tests proved that nanocellulose was capable of delaying SEO migration, thus reducing the negative effect on the meat’s color and the pro-oxidant activity recorded in TBARS. It was concluded that the tested chitosan/nanocellulose bionanocomposites increased the shelf life of fresh poultry meat. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Graphical abstract

29 pages, 7510 KB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 575
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

11 pages, 1293 KB  
Article
DOE-Based Investigation of Microstructural Factors Influencing Residual Stress in Aluminum Alloys
by Nawon Kwak and Eunkyung Lee
Metals 2025, 15(7), 816; https://doi.org/10.3390/met15070816 - 21 Jul 2025
Viewed by 437
Abstract
Residual stresses generated during the casting process significantly affect the reliability of the final product, making accurate prediction and analysis of these stresses crucial. In particular, to minimize the difference between simulation results and actual measurements, it is essential to develop predictive simulations [...] Read more.
Residual stresses generated during the casting process significantly affect the reliability of the final product, making accurate prediction and analysis of these stresses crucial. In particular, to minimize the difference between simulation results and actual measurements, it is essential to develop predictive simulations that incorporate microstructural characteristics. Therefore, in this study, residual stress prediction simulations were conducted for aluminum components manufactured by high-pressure die casting (HPDC), and measurement locations were selected based on the simulation results. Subsequently, the microstructural characteristics at each location (Si and intermetallic compounds) were quantitatively analyzed, and significant factors affecting residual stress were identified through design of experiments (DOE). As a result, Si sphericity (p-value ≤ 0.05) was observed to be the most significant factor among Si area fraction, IMC area fraction, and Si sphericity, and the residual stress and Si sphericity showed a positive interaction due to the rapid cooling rate and inhomogeneous microstructure distribution. Furthermore, the study demonstrated the effectiveness of DOE in clearly distinguishing the significance of variables with strong interdependencies. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Figure 1

22 pages, 1308 KB  
Article
Novel Active Films with Semolina and Jatoba (Hymenaea courbaril L.): Preparation, Properties, and Sustainability Aspects
by Cristiani Viegas Brandão Grisi, Flávia Cosmo Guedes da Silva, Rita de Cassia Andrade Silva, Rene Pinto da Silva, Fábio Anderson Pereira da Silva and Angela Maria Tribuzy de Magalhães Cordeiro
Foods 2025, 14(13), 2391; https://doi.org/10.3390/foods14132391 - 6 Jul 2025
Viewed by 562
Abstract
The aim of this study was to develop and characterize antioxidant-active films for potential food packaging applications. The films were produced by casting aqueous solutions containing semolina flour (6% w/w), pectin extracted from passion fruit (1% w/w), [...] Read more.
The aim of this study was to develop and characterize antioxidant-active films for potential food packaging applications. The films were produced by casting aqueous solutions containing semolina flour (6% w/w), pectin extracted from passion fruit (1% w/w), inverted sugar (1% w/w), and sucrose (1% w/w), incorporating hydroalcoholic extracts from jatoba stem bark (X1) and pods (X2) at concentrations ranging from 0 to 1% (w/w). The films were characterized in terms of their functional, physical, chemical, structural, and degradation properties. The formulation that showed the best performance, referred to as the optimized formulation (FO), contained 0.5% X1 and 0.5% X2, presenting a high phenolic compound content (8.80 mg GAE/g), strong antioxidant activity as determined by the DPPH method (75.28%) and FRAP assay (6.02 mmol FeSO4/g), good thermal stability (350 °C), and a high soil degradation rate (83.47% in 15 days). These results indicate that the FO film has potential application as a primary packaging material with antioxidant function for oxidation-sensitive foods, meeting the demand for biodegradable and environmentally sustainable solutions in the food industry. Full article
Show Figures

Figure 1

15 pages, 1871 KB  
Article
A Gelatin-Based Film with Acerola Pulp: Production, Characterization, and Application in the Stability of Meat Products
by Vitor Augusto dos Santos Garcia, Giovana de Menezes Rodrigues, Victória Munhoz Monteiro, Rosemary Aparecida de Carvalho, Camila da Silva, Cristiana Maria Pedroso Yoshida, Silvia Maria Martelli, José Ignacio Velasco and Farayde Matta Fakhouri
Polymers 2025, 17(13), 1882; https://doi.org/10.3390/polym17131882 - 6 Jul 2025
Viewed by 572
Abstract
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using [...] Read more.
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using gelatin (5%), sorbitol (0,1%), and acerola pulp (60, 70, 80, and 90%). The characterization of the acerola pulp was carried out. Visual aspects, thickness, pH, water vapor permeability, and total phenolic compounds were characterized in the films. The commercial acerola pulp presented the characteristics within the identity and quality standards. A good film formation capacity was obtained in all formulations, presenting the color parameters tending to red coloration, characteristic of the acerola pulp. The total phenolic compounds content ranged from 2.88 ± 70.24 to 3.94 ± 96.05 mg GAE/100 g, with 90 g of acerola pulp per 100 g of filmogenic solution. This film formulation was selected to apply in a vacuum pack of beef and chicken samples, analyzing the weight loss, color parameters, pH, water holding capacity, shear strength after 9 days of refrigeration storage, and soil biodegradability. Additionally, beef and chicken (in nature) were stored under the same conditions without using the wrapping film. The beef and chicken samples showed greater water retention capacity and color maintenance over the storage period compared to the control (without film addition). This way, active gelatin–acerola films can be considered a sustainable packaging alternative to preserve meat products. Full article
Show Figures

Figure 1

16 pages, 1367 KB  
Article
Enhancing Hydrophobicity of Nanocellulose-Based Films by Coating with Natural Wax from Halimium viscosum
by Ana Ramos, Jesus M. Rodilla, Rodrigo Ferreira and Ângelo Luís
Appl. Sci. 2025, 15(13), 7576; https://doi.org/10.3390/app15137576 - 6 Jul 2025
Viewed by 498
Abstract
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial [...] Read more.
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial part of the Halimium viscosum plant. The chromatogram resulting from the chemical analysis of the extract revealed the presence of 15 compounds, with nonacosane being the major compound present. For film production, two different chemical pulps gels (sulfite and sulfate) were first characterized in terms of solids content, rheology and Fourier transform infrared spectroscopy (FTIR). The CNF films were produced by the solvent casting method, coated on one side with the extracted wax and subsequently characterized by wettability, surface energy, differential scanning calorimetry (DSC), FTIR, structural properties and water vapor permeability. The results showed that the wax-coated films exhibited a significant increase in water resistance, with a water contact angle exceeding 100°, demonstrating improved hydrophobicity. Also, the water vapor transmission rate (WVTR) of the films was drastically reduced after wax coating. Furthermore, the coated films maintained good transparency, making them a viable alternative to synthetic plastic. This study highlights the potential of natural wax coatings to improve the moisture barrier properties of biodegradable CNF films, promoting their application in sustainable packaging solutions. Full article
Show Figures

Figure 1

17 pages, 5649 KB  
Article
Heat Treatment Analysis and Mechanical Characterization of a Recycled Gravity Die Cast EN 42000 Alloy
by Cristian Cascioli, Riccardo Arcaleni, Alessandro Morri and Lorella Ceschini
Metals 2025, 15(7), 726; https://doi.org/10.3390/met15070726 - 29 Jun 2025
Viewed by 637
Abstract
Recycled aluminum–silicon alloys provide significant environmental benefits by reducing the consumption of raw materials and lowering carbon emissions. However, their industrial application is limited by the presence of iron-based intermetallic compounds and the insufficient investigation in the literature regarding their effects on mechanical [...] Read more.
Recycled aluminum–silicon alloys provide significant environmental benefits by reducing the consumption of raw materials and lowering carbon emissions. However, their industrial application is limited by the presence of iron-based intermetallic compounds and the insufficient investigation in the literature regarding their effects on mechanical behavior. This study focuses on a recycled EN 42000 alloy, comprising 95% recycled aluminum, with a focus on the effect of its elevated iron content (0.447 wt%) on aging behavior and mechanical performance. Laboratory-scale specimens were produced through gravity die casting and subjected to T6 heat treatment, consisting of solution, quenching, and artificial aging from 160 °C to 190 °C for up to 8 h. To investigate overaging, analyses were conducted at 160 °C and 170 °C for durations up to 184 h. Tensile tests were conducted on specimens aged under the most promising conditions. Based on innovative quality indices and predictive modeling, aging at 160 °C for 4.5 h was identified as the optimal condition, providing a well-balanced combination of strength and ductility (YS = 258 MPa, UTS = 313 MPa, and e% = 3.9%). Mechanical behavior was also assessed through microstructural and fractographic analyses, highlighting the capability of EN 42000 to achieve properties suitable for high-performance automotive components. Full article
(This article belongs to the Special Issue Sustainability Approaches in the Recycling of Light Alloys)
Show Figures

Graphical abstract

12 pages, 1899 KB  
Article
Development of Melt-Castable Explosive: Targeted Synthesis of 3,5-Dinitro-4-Methylnitramino-1-Methylpyrazole and Functional Derivatization of Key Intermediates
by Elena Reinhardt, Lukas Bauer, Antonia H. Stadler, Henrik R. Wilke, Arthur Delage, Jörg Stierstorfer and Thomas M. Klapötke
Molecules 2025, 30(13), 2796; https://doi.org/10.3390/molecules30132796 - 28 Jun 2025
Viewed by 524
Abstract
The problems associated with TNT necessitate the development of novel melt-castable compounds with melting points between 70 and 120 °C, a crucial endeavor in the field of energetic materials. This study introduces a promising melt-castable explosive based on nitropyrazole, whose melt-castable properties were [...] Read more.
The problems associated with TNT necessitate the development of novel melt-castable compounds with melting points between 70 and 120 °C, a crucial endeavor in the field of energetic materials. This study introduces a promising melt-castable explosive based on nitropyrazole, whose melt-castable properties were achieved by the introduction of methyl groups. The synthesis of 3,5-dinitro-4-methylnitramino-1-methylpyrazole involves a three-step process starting from 3,5-dinitro-4-chloropyrazole, including substitution, nitration, and methylation reactions. Additionally, two alternative synthesis routes and six energetic salts were examined. Structural elucidation was conducted using conventional methods such as NMR, IR, and X-ray, while the energetic properties of the compound, including thermal behavior, sensitivities, and theoretical performance, were investigated. Also, compatibility with common explosives was investigated, the experimental enthalpy of formation by bomb calorimetry was determined, and an SSRT test was performed. Furthermore, the melt-cast explosive underwent an Ames test in order to assess its toxicity. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

Back to TopTop